用户名: 密码: 验证码:
两类滤波方法在估算土壤湿度方面的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集合卡曼滤波(EnKF)利用蒙特卡罗方法统计背景场的误差协方差矩阵,解决了卡曼滤波在数据同化时需要对模型算子和观测算子线性化的缺点,易于使用,被广泛地应用到陆面数据同化中来估算土壤湿度廓线。
     EnKF虽然可以用非线性模式产生集合背景预报场,但是最优分析场是建立在模式误差间关联为线性且误差为高斯分布的假设上,而实际土壤湿度方程为高度非线性。同时,土壤湿度又存在固定取值范围;过干和过湿都会造成集合样本偏斜。为了考查这些不利因素可能的影响,特引入非线性粒子滤波,来定量比较它们在估算土壤湿度廓线的速度和精度等方面异同。
     首先,本论文引入了基于贝叶斯原理计算粒子的后验概率分布的粒子滤波中采样重要性重采样算法(Sampling importance Resampling, SIR),它不需模式误差为正态以及误差为线性关联的假设,并且可以提供误差分布的高阶矩信息;它在更新背景场样本时每个粒子的权重不同,而集合卡曼滤波粒子的权重都是相同的。其次,为了评估土壤湿度样本在土壤过干或过湿时出现的偏斜性甚至双模态,考虑到西北黄土高原陆面过程的重要性,本论文选取黄土土壤的逐渐变干过程来进行观测模拟同化试验。最后,选用2003年土壤湿度试验(SMEX03)的站点观测资料进行实际大气观测驱动下同化试验。通过上述实验可以得出:
     1、估算土壤湿度的EnKF同化方案虽然不满足集合卡曼滤波最优解需要的条件,但它却能快速地估算出土壤湿度廓线,加之所需粒子样本较少,计算量也较小;而SIR虽然无此限制,但只有在大样本的条件下才能达到相同的土壤湿度估算精度,因此无论从速度和计算量来看都比EnKF逊色。
     2、两者样本统计分布随同化过程也完全不同,EnKF的样本集合的边缘概率密度分布始终保持为一个单峰分布,而SIR方法的样本粒子却经历了从一个峰值到两个再到一个分布的变化过程。
     3、EnKF同化方案在改进土壤湿度廓线估计的同时也使计算的地表感热和潜热通量更接近真值。
     基于上述结论,EnKF基本满足陆面数据同化系统对同化算法的要求,可用于同化表层土壤湿度观测(或微波量温)来估算土壤湿度廓线。
The ensemble Kalman filter(EnKF) calculates background error covariance matrix using Monte-Carlo method and is able to resolve the nonlinearity and discontinuity exist within model operator and observation operator.At the same,it is an easy to use, flexible, and efficient data assimilation algorithm widely used in Soil moisture Assimilation System.
     Although EnKF can use non-linear models to gain the background forecast field, but it based on the normality approximation of model error and observational error which is the assumption of Gaussian distribution. However, the soil moisture equation is highly nonlinear, and soil moisture is a fixed range,The sample can be highly skewed toward the wet or dry ends. In order to examine the possible impact of these negative factors,This paper gives the results from the EnKF are compared with those obtained from a sequential importance resampling (SIR) particle filter that is one of nonlinear filters.
     First, this thesis introduces the Sampling importance Resampling, It based on Bayesian posterior probability distribution of particles in particle filter.It needn't the normality approximation of model error and observational error which is the assumption of Gaussian distribution,and it can provide information on higher order moments.When it updates the background field of a sample weight of each particle different but the EnKF weight is the same. Secondly, in order to evaluate the soil moisture in the soil samples had dry or too wet even when the skew of dual-mode, taking into account the northwest Loess Plateau importance of land surface processes. in this thesis, dry loess soil in the process of gradually come to be observed Simulation of assimilation test. Finally, the use of soil moisture experiment in 2003 (SMEX03) the actual site observation data assimilation of atmospheric observations driven test. the conclusion are:
     1、Although The EnKF estimates of soil moisture assimilation scheme does not meet the collection needs of Kalman filtering conditions, but it can quickly estimate the soil moisture profile, coupled with the required small particle samples, computation is also small; and SIR Although no such restrictions, but only under the conditions of a large sample to achieve the same estimation accuracy of soil moisture, so in terms of speed and computation of view less than EnKF.
     2、Statistical distribution of the two samples are quite different along the process, the EnKF edge of the sample set of probability density distribution always remains a single peak distribution, but the SIR method has experienced a sample of particles from one peak to two and then to a distribution of changes process.
     3、EnKF assimilation scheme to improve estimates of soil moisture profiles and also to calculate the surface sensible heat and latent heat flux is closer to EnKF observaty value.
     Based on the result, EnKF can basically meet the land surface data assimilation system to assimilate the requirements of algorithms can be used for assimilation of surface soil moisture observations (or microwave or temperature) to estimate the soil moisture profile.
引文
[1]Jerey P. Walker,Garry R. Willgoose, Jetse D. Kalma.One-dimensional soil moisture profile retrieval by assimilation of near-surface observations:a comparison of retrieval algorithms[J] Advances in Water Resources,2001,24:631-650.
    [2]Dara Entekhabi, Hajime Nakamura, and Eni G. Njoku. Solving the Inverse Problem for Soil Moisture and Temperature Profiles by Sequential Assimilation of Multifrequency Remotely Sensed Observations[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,1994,32:438-448.
    [3]Rolf H. Reichle,Dennis B. Mclaughlin, and Dara Entekhabi D.Hydrologic Data Assimilation with the Ensemble Kalman Filter[J]MONTHLYWEATHERREVIEW,2002,130:103-114.
    [4]马柱国,魏和林,符淙斌.土壤湿度与气候变化关系的研究进展与展望[J].地球科学进展,1999,3:299-305.
    [5]马柱国,符淙斌,谢力等.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展,2001,4:563-568.
    [6]U S National Research Council. GOALS (Global Ocean-Atmosphere-Land System for) Predicting Seasonal-to-International Climate[M]. Washington D C:National Academy Press, 1994.103.
    [7]Schmugge, T. J., T. J. Jackson, H.L.Mckim. Survey of methods for soil moisture determination[J]. Water Resources Research,1980,16:961-979.
    [8]Engman, E. T., N. Chauhan. Status of microwave soil moisture measurements with remote sensing[J]. Remote Sensing of Environment,1995,51:189-198.
    [9]Entekhabi, D., H. Nakamura, and E. G. Njoku, Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multi-frequency remotely sensed observations. IEEE Trans. Geosci. Remote Sensing.,1994,32:438-448.
    [10]Saha, S. K., Assessment of regional soil moisture conditions by coupling satellite sensor data with a soil-plant system heat and moisture balance model. Int. J. Rem. Sens.,1995,16:973-980.
    [11]Koster, R. D., M. J. Suarez, and M. Heiser, Variance and predictability of precipitation at seasonal to interannual timescales[J]. J. Hydrometeor.,2000,1:26-46.
    [12]Mahfouf, J. F., Analysis of soil moisture from near-surface parameters:A feasibility study[J]. J. Appl. Meteor.,1991,30:1534-1547.
    [13]Callies, U., A. Rhodin, and D. P. Eppel, A case study on variational soil moisture analysis from atmospheric observations. J. Hydrol.,1998,212-213:95-108.
    [14]Zhang, S. W., H. R. Li, W. D. Zhang, C. J. Qiu, and X. Li, Estimating soil moisture profile by assimilation of near-surface observations with the ensemble Kalman filter (EnKF). Adv. Atmos. S ci.,2005,22:936-945.
    [15]Bouyssel, F., V. Casse, and J. Pailleux, Variational surface analysis from screen level atmospheric parameters. Tellus,1999,51(A):453-468.
    [16]Vauchaud, G.., A. de Silans Passerat, P. Balabanis, and M.Vauclin, Temporal stability of spatially measured soil water probability density function. J. Soil Sci. Amr.,1985,49:22-827.
    [17]Grayson, R. B., and A.W. Western, Towards areal estimation of soil water content from point measurements:time and space stability of mean response[J]. J. Hydrol.,1998,207:8-82.
    [18]孙菽芬,陆面过程研究的进展[J].新疆气象,2002,25:1-6.
    [19]Neuman, S. P., Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resour. Res.,1973,9:1006-1021.
    [20]Chavent, G.,Identifieation of functional Parameters in Partial differential equations, in Identifieation of functional Parameters in Distributed Systems, eds Goodson, R.E.&Polis, M. ASME,NewYork,1974.
    [21]Mancini, M., R. Hoeben, and P. A. Troch, Multifrequency radar observations of bare surface soil moisture content:a laboratory experiment[J]. Water Resour. Res.1999,35:1827-1838.
    [22]Sandholt I., Rasmussen K., Andersen J., A Simple Interpreration of the Surface Temperature /vegetation Index Space for Assessment of Surface Moisture Status[J]. Remote Sensing Of Environment,2002,79:213-224.
    [23]Zhang,H.,C.S.Frederiksen,Local and nonlocal impacts of soil moisture initialization on AGCM seasonal forecastsA model sensitivity study. J.Climate,2003:16,2117-2137.
    [24]Bindlish R,Barros AP. Parameterization of Vegetation Backscat-tering in Radar-based, Soil Moisture Estimation [J]. RemoteSensing of Environment,2001,76:130-137.
    [25]Sanjeev Arulanmpalam,Simon Maskell,Neil Gordon and Tim Clapp.A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking[J].IEEE TRANSACTIONS ON SIGNAL PROCESSING,2002,50:174-188.
    [26]Yuhua ZHou, Dennis Mclaughlin, and Dara Entekhabi.Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation [J]。 MONTHLY WEATHER REVIEW,2005,134:2128-2142.
    [27]ZHang Q,Wang SH.On Land Surface Processes and Its Experim ental Study in Chinese Loess Plateau[J].Advance in Earth Sciences,2008,2:167-173.
    [28]ZHang Q,Hu X J,Wang SH.Some Technological and Scientific Issues about the Exper imental Study of Land Surface Processes in Chinese Loess Plateau(LOPEX)[J]. Advance in Earth Sciences,2009,4:363-371.
    [1]Evensen, G.. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics[J]. J. Geophys. Res.,1994,99:10143 -10162.
    [2]Bjerknes V. Dynamic meteorology and hydrographs. Part Ⅱ:Kinematics[M]. New York: Camegie Institute, Gibson Bros.1911.
    [3]丑纪范.四维同化的理论和新方法[M].数值天气预报中的若干新技术.北京:气象出版社,1995:262-294.
    [4]Bouttier F, Courtier P. Data assimilation concepts and methods[M].ECMWF. Meteorological training course lecture Series.2002:1-59.
    [5]周毅,刘宇迪,桂祁军,等.现代数值天气预报.气象出版社,2002.171-189.
    [6]Panofsky H A. Objective weather-map analysis[J]. J Appl Meteor,1949, (6):386-392.
    [7]Gilchrist B, Cressman G P. An experiment in objective analysis[J]. Tellus,1954,6(4):309-318.
    [8]Bergthorsson P, Doos B. Numerical weather map analysis[J]. Tellus,1955,7:329-340.
    [9]Gandin L S. Objective analysis of meteorological fields. Gidrometeorologicheskoe Izdatel' stro,Leningrad. Translated f rom Russian, Israeli Program for ScientificTranslations Jerusalem, 1965.
    [10]Rutherford I. Experiments on the updating of PE forecasts with real wind and geopotential data. Preprints Third Symposium on Probability and Statistics, Boulder, Amer. Meteor. Soc., 1973.198-201.
    [11]Schlatter T. Some experiments with a multivariate statistical objective analysis scheme[J]. Mon. Wea. Rev.,1975,103:246-257.
    [12]Rutherford I. An operational 32dimensional multivariate statisticalobjective analysis scheme. Proc. JOC Study Group Conference on Four-Dimensional Data Assimilation, Paris, GARP programme onnumerical experimentation,Rep. WMO/JCSU,1976.98-111.
    [13]Bergman K H. Multivariate analysis of temperatures and winds using optimum interpolation[J]. Mon. Wea. Rev.,1979,107:1423-1444.
    [14]Lorenc A C. A global three-dimensional multivariate statisticalanalysis scheme[J]. Mon. Wea. Rev.,1981,109:701-721.
    [15]Lewis J, Derber J. The use of adjoint equations to solve a variational adjustment problem with advective const raint. Tellus,1985,37A:309-322.
    [16]Le Dimet F X, Talagrand O. Variational algorithm for analysis and assimilation of meteorological observations, theoretical aspects.Tellus,1986,38A(2):97-110.
    [17]Lorenc A C. A global three-dimensional multivariate statisticalanalysis scheme. Mon. Wea. Rev.,1981,109:701-721.
    [18]Parrish D F, Derber J D. The National Meteorological Center spect ral statistical interpolation analysis system. Mon. Wea. Rev.,1992,120:1747-1763.
    [19]Courtier P, Andersson E, Heckley W,et al. The ECMWF implementation of three-imensional variational assimilation (3D-Var).Part 1:formulation. Quart. J. Roy. Meteor. Soc.,1998, 124:1783-1807.
    [20]Rabier F, McNally A,Andersson E,et al. The ECMWF implementation of three-dimensional variational assimilation (3D-Var).Ⅱ:St ructure function. Quart. J. Roy. Meteor. Soc.,1998, 124:1809-1830.
    [21]Bengtsson L.42dimensional assimilation of meteorological observations. ICSU/WMO GARP,15,1975.
    [22]Lorenc A. Analysis methods for numerical weather prediction.Quart. J. Roy. Meteor. Soc., 1986,112:1177-1194.
    [23]Houtekamer P L, Lefaivre L, Derome J,et al. A system simulation approach to ensemble prediction. Mon. Wea. Rev.,1996,124:1225-1242.
    [24]Anderson J L. An ensemble adjustment Kalman Filter for data assimilation. Mon. Wea. Rev., 2001,129:2884-2903.
    [25]Hamill T M, Snyder C. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev.,2000,128:2905-2919.
    [26]Tian XiangJun,Xie ZhengHui.A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing[J]. Science in China Series D:Earth Sciences,2008,51:992-1000.
    [27]Han X,Li X. Review of the Nonlinear Filters in the Land Data Assimilation[J]. Advance in Earth Sciences,2008,8:813-820.
    [28]Hammersley J M, Morton K W. Poo r man's Monte Carlo [J]. J of the Royal Statistical Society B,1954,16(1):23-38.
    [29]Gordon N,Salmond D. Novel approach to non-linear and non-Gaussian Bayesian state estimation [J]. Proc of Institute Electric Engineering,1993,140 (2):107-113.
    [30]B.Niclas.Recursive Bayesian Estimation Navigation and Tracking Applications[J].Linkoping Studies in Science and Technology.Dissertations.1999:21-46.
    [31]F.Gustafsson,F.Gunnarsson and N.Bergman.Particle Filters for Positioning,Navigation and Tracking[J].IEEE Transactions on Signal Processing.2002,50(2):425-437.
    [32]M.Isard,A.Blake.Condensation:Unifying low-level and high-level tracking in a stochastic framework.Proc of the Fifth European Conf on Computer Vision.Berlin,1998:893-908.
    [33]V.Kadirkamanathan,M.H.Jaward,et al.Particle filtering-based fault detectionin non-linearstoch-astic systems[J].International Journal of Systems Science.2002,33(4):259-265.
    [34]S.Chib,F.Nardari,N.Shephard.Markov chain Monte-Carlo methods for stochastic volatility models[J].J of Econometrics.2002,8(1):281-316.
    [35]J.Maccormick,F.Maccormick.Stochastic algorithms for visual tracking[J].Paris:Telos Press, 2003:43-65.
    [36]D.L.Alspach,H.W.Sorenson.,Nonlinear Bayesian Estimation Using Gaussian Sum Approximation[J]. IEEE Trans.,1972,17(A):439-447.
    [37]Haykin S Kalman. Filtering and neural networks[M]. New York:John Wiley and Sons,2001.
    [38]Beichl I., Sullivan F. The importance of importance sampling[J].Computational Science and Engineering,1999,2:71-73.
    [39]M. Sanjeev Arulampalam,Simon Maskell,Neil Gordon and Tim Clapp.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Tram Signal Processing. 2002,4:174-188.
    [40]Kalman,R.E..A New Approach to Linear Filtering and Predietion Problems[J], Transaetion Of The ASME-.Journal of Basic Engineering,1960,3:35-45.
    [41]Potter,J.W..M. I. T. Instrumentation Laboratory Memo SGA 5264, Institute of Technology, Cambridge,Massachusetts,1964.4:125-137.
    [42]Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics[J]. J Geophysical Research,1994,99(C5):10143-10162.
    [43]Evensen, G., Sequential data assimilation with a nonlinear QG model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res.,1994,99:10143-10162.
    [44]Burgers, G., P. J. van Leeuwen, and G. Evensen, Analysis scheme in the ensemble Kalman Filter. MONTHLY WEATHER REVIEW,1998,126:1719-1724.
    [45]Whitaker J.S., and T. M. Hamill, Ensemble data assimilation without perturbed observations. MONTHLY WEATHER REVIEW,2002,130:1913-1924.
    [1]Walker,J.and P.R.Rowntree. The effect of soil moisture on circulation and rainfall in tropical model[J]. Quart.J.Roy.Mereor.Soc.,1977,103:29-46.
    [2]Shukla,J.and Y.Mintz. Influence of land-surface evapotranspiration on the earth's climate[J]. Science,1982,215:1498-1501.
    [3]Herderson-Sellers, A.and V.Gornitz. Possible climatic impacts of land cover transformations with particular emphasis on tropical deforestation[J]. Clim. Change,1984,6:231-258.
    [4]Shao Y, R D Anne, A Henderson-Sellers. Soil moistures imulation[R]. A report of t he RICE and PILPS workshop,IGOP Publication Series No.14,Climatic Impact s Center,1994.1-100.
    [5]Dickinson, R.E. Land processes in climate model.Remote Sens.Env.,1995,51:27-38.
    [6]Dickinson,R.E.Land-atmosphere interaction., U.S.Nation Reporto Inernation Union of Gedesy and Geophysics,1995:917-922.
    [7]Yeh T C,Wetherald R T,Manabe S.A Model study of the short-term climatic and hydrologic effects of sudden snow-cober removal.Mon. Wea. Rev.,1983,11:1013-1024.
    [8]Manabe S. Climate and t he ocean circulation:The atmospheric circulation and the hydrology of the earth's surface [J].MonWea Rev.,1969,97 (10):739-774.
    [9]Dickinson R. E.,Henderson-Sellers A.,Kennedy P. J.,et al.Biosphere Atmosphere Transfer scheme(BATs)for the NCAR community climate model[R].NCAR/TN-275+STR,1986.
    [10]Sellers P.J.,Mintz Y.,Sud Y.C.,et al.A simple biosphere model(SiB)for use within general circulation model[J] J.Atmos.Sci.,1986,43:505-531.
    [11]Colello G.D.,C. Grivet,P.J.Sellers,etal.Modeling of energy,water and CO2 flux in a temperature grassland ecosystem with SiB2:May-October 1987 [J]. J Atmos. Sci.,1998,55:1141-1169.
    [12]Yongjiu Dai.The Common Land Model(CoLM) User's Guide. http://climate.eas.gatech.edu/dai/CLM_userguide.doc.
    [13]Xuebin Zeng,Muhammad Shaikh,Yonjiu Dai,et al.Coupling of the common land model to the NCAR community climate model.J Climate,2002,15:1832-1854.
    [14]孙淑芬,金继明.陆面模式研究中的几个问题,应用气象学报,1997,8(增刊):51-57.
    [15]史学丽.陆面过程模式研究简评.应用气象学报,2001,12(1):102-112.
    [16]Dai, Y., and Q.-C. Zeng,A land surface model (IAP94) for climate studies, Part Ⅰ:Formulation and validation in off-line experiments. Adv. Atmos. Sci.,1997,14:433-460.
    [17]Xuebin Zeng,Muhammad Shaikh,Yonjiu Dai,et al.Coupling of the common land model to the NCAR community climate model.J Climate,2002,15:1832-1854.
    [18]苏凤阁,郝振纯.陆面水文过程研究综述[J].地球科学进展,2001,16(6):795-800.
    [19]Duan, Q., J. Schaake, and V. Korem.A priori estimation of land surface model parameters. Land Surface Hydrology, Meteorology and Climate:Observations and Modeling, V. Lakshmi, J. Albertson, and J. Schaake, Eds., Water Science and Applications Series, Amer. Geophys. Union., 2001,3:77-94.
    [20]Gupta,H.V., L.A. Bastidas, S.Sorooshian, WJ.huttleworth, and Z.L.Liang,1999:Parameter estimation of a land surface scheme using multi-criteriamethods.Geophys.Res.,104(D16):19491-19504.
    [1]黄洪峰.土壤-植物-大气相互作用原理及模拟研究,北京:气象出版社,1997.
    [2]孙淑芬.陆面过程的物理、生化机理和参数化模型,北京:气象出版社,2005:27-71.
    [3]张述文,李得勤,邱崇践.三类陆面模式模拟土壤湿度廓线的对比研究,高原气象,2009:28(5),987-996.
    [4]Walker J P, Willgoose G R, Kalma J D.One-dimensional soil moisture profile retrieval by assimilation of near-surface observations:a comparison of retrieval algorithms.Advances in Water Resources,2001,24 (6):631-650.
    [5]Entekhabi D, Nakamura H, Njoku E G. Solving the Inverse Problem for Soil Moisture and Temperature Profiles by Sequential Assimilation of Multifrequency Remotely Sensed
    Observations. IEEE Transactions on Geoscience and Remote Sensing,1994,32:438-448.
    [6]张述文.土壤含水量和地表热通量估算方法研究.兰州大学,2004:80-95.
    [7]王夏晖,王益权,Kuznetsov M S.黄土高原几种主要土壤的物理性质研究.水土保持学报,2000,4:99-103.
    [8]张文煜,袁九毅。大气探测原理与方法。北京:气象出版社,2007:112-124.
    [1]郑婧,谢正辉,戴永久,等.陆面过程模型CoLM与区域气候模式RegCM3的耦合及初步评估.大气科学,2009,33(4):737-750.
    [2]罗斯琼,吕世华,张宇,等.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟.高原气象,2008,27(2):125-133.
    [3]王澄海,师锐,左洪超,等.青藏高原西部冻融期陆面过程的模拟分析.高原气象,2008,27(2):186-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700