用户名: 密码: 验证码:
赤潮藻的分子标识及荧光原位杂(FISH)技术在检测赤潮藻中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮(Red tide)现象在近 20 年中的发生频率、强度以及地理分布都在逐渐增加,它对国民经济、人类健康以及海洋生态环境所造成的巨大影响使得赤潮现象已成为全球共同关注的环境问题之一。
     研究赤潮,进而预防和控制赤潮,最根本的问题是要明确引发赤潮的物种。最近几年采用分子生物学技术鉴定海洋浮游植物,特别是对赤潮藻的研究证实它们已成为微型藻类形态特征观察研究的重要补充手段。
    本论文通过对一些原甲藻株和硅藻藻株的 ITS 序列、5.8S rDNA 或 LSU rDNA进行 PCR 扩增、克隆和序列测定。在 NCBI 数据库中进行同源性检索,序列的比对及相似性分析采用软件 Bioedit、DNAStar、Phylip3.5、Mega 2.0 等,系统进化关系分析采用 NJ(Neighbor Joining)法构建系统进化树。核酸序列的获得一方面是希望通过分子生物学的方法对一些通过形态鉴定的赤潮藻的命名进行验证,更重要的是找出引发赤潮的主要物种的特异性序列或区域,为下一步定性定量检测方法,主要是 FISH 技术中设计种特异性探针提供更多的选择区域。研究结果如下:
    1. 采用 ITS 和 5.8S rDNA 序列研究 2 株海洋原甲藻和 3 株海洋硅藻
    (1)海洋原甲藻 APBM(Prorocentrum micans APBM)的 ITS 和 5.8S rDNA 的长度为 631bp,而东海原甲藻(P. donghaiense)的相应部位的碱基长度为 552bp;东海原甲藻与从 GenBank 中获得的微小原甲藻相似程度较高为 88%,与甲藻属其它原甲藻相似程度较低(约 60-70%);本文研究的海洋原甲藻 APBM 的 ITS 序列与其它原甲藻相似程度都较低(约 30%左右)。用 ITS1 或 ITS2 序列构建的系统树与用 ITS+5.8S rDNA 序列构建的系统树反映的结果基本一致,系统进化树反映的结果与序列相似性的结果基本一致。5.8S 区因过于保守似乎不适于构建系统树反映种下的亲缘关系。
    (2)尖刺拟菱形藻的 ITS 和 5.8S rDNA 全长为 693bp,SK-1(分离自东海赤潮爆发区)测序得到715bp;SK-2(分离自青岛养殖场) 的ITS和5.8S长度为331bp。
During the last two decades, serious economic and public health impacts caused by Harmful Algal Blooms (HABs)have increased in intensity, frequency and geographic distribution. It had great effect on national economy, public health, and oceanic ecosystem as well as. Thus, HABs is receiving increased international attention。 Studying HAB events , then predict and govern HAB, The basic biological concern of HAB was identify and distinguish its species. The speedy progress of molecular techniques offers a new way to identify phytoplankton. At present More and more studies using LSU/SSU rRNA gene or internal transcribed spacers(ITS) as molecular criteria to study dinoflagellate phylogeny have been proved to be powerful tools.
    PCR amplification, cloning and sequencing the ITS and 5.8S rDNA or LSU rDNA from some strains of dinoflagellates and diatoms. Blast searches of these sequences had been done on NCBI(the website: http:// www.ncbi.nlm.nih.gov). Softwares such as Mega 2.0, DNAStar,BioEdit and Phlip3.5 were used to compare the three sequences studied in this paper with other ITS sequences of diatoms retrieved from GenBank. The Phylogenetic tree was constructed with NJ method. The aims of this paper were hoping that verify their phylogeneny by molecular data , and more nucleotide sequences obtained could be offer more choice for designing species-specific probes as well as. The results were as follows:
    1.Studing 2 strains of dinoflagellate and 3 strains of diatoms according to ITS and 5.8S rDNA sequences
    (1) The ITS length of P.micans APBM was 631 base pairs, and P. donghaiense’s ITS sequence was 552 bp. In the ITS sequence, P.donghaiense has very high level of similarity with P.minimum (showing 88% identity), but low level similarity with other species of P.triestinum and P.micans (about 60%-70%), while P.micans APBM show
    
    the lowest level similarity with other P.micans according to ITS sequence, it was about 30% only. The results from phylogenetic tree of ITS2 sequence was the same as that showed by phylogenetic tree of ITS and 5.8S sequence. The results from phylogenetic tree constructed with ITS and 5.8S sequence accorded with that of sequence similarity analysis. The results of the phylogenetic tree constructed with 5.8S sequence were inaccurate; therefore, the use of 5.8S rDNA as a classification standard between species is not reasonable. (2) The ITS sequence of P. pungens was 693 bp, and the ITS sequence of SK-1 was 715 bp, while the ITS sequence of SK-2 was 331bp. Suquence similarity and phylogenetic tree showed that biogeographic groups of P.pungens have little difference in the ITS sequence, showing 100% identity, and classifications of SK-2 and SK-1 based on morphological features maybe incongruous. SK-2 seems to belong to species of S.pseudocostatum. (3) To overcome the shortage of fresh materials demanded by molecular biological experiments, and to get complete target sequence when sequencing as well as, an improved cloning method was applied. This cloning method is simple, feasible and efficient able to meet the need for regular cloning in lab. This study can provide target DNA on call. 2.Obtaining more nucleotide sequences could be offer more choice for designing species-specific probes (1)Complete LSU rDNA sequence of two strains of dinoflagellate were obtained by PCR amplifying three DNA fragments. The complete LSU rDNA sequence of P.micans was 3332 bp,and that of P.donghaiense was 3376 bp. The D1-D2 region of P.micans was 659 bp while the same region of P.donghaiense was713 bp. The D9-D10 region of these species were both 330bp。 (2)analyzing the sequences of complete LSU rDNA, D1-D2 and D9-D10 regions showed that the D1-D2 of P.micans was hypervariable between this strain of P.micans and other species of dinoflagellate, but the same region of p.donghaiense was relatively conserve compared with that of other species of dinoflagellate, especially with P.minimun. The D1-D2 region and D9-D10 region between
    
    p.donghaiense and P.minimun all have above 96% identity, so was the complete LSU rDNA sequ
引文
陈菊芳,徐宁,王朝晖等. 2002. 大亚湾拟菱形藻(Pseudo-nitzschia spp.)种群的季节变化与环境因子的关系. 环境科学学报, 22 (6):743-748
    陈慈美,周慈由,郑受榕等. 1996. 中肋骨条藻增殖的环境制约作用—Fe(Ⅲ)与 N、Mn、光、温交互作用对藻生化组成的效应. 海洋通报, 15(2):37-42
    陈雄文,高坤山. 2003. CO2 浓度对中肋骨条藻的光合无机碳吸收和胞外碳酸酐酶活性的影响. 科学通报. 48(21):2275-2279
    陈月琴,屈良鹄,邱小忠,等. 1997. 甲藻单个细胞 DNA 的制备及在赤潮藻类分子鉴定中的应用. 中山大学学报(自然科学版),36(4):66-69.
    陈月琴,屈良鹄. 1999. 海洋亚历山大藻属种间界定的分子标准. 中山大学学报(自然科学版), 38(1):7-11.
    陈月琴,屈良鹄,曾陇梅,等. 1999. 南海赤潮有毒甲藻链状-塔马亚历山大藻的分子鉴定. 海洋学报. 21(3):106-111.
    杜琦. 1989. 厦门西海域赤潮的研究. 暨南大学学报(赤潮研究专刊),57-67
    方绍锦. 1984. 浙江近海上升流调查区赤潮的初步探讨. [J]. 海洋学报. 6(3):408-414
    郭玉洁. 1994. 大连湾赤潮生物-赤潮异弯藻. 海洋与湖沼. 25(2):211-215
    洪君超,黄秀清,袁永进. 1989. 长江口外及邻近海区赤潮多发区的分析与探讨. 暨南大学学报(赤潮研究专刊),40-50
    霍文毅,俞志明,邹景忠等. 2001. 胶州湾中肋骨条藻赤潮与环境因子的关系. 海洋与湖沼. 32(3): 311-18
    林永水,周近明,何建宗,等. 2001. 赤潮生物. 科学出版社
    林永水,周近明. 1993. 南海甲藻. 北京: 科学出版社. 1-4
    刘东超. 1999. 中肋骨条藻的培养与应用. 水产科技情报. 26(4): 162-4
    陆斗定,齐雨藻,Goebel J. 等. 2003. 东海原甲藻修订及与相关原甲藻的分类学比较. 应用生态学报. 14(7): 1060-64
    彭昆仑,李锦蓉. 1989. 一次发生在深圳赤湾赤潮的初步报告. 暨南大学学报, (赤潮研究专刊), 86-89
    齐雨藻,邹景忠,梁松 等著, 2003. 中国沿海赤潮 北京:科学出版社,1-6
    
    齐雨藻,洪英,吕颂辉 等,1994. 南海大鹏湾海洋褐胞藻赤潮及其成因. 海洋与湖沼. 25(2): 132-137
    齐雨藻,钱锋, 1994b. 大鹏湾几种赤潮甲藻的分类学研究.海洋与湖沼,25(2):206-210
    齐雨藻,王艳. 2003. 我国东海赤潮原甲藻应属哪种? 应用生态学报. 14(7): 1188-90
    齐雨藻,钱锋,郑磊. 1996a. 中国东南沿海赤潮的生理生态学研究 [A].朱明远,李瑞香,王飞. 中国赤潮研究 [M]. 青岛:青岛出版社, 6-15
    齐雨藻,张家平,吴坤东等, 1989. 中国沿海赤潮――深圳湾富营养化与赤潮的研究. 暨南大学学报(赤潮研究专刊), 10-21
    屈良皓,陈月琴. 1999. 生物分子分类检索表-原理与方法 中山大学学报(自然科学版). 38(1):1-6
    萨姆布鲁克 J.,弗里奇 E.F.,曼尼阿蒂斯 T. 著,黄培堂等译.2002. 分子克隆实验指南,第三版,北京:科学出版社, 96-105
    王广策,孙海宝,曾呈奎,2002. 三角褐指藻磷酸甘油酸变位酶基因可能侧翼序列的筛选、克隆以及序列测定. 海洋与湖沼,33(3):259—264
    虞秋波,高亚辉. 2003.拟菱形藻软骨藻酸的研究进展. 海洋科学.27(8):26-29
    张宝玉,王广策,张炎等. 2004. 东海原甲藻和海洋原甲藻 APBM 的 5.8S rDNA及其转录间隔区(ITS)的克隆和序列分析. 海洋与湖沼. 35(3):264-272
    庄丽,陈月琴,李钦亮等,2001. 赤潮叉角藻 18SrDNA 和 ITS 区序列测定与分析. 海洋与湖沼,32(2)148-153
    左冬梅,韩志国,武宝酐. 2002. 铁对尖刺拟菱形藻生长及光合作用的影响. 暨南大学学报(自然科学与医学版) 23(5):81-87
    Adachi M., Sako Y., and Ishida Y. 1997. Analysis of Gymnodinium catenatum Dinophyceae using sequences of the 5.8S rDNA-ITS regions and random amplified polymorphic DNA. Fish. Sci. 63: 701-7
    Adachi M., Sako Y. and Ishida Y. 1993. The identification of conspecific dinoflagellates Alexandrium tamarense from Japan and Thailand by monoclonal antibodies. Nippon Suisan Gakkishi. 59: 327-32
    
    Adachi M, and Sako Y. and Ishida Y., 1996a. Identification of the toxic dinoflagellates Alexandrium catenella and A.tamarense (dinophyceae) using DNA probes and whole-cell hybridization. J. Phycol, 32: 1049-1052
    Adachi M, Sako Y, Ishida Y. 1994. Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8s regions in Japanse Alexandrium species (Dinophyceae). J. Phycol., 30:857-63
    Adachi M, Sako Y, Ishida Y. 1996b. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8s ribosomal DNA and internal transcribed spacer regions. J. Phycol., 32:424-432
    Amann R. I., Binde B. J., Olson R. J., et al. 1990. Combnation of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-25
    Amann R. I., 1995. In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. Mol. Microbiol. Ecol. 33(6): 1-15
    Anderson D. M., Kulis D. M., Cosper E. M. 1989. Immunofluorescent detection of the brown tide organism Aureococcus anophagefferensi. In novel Phytoplankton Bloooms. ed. by Cosper E. M., Carpenter E. J. and Bricelji V. M. Springer-Verlag, New York, pp. 213-228
    Anderson D. M., Kulis D. M., Doucette G. J., et al. 1994. Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United States and Canada. Mar. Biol. 120: 467-78
    Anderson D. M., Kulis D. M., Keafer B. A, et al. 1999. Detection of the toxic dinoflagellate Alexandrium fundyense (Dinophyceae) with oligonucleotide and antibody probes: variation in labelling intensity with physiological condition. J. Phycol. 35: 870-83
    Babinchack. J. A., Doucette G. J. and Ball R. M., 1996. Partial characterization of the LSU rRNA gene from the ciguatoxic dinoflagellate, Gambierdiscus toxicus. In Yasumoto Y., Oshima Y. and Fukuyo Y. [eds.] Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, paris. pp. 459-62
    
    Bakker F. T., Olsen J. L., Stam W. T. et al. 1992. Nuclear ribosomal DNA internal transcribed spacer regions (ITS1 and ITS2) define discrete biographic groups in Cladophora albida (Chlorophyta). J. Phycol. 28: 839-45
    Bakker F. T., Olsen J. L., and Stam W. T., 1995. Evolution of the nuclear rDNA ITS sequences in the Cladophora albida/sericea clade (Chlorophyta). J. Mol. Evol. 40: 640-51
    Baldwin B. G., 1992. Phylogenestic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the vomposite. [J]. Mol.Phylogen. Evol. 1: 3-16
    Baldwin, B. G., Sanderson, M. J., Porter J. M. et al. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Miss. Bol. Gard. 82: 247-277
    Balech E., 1989. Redescription of Alexandrium minutum Halim ( Dinophyceae) type species of the genus Alexandrium. Phycologia. 28: 206-11
    Baroin A., Perasso R. Qu L H., et al. 1988. Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl. Acad. Sci. USA 85: 3474-78
    Bates S S, Garrison and Horner. 1998. Bloom dynamics and physiology of domoic-acid-producing Pseudo-nitzschia species [A]. In: Anderson, D M, et al. [eds]. Physiological ecology of harmful algal blooms [C]. Heidelberg: Springer-verlag, 267-292
    Bates S. S., Leger C., Keafer B. A., et al. 1993. Discrimination between domoic acid-producing and nontoxic forms of the diatom, Pseudonitzschia pungens, using immunofluorescence. Mar. Ecol. Prog. Series. 100: 185-95
    Biegala I.C., Not F., Vaulot D., et al. 2003. Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with Tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl. Environ. Microbiology. 69: 5519-29
    
    Biegala I. C., Kennaway G., and Alverca E., et al. 2002. Identification of bacteria associated with dinoflagellates (Dinophyceae) Alexandrium spp. Using Tyramide signal amplification-fluorescent in situ hybridization and confocal microscopy. J. Phycol. 38: 404-11
    Boczar B A,Liston J,Cattolico R A. 1991. Charatterization of Satellite DNA from Three marine dinoflagellates(Dinophyceae):Glenodinium sp. and two members of the toxic Genus, protogonyaulax . Plant Physiol, 97: 613-618
    Bomber J. W., Tindall D.R., amd Miller D.M., 1989. Genetic variability on toxin potenties among seventeen clones of Gambierdiscus toxicus (Dinophyceae). J. Phycol. 25: 615-25
    Brand L. E., 1991. Review of genetic variation in marine phytoplankton species and the ecological implications. Biol. Oceanogr. 6: 397-409
    Buck K. R., Uttal-Cooke L., Pilskaln C. H., et al. 1992. Autecology of the diatom Pseudonnitzschia australis, a domoic acid producer from Monterey Bay, California. Mar. Ecol. Prog. Series. 84: 293-302
    Cangelosi,G.A.,Hamlin,A.M.,Romab Marin III.,et al. 1997. Detection of stable Pre-rRNA in Toixgentic Pseudo-nitzschia Species. Applied and Environmental Microbiology. 63(12):4859-4865
    Cassie V., 1981. Non-toxic blooms of Prorocentrum micans (Dinophyceae) in the Karamea Bight, New Zeal. J. Mar. Freshw. Res. 15: 811-4
    Castenholz R. W., 1992. Species usage, concept and evolution in the cyanobacterial (blue-green algae). J. Phycol. 28: 737-45
    Cedergren R., Gray M. W., Abel Y., et al. 1988. The evolutionary relationships among known life forms. J. Mol. Evol. 28: 98-112
    Chinain M., Faust M. A., and Pauillac S. 1999. Morphology and molecular analyses of three toxic species of Gambierdiscus (Dinophyceae): G. pacificus, sp. nov., G. australes, sp. nov., and G. polynesiensis, sp. nov. J. Phycol. 35:1282-96
    Chinain M., Germain M., Sako Y. et al. 1997. Intraspecific variation in the dinoflagellate Gambierdiscus toxicus (Dinophyceae) . I. Isozyme analysis. J. Phycol. 33: 36-43
    
    Chrétiennot-Dinet, Sournia M. J. A., Ricard M., et al. 1993. A classification of the marine phytoplankton of the world from class to genus. Phycologia. 32: 159-79
    Coleman A. W. and Mai J. C. 1997. Ribosomal DNA ITS1 and ITS2 sequence comparisons as a tool for predicting genetic relatedness. J. Mol. Evol. 45:168-177
    Coleman, A. W. 1999. Phylogenetic analysis of “ Volcocacae” for comparative genetic studies. Proc. Natl. Acad. Sci. USA 96:13892-97
    Costas E., Zardoya R., Bautista J. et al. 1995. Morphospecies & genospecies in toxic marine dinoflagellates: and analysis of Gymnodinium catenatum/ Gyrodinium impudicum and Alexandrium minutum/A.lusitanicum using antibodies, lectins and gene sequences. J. Phycol. 31: 801-807
    Costas E., and Lopez-Rodas V., 1996. Enumeration and separation of the toxic dinoflagellate Alexandrium minutum from natural samples using immunological procedures with blocking antibodies. J. Exp. Mar. Biol. Ecol. 198: 81-7
    Costas E., 1990. Genetic variability in growth rates of marine dinoflagellates. Genetica. 83:99-102
    Costas E. and Lopez-Rodas V., 1994. Identification of marine dinoflagellates using fluoresscent lectins. J. Phycol. 30: 987-90
    Daugbjerg N. Hansen G. Larsen J. et al. 2000. Phylogeny of some of major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39(4): 302-317
    De Rijk P., Caers A., Van De Peer.Y., et al. 1998. Database on the structure of large ribosomal subunit RNA. Nucleic. Acids Res. 26: 183-6
    DeLong E. F., Wickham D. S. and Pace N. R., 1989. Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells. Science. 243: 130-3
    Destombe C., Cembella A. D., Murphy C. A., et al. 1992. Nucleotide sequence of the 18S ribosomal RNA genes form the marine dinoflagellate Alexandrium tamarense (Gonyaulacales, Dinophyta). Phycologia. 31: 121-4
    
    Dickey R. W., Fryxell G. A., Grande H. R., et al. 1992. Detection of the marine toxins okadaic acid and domoic acid in shellfish and phytoplankton in the Gulf of Mexico. Toxicon. 30: 355-9
    Dodge, J.D. 1965. Thecal fine-structure in the dioflagellate genera Prorocentrum and Exuviaella. J. Mar. Biol. Ass. U.K., 45: 607-614.
    Douglas D. J., Landry D. and Dougla S. E., 1994. Genetic relatedness of toxic and nontoxic isolates of the marine pinnate diatom Pseudonitzschia (Bacillariophyceae) : phylogenetic analysis of the 18S rRNA sequences.. Natural Toxins. 2:166-74
    Ekong R, Wolfe J. 1998. Advances in fluorescent in situ hybridization. Current Opinion in Biotechnology. 9: 19-24
    Embley T. M., Finlay B. J., Thomas R. H., et al. 1992. The use of rRNA sequences and fluorescet probes t investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J. Gen. Microbiol. 138: 1479-87
    Excoffier L., Smouse P., and Quattro. J., 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 139: 267-77
    Faust M. A., 1995. Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J. Phycol. 31: 996-1003
    Franco J. M., Fraga S., Zapata M., et al. 1995. Comparasion between different strains of genus Alexandrium of sp. the minutum group. In Lassus P., [eds]. Toxic Marine Phytoplankton. Lavoisier, Paris. pp.53-8
    Fritz L., Quilliam M. A., Wright J. L., et al. 1992. An outbreak of domoic acid poisoning attributed to the pinnate diatom Pseudonitzschia australis. J. Phycol. 28: 439-42
    Fukuyo Y. 1985. Morphology of Protogonyaulax tamarensis(Labour) Taylor and Protogonyaulax catenella(Whedon and Kofoid) Taylor from Japanese coastal waters. Bull.Mar. Sci. 37: 529-537
    
    Fukuyo Y., Takano H., Chihara M., et al. 1990. Red tide organisms in Japan-an illustrated taxonomic guide. Tokyo: Uchida Rokakubo. 26-27
    Galac M., Erdner D., Anderson D. M., et al. 2003. Molercular quantification of toxic Alexandrium fundyense in the Gulf of Marine. Biol. Bull. 205: 231-232
    Gallagher J. C., 1982. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae) . J. Phycol. 18: 148-62
    Gill L. L., Hardman N., Chappell L., et al. 1988. Phylogeny on Onchocerca volvulus and related species deduced from rRNA sequence comparison. Mol. Biochem. Parasitol. 28: 69-76
    Gonzalez I. L.,Sylvester J. E.,Smith T. F., et al. 1990. Ribosomal RNA gene sequences and hominoid phylogeny. Mol.Biol.Evol., 7:203-219
    Gouy M., and Li W H. 1989b. Molecular phylogeny of the kingdoms Animalia, Plantae and Fungi. Mol. Biol. Evol. 6: 109-122
    Gouy M., and Li W H., 1989a. Phylogenetic analysis based on ribosomal RNA sequences supports the archaebacterial tree rather than eocyte tree. Nature. 339: 145-149
    Grzebyk, D., and Y, Sako. 1998. Phylogenetic analysis of nine species of Prorocentrum inferred from 18s ribosomal DNA sequences, morphological comparisons, and description of Prorocentrum panamensis,sp.nov. J. phycol. 34: 1055-1068.
    Hallegraeff G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia. 32: 79-99
    Hallegraeff, G.M. and S. Fraga. 1998. Bloom dynamics of the toxic dinoflagellate Gymnodinium catenatum, with emphasis on Tasmanian and Spanish coastal waters. In D.M. Anderson, A.D. Cembella, and G.M. Hallegraeff (eds.), Physiological Ecology of Harmful Algal Blooms. Springer-Verlag, Berlin, Heidelberg, pp. 59-80.
    Hansen G., Daugbejerg N., and Henriksen P. 2000. Comparative study of Gymnodinium nikimotoi and Gymnodinium anreolum, comb. nov. ( =
    Gyrodinium aureolum) based on morphology, pigment composition and
    molecular data. J. Phycol. 36: 394-410
    
    Hashimoto K. and Noguchi T. 1989. Recent studies on paralytic shellfish poison in Japan. Pure Appl. Chen. 61: 7-18
    Hasle , G.R. 1973. Morphology and taxonomy of Skeletonema costatum (Bacillariophyceae). Norw. J. Bot. 20:109-137
    Hasle G. R., 1995. Pseudo-nitzschia pungens and P. multiseries (Bacillariophyceae): nomenclatural history, morphology, and distribution. J. Phycol. 31: 428-35
    Hassouna N., Michot B., Bachellerie J. P., 1984. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 12: 3563-83
    Heley S. T., Cavender J. R., and Murray T. E., 1999. Detection of Alexandrium tamarensis by rapid PCR analysis. BioTechniques. 26: 88-91
    Hershkovitz, M. A. and Lewis, L. A. 1996. Deep-level diagnostic value of the rDNA-ITS region. Mol. Biol. Evol. 13: 1276-1295
    Hillis V.A. R. and Dixon M. T., 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology. 66: 411-53
    Ho K C, Hodgkiss I J. 1992. Severe fishkills in Hong Kong caused by Noctiluca scintillans blooms. Red Tide Newsletter. 5:12.
    Huss V. A. R. and Sogin M. L., 1990. Phylogenetic position of some Chlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. J. Mol. Evol. 31: 432-42
    Ji Y., Colston M. J., and Postel J. R., 1994. Nucleotide sequence and secondary structure of precursor 16S rRNA of slow-growing mycobacterial. Microbio. 140: 123-132
    Jiang J., Gill B. S., Wang G L., et al. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci. USA. 92: 4487-91
    
    Judge B. S., Scholin C. A., and Anderson D. M., 1993. RFLP analysis of a fragment of the large-subunit ribosomal RNA gene of globally distributed populations of the toxic dinoflagellate Alexandrium. Biol. Bull. 185: 329-30
    Kodama U. 1990. Possible links between bacteria and toxin production in algal blooms;. In: Graneli E., Sundstrom B., Edler L. et al. (eds). Toxic marine phytoplankton. New York, Amsterdam, London: Elsevier, 52-61
    Kodama U., Shizizu H., Sato S. et al. 1995. The infection of bacteria in the liver cells of toxic puffer-a possible cause for organisms to be made toxic by tefrodotoxin in association with bacteria. In: Lassus P. Arzul G. Denn E. et al. (eds). Harmful marine algal blooms. London, New York, Paris: Technique & Documentation-Lavoisier/ Andover, England UK: Intercept Ltd. 457-462
    Korb,R.E., Savikke, P.J.,Johnston,A.M.,et al. 1997. Sources of Inorganic Carbon for Photosynthesis by Three Species of Marine Diatom. J.Phycol. 33:433-440
    Lange C. B., Reid F. M. and Vernet M., 1994. Temporal distribution of the potentially toxic diatom Pseudonitzschia australis at a costal site in Southern California. Mar. Ecol. Prog. Ser. 104: 309-12
    Lange M., Guillou L., Vaulot D. et al. 1996. Identification of the class Prymnesiophceae and the genus Phaeocystis with ribosomal RNA-targted nucleic acid probes detected by flow cytometry. J. Phycol. 32: 858-68
    Lebaron P., Servais P., Agogue H., et al. 2001. Does the high nuleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquactic systems. Appl. Environ. Microbiol. 67: 1775-82
    Lee S. B., and Taylor J.W. 1992. Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol. Biol. Evol. 9: 636-53
    Lee S., C. Malone, and P. F. Kemp. 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural plankton bacteria. Mar. Ecol. Prog. Ser. 101: 193-201
    Lenaers G., Scholin C., Bhaud Y., et al. 1991. A molecular pphylogeny of dinoflagellate protest (Pyrrophyta) inferred from the sequence of 24S rRNA divergent domain D1 and D8. J. Mol. Evol. 32:53-63
    
    Lenaers G., Maroteaux L., Michot B., et al. 1989. Dinoflagellates in evolution. A Molecular phylogenetic analysis of large subunit ribosomal RNA. J. Mol. Evol. 29: 40-51
    Lim E. I., Caron D. A., and Delong E.F. 1996. Development and field application of a quantitative method for examing natural assemblages of protests with oligonucleotide probes. Appl. Environ. Micorbiol. 62(4): 1416-23
    LimnE. L., L. A. Anaral, D. A. Caron. Et al. 1993. Application of rRNA-based probes for observing nanoplanktonic protests. Appl. Environ. Microbiol. 59: 1647-55
    Lu D., Goebel J., Qi YZ, et al. 2002. Prorocentrum donghaiense—a high bimass bloom-forming species in the East China Sea. IOC Newsletters on Toxic Algae and Algal Blooms. 23: 1-5
    Lu D-D, Goebel J., Qi Y-Z, et al. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful algae. 4: 493-505
    Lu D & Goebel J., 2001. Five red tide species in genus prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chin J Oceanogr Limnol, 19(4): 337-344
    Lundholm N., Moestrup ?., Hasle G. R., et al. 2003. A study of the Pseudo-nitzschia pseudodelicatissima / cuspidata complex(Bacillariophyceae): what is P.pseudodelicatissima ? J.Phycol. 39:797-813
    Lu S-H(吕颂辉),Zhang Y-Y(张玉宇), Cheng J-F(陈菊芳). 2003. Scanning electron-microscopic study on Prorocentrum dentatum from the East China Sea. Chin J Appl Ecol (应用生态学报). 14(7):1070-1072
    Mai J. C., and Coleman A. W. 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44: 258-71
    Manhart J. R., Fryxell G. A., Villace M.C., et al. 1995. Pseudonitzschia pungens and P.multiseries (Bacillariophyta): nuclear ribosomal DNAs and species differences. J. Phycol. 31: 421-7
    
    Manhart J. R., and Mccourt R. M., 1992. Molecular data and species concepts in the algae. J. Phycol. 28: 730-7
    Marie D., Parensky F., Jacquet S., et al. 1997. Enumeration and cell cycle analysis of natural populations of marine pocoplankton by flow cytometry using the nucleic acid strain SYBR Green. Appl. Environ. Microbiol. 63: 186-93
    Martins C. A., Kulis D., Franca S., et al. 2004. The loss of PSP toxin production in a formerly toxic Alexandrium lusitanicum clone. Toxicon. 43(2): 195-205
    Martin J. L., Haya K., Burridge L. E., et al. 1990. Nitzschia pseudodelicatissima-a source of domic acid in the Bay of Fundy, eastern Canada. Mar. Ecol. Prog. Ser. 67: 177-82
    Mcnally K L., N. S. Govind, P. E. Thome. Et al. 1994. Small-subunit ribosomal DNA sequence analysis and a reconstruction of the inferred phylogeny among symbiotic dinoflagellates (Phrrophyta). J. Phycol. 30:316-29
    Medlin L. K., Elwood H. J., Stickel S., et al. 1991. Morphological and genetic variation within the diatom Skeletonema costatum (Bacillariophyta): evidence for a new species, Skeletonema pseudocostatum. J. Phycol. 27:514-524
    Mendoza H., Lopez-Rodas V., Gonzalez-Gil. S. et al. 1995. The use of polyclonal antisera and blocking of antibodies in the identification of marine dinoflagellates: species-specific and clone specific antisera against Gymnodinium and Alexandrium. J. Exp. Mar. Biol. Ecol. 186: 103-15
    Michot B., Hassouna N., ans Bachellerie J. P., 1984. Secondary structure of mouse 28S rRNA ans general models for the folding of the large RNA in eukaryotes. Nucleic. Acids Res. 12: 4259-79
    Michot B., Bachellerie J. P. 1987. Comparisons of large subunit rRNAs reveal some eukaryote specific elements of secondary structure. Biochemie. 69: 11-233
    Miller P. E., and Scholin C. A., 1996. Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes. J. Phycol. 32: 646-55
    
    Miller,P.E.,and Scholin,C. A., 2000. On Detection of Pseudo-nitzschia(Bacillariophyceae)Species Using Whole Cell Hybridization:Sample Fixation and Stability. J. Phycol. 36:238-250
    Miller P. E. and Scholin C. A. 1998. Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. J. Phycol, 34: 371-382
    Monger B. C., and Landry M. R., 1993. Flow cytometric analysis of marine bacteria with Hoechst 33342. Appl. Environ. Microbiol. 59: 905-11
    Morales V. M., Pelcher L. E., Taylor J. L., 1993. Composition of the 5.8S rDNA and internal transcribed space sequences of isolates of Leptosphaeria maculans from different pathogenicity groups. Curr. Genet., 23:490-495
    Neilan B. A., Jacobs D., Goodman A. E., 1995. Genetic diversity and phylogeny of toxic Cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61: 3875-83
    Not F., Simon N., Biegala I. C., et al. 2002. Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. 28: 157-66
    Nunn G. B., Theisen B. F., Christensen B. et al. 1996. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J. Mol. Evol. 42: 211-23
    Parsons M.L., Scholin C.A., and Miller P. E. et al. 1999. Pseudo-nitzschia (Bacillariophyceae) species in Louisiana coastal waters: molecular probe field trials, genetic variability, and domic acid analyses. J. Phycol. 35: 1368-78
    Penna A. and Magnani M., 1999. Identification of Alexandrium species using PCR and rDNA-targeted probes. J. Phycol. 35: 615-21
    Penna A. and Magnani M. 2000. A PCR immunoassay method for the detection of Alexandrium (dinophyceae) species. J. Phycol. 36: 1183-86
    Peperzak L., Vrieling E. G., Sandee, B., et al.. 2000. Immuno flow cytometry in marine phytoplankton reseach. Sci. Mar. 64: 165-81
    
    Perasso R., Baroin A., Qu L H., et al. 1989. Origin of the algae. Nature. 339: 142-144
    QU L H. NICOLSO M, BACHELLERIE J P. 1988. Phylogenetic calibration of the 5’terminal domain of large rRNA achieved by determining twenty eucakyotic sequences. J. Mol Evol. 28:113-124
    Qu L H., Hardman N., Gill L. L., et al. 1986. Phylogeny of helminthes determined by rRNA sequence comparison. Mol. Biochem. Parasitol. 20: 93-99
    Rizzo P. J., 1991. The enigma of the dinoflagellate chromosome . J. protozool. 38: 246-52
    Rogers S. O., and Bendich A. J., 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9: 509-20
    Roman R., and Power D. A., 1991. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science (Wash. D.C.) 251: 1348-51
    Rynearson T. A., and Armbrust E. V., 2000. DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol. Oceanogr. 45: 1329-40
    Sako Y., Adachi M., and Ishida Y. 1993. Preparation and characterization of monoclonal antibodies to Alexandrium species. In Toxic Phytoplankton Blooms in the Sea, ed by Smayda T. J. and Shimizu Y., Elsevier, Amsterdam. pp. 87-93
    Sako Y., Hosoi-Tanabe S., and Uchida A. 2004. Fluorescence in situ hybridization using rRNA-targeted probes for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella. J. Phycol. 40: 598-605
    Sako Y., Murakami Y., Adachi M., et al. 1996a. Detection of the toxic dinoflagellates Alexandrium species by flow cytometry using a monoclonal antibody. In Yasumoto T., Oshima Y. and Fukuyo Y. [eds.] Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO. Paris. 463-6
    
    Scholin C A., Anderson D M. 1994a. Identification of species- and strain- specificgenetic markers for globally distributed Alexandrium (Dinophyceae). I. RFLPanalysis of SSU rRNA genes. J. Phycol, 30:744-754
    Scholin C. Herzog M. Sogin M. et al. 1994b. Identification of group- andstrain-specific genetic markers for globally distributed Alexandrium(Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. JPhycol. 30: 999-1011
    Scholin , A. Roman Marin III , Miller , P.E. 1999. DNA Probes and aReceptor-Binding Assay for Detection of Pseudo-nitzschia(Bacillariophyceae)Species and Domoic Acid Activity in Cultured and Natural Samples. J. Phyco35:1356-1367
    Scholin C. A., Miller P., Buck K., et al. 1997. Detection and quantification ofPseudo-nitzschia australis in cultured and natural populations using LSUrRNA-targeted probes. Limnol. Oceanogr. 42: 1265-72
    Scholin C.A., Buck K. R., Britschgi T., et al. 1996. Identification ofPseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes inwhole cell and sandwich hybridization formats. Phycologia. 35: 190-7
    Schonhuber W., Zarda B., Eix S., et al. 1999. In situ identification ofCyanobacteria with Horseradish Peroxidase-labeled, rRNA-targetedoligonucleotide probes. 65: 1259-67
    Simon N., Campbell, L., Ornolfsdottir E., et al. 2000. Oligoncleotide probes forthe identification of three algal groups by dot blot and fluorescent whole-celhybridization. J. Euk. Microbiol. 47: 76-84
    Simon N., Lebot N., Marie D., et al. 1995. Fluorescent in situ hybridization withrRNA-targeted oligonucleotide probes to identify small phytoplankton by flowcytometry. Appl. Environ. Microbiol. 61: 2506-13
    Smayda T. J., ShimizuY., 1993. Toxic phytoplankton blooms in the sea. [eds.]New York: Elsevier.
    Smayda T. J., 1996. Dinoflagellate bloom cycles: what is the role of cellular growth rate and bacteria? In Yasumoto T., Oshima Y. and Fukuyo Y., [eds]. Harmful and
    Toxic Algal Blooms. Intergovernmental Oceanographic Commission of
    UNESCO, Japan. Pp. 331-4
    
    Smayda T. J., 1997. Harmful algal blooms: their ecophsiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42: 1137-53
    Sogin M. L., Ingold, A. Karlok, M., et al. 1986. Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the major Tetrahymena groups. EMBO J. 5: 3625-30
    Sournia A., 1995. Red tide and marine phytoplankton of the world ocean:an inquiry into biodiversity. In: Lassus P, Arzul G, Denn E et al.(eds)Harmful Marine Algal Blooms. London, New York, Paris: Technique & Documentation-Lavoisier/Andover, England UK: Intercept Ltd, 103-112
    Sciandra A., Lazzara L., Claustre H., et al. 2000. Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stress. Mar. Ecol. Prog. Ser. 201: 107-20
    Stabile J. E., Wurtzel E.., and Gallagher J. C., 1992. Comparsion of chloroplast DNA and allozyme variation in winter strains of the marine diatom Skeletonema costatum. J. Phycol. 28: 90-4
    Steidinger, K. A. 1990. Species of the tamarensis /catenella group of gonyaulax and the fucoxanthin derivative-containing gymnodinoids. In Toxic Marine Phytoplankton, ed. by Granéli E.,Sundstr?m L. E. and Anderson D. M., Elsevier, New York. pp.11-16
    Takaiwa F., Oono K., and Sugiura M., 1985. Nucleotide sequence of the 17S and 25S spacer region from rice rDNA. Plant Mol. Biol. 4: 355-64
    Tarutani K., Nagasaki K., and Yamaguchi M., 2000. Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl. Environ. Microbial. 66: 4916-20
    Taylor, F. J. R. 1985. The taxonomy and relationships of red tide flagellates. In Toxic Dinoflagekkates, ed. By Anderson, D. M. ,A. W. White and D.G. Baden, Elsevier, New York. pp.11-26
    
    Trebesius K., R. Amann, W. Ludwig et al. 1994. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl. Environ. Microbiol. 60: 3228-35
    Torres R. A., Ganal M. and Hemleben V., 1990. GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNA genes. J. Mol. Evol. 30: 170-81
    Vaulot D., Courties C., and Partensky F. 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry. 10: 629-35
    Vrieling E., and AndersonD.M., 1996. Immunofluorescence in phytoplankton research: applications and potential. J. Phycol. 32: 1-16
    Vrieling E., Draaijer A., Van Zeiljl, et al. 1993. The effect of labelling intensity, estimated by real-time confocal laser scanning micorscopy, on flow cytometric appearance and identification of immunochemical labeled marine dinoflagellagetes. J. Phycol. 29: 180-8
    Wallner G., R. Amann and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 14: 136-143
    Wang D F. 1987. Red tides in Hong Kong :problems and management. strategy with special reference to the mariculture industry. J Shoreline Management, 3:2-21.
    Williams J. G. K., Hanafey M. K., Rafalski J. A., et al. 1993. Genetic analysis using random amplification polymorphic DNA markers. Methods Enzymol. 218: 704-41
    Wood A. M., and Leatham T. 1992. The species concept in phytoplankton ecology. J. Phycol. 28: 723-9
    Yakota Y., Kawata T., Iida Y., et al. 1989. Nucleotide sequence of the 5.8S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29; 294-301
    Zechman F. W., Zimmer E. A., Theriot E.C. 1994. Use of ribosomal DNA internal transcribed spacers for phylogenetic studies in diatoms J.Phycol. 30:
    507-512
    
    Zhang B-Y (张宝玉),Wang G-C(王广策),Lu S-H(吕颂辉). et al. 2004. Sequence analysis of ITS and 5.8S rDNA from three strains of Marine Diatoms. Acta Oceanologica Sinica. (in press)
    Zhaoduo Zhang,B.R. Green & T. Cavalier-Smith . 1999. Single gene circles in dinoflagellate chloroplast genomes. J. Nature. 400: 155-159
    Zh Z-D, Green B. R., Smith T. C. 1999. Single gene circles in dinoflagellate chloroplast genomes. Nature, 400: 155-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700