用户名: 密码: 验证码:
烟草安全抗青枯病转基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国烟叶生产每年因病虫害造成的损失近10亿元。烟草青枯病是烟草的重要病害,迄今尚无特效药可治。常规育种受抗源与不良基因连锁和育种年限长等影响,进展慢。随着功能基因组学和生物技术研究的深入研究,转基因烟草将成为选育烟草抗病虫害的有效手段。同时,在转基因安全性得到了普遍的关注后,寻找一条安全有效的转基因育种手段成为当前生物技术育种的热门。本研究在已得到烟草根特异基因和启动子序列,以及受细菌诱导启动子的基础上,构建了特异启动子和诱导启动子驱动抗病基因的表达载体,转入烟草进行功能验证;并对实验室所构建的抗生素自我删除载体进行了验证,结果表明转基因烟草是可能通过基因工程手段来解决其安全性的担忧的。
     1.根据本实验已获得烟草根特异表达基因NtR12片段,通过合成下游3' RACE引物,扩增得到3’目的片段,完整了NtR12基因的全长序列;同时对已经得到的NtR12 5’上游的启动子区域进行了生物信息学分析,构建了从启始密码子ATG之前带不同长度启动子片段的表达载体,用于进一步鉴定启动子的结构和功能。
     2.利用农杆菌叶盘法,将本实验室已构建的抗生素自我删除载体p35S-loxp-Gus转化烟草翠碧一号,在不定芽分化前后,用定量的地塞米松重诱导,培养出转基因烟草。通过对转基因烟草植株进行GUS染色,证实载体在一定浓度的地塞米松诱导下,重组酶Cre-GRB能正确识别loxP位点,删除潮霉素标记基因和重组酶基因表达元件,并使重组DNA,使35S启动子能驱动GUS基因表达,产生蓝色反应。因此该载体可用于将潮霉素基因删除,获得无标记基因的转基因烟草植株。
     3.同源克隆苦瓜种子的核糖体失活蛋白基因,将已克隆的烟草根特异启动子与核糖体失活蛋白基因融合,构建植物表达载体pSC-NtR12-RIP,转化烟草翠碧一号,对转基因植株进行分子检测和青枯菌接种鉴定,结果表明转基因烟草抗烟草青枯病能力显著提高,以至表达高抗至免疫的水平,并且该基因只在烟草的根和茎部特异表达,不在烟草叶片表达,为解决转基因安全性问题奠定了基础。
     4.将克隆得到的烟草几丁质酶基因,与受细胞诱导的诱导型启动子结合,构建了植物表达载体pSC-PP1-Chi,通过农杆菌叶盘法侵染烟草翠碧一号,获得了100多株转基因植株,对转基因后代进行PCR检测鉴定得到了上百株阳性转基因植株,对转基因阳性烟草植株进行青枯菌接种鉴定,结果表明在青枯菌诱导下,转基因烟草对青枯病不同程度的提高,至表达高抗水平。
Chinese tobacco production losses caused by pests and diseases reaches nearly 10 million every year. Bacterial wilt is an importance disease in tobacco, and so far, there is no specific drugs to cure it. As germplasm with high resistance genes often linked with the bad characters and the long period of breeding, progress for breeding high resistance varieties is slow by conventional method. With functional genomics and biotechnology devoping so swiftly, the breeding of transgenic tobacco will become an effective means of desease-resistant tobacco. Meanwhile, as transgene security become widespread concerns, finding a safe and effective means of transgenic breeding with biotechnology become popular. Based on available root-specific genes and its promoter sequences, and promoter specifically induced by bacteria, expression vectors harboring disease resistance gene driven by specific promoters were constructed and were transformed into tobacco for functional verification. Construction of laboratory self-deleted of antibiotics gene was verified. The results are showed as follows.
     1. According to tobacco root-specific genes NtR12 fragment, downstream fragment was got through 3' RACE primers, amplified 3' fragments of the NtR12 completed the full length of NtR12 gene. At the same time, the available NtR12 5 'upstream promoter has been analyzed by bioinformatics method, and series of expression vectors were constructed with various lengths of promoter sequences starting before ATG initiation codon, which are being used to identify the functional elements of the promoter.
     2.An antibiotics self-deleted vector, p35S-loxp-Gus, built in this laboratory before has been transformed into transgenic tobacco CuiBiyihao, mediated via Agrobacterium tumefaciens, and explants in bud differentiation stage were induced to remove antibiotics genes by dexamethasone and produce buds and grow into transgenic tobacco without antibiotics gene. Transgenic tobacco plants tested by GUS staining confirmed that under certain concentration of dexamethasone in the induction, the recombinant enzyme Cre-GRB can correctly identify the loxP sites and delete the expression units of both hygromycin marker gene and recombinant gene, and then recombine DNA so that 35S promoter can drive expression of GUS gene to produce a blue reaction. So the expression vector can be used to remove the hygromycin gene, producing unmarked transgenic tobacco plants.
     3. Ribosome inactivating protein gene of balsam pear was homologous cloned, and the function of the genes was analysed. The vector was constructed by binding root specific promoter with ribosome inactivating protein gene,which was transformed to tabacco CuiBiyihao. Then the transgenic tabacco was molecular detected and identified by inoculation with Rostonia solanacearum. The result showed that transgenic tabacco increase their resistance significantly to bacterial wilt,some plants showed immune rection to bacterial wilt. It was characterized that RIP expressed specifically in root and stem, not in leaves,, which provided basic explanation for safety of transgenics.
     4.Employing tobacco chitinase gene in associated with bacterium-induced promoter available in the lab, a plant expression vector Psc-PP1-Chi, was constructed and transformed into CuiBiyihao, mediated by Agrobacterium infection. More than 100 transgenic plants were received, and transgenic offspring were identified by PCR assay and nearly 100 positive transgenic plants were undergone R. solanacearum inoculation tests. And the results indicate that Ralstonia solanacearum infection could induce Chi gene expression that the resistance to bacterial wilt in transgenic plants were all seen to increase by different degrees, some showed high resistance.
引文
[1]刘雅婷,张世光.烟草青枯病的研究进展[ J ].云南农业大学学报,2001 ,16 (1) :72-76
    [2]番华彩,唐嘉义,秦小萍.烟草青枯病防治研究进展[ J ]云南农业大学学报, 2008 , 30 (S1) : 31~35
    [3]霍沁建,张深,王若焱.烟草青枯病研究进展[J ] .植物保护科学,2007 ,23 (8) :364-368. [4 ]何礼远,康耀卫.植物青枯菌致病机理[J ].自然科学进展,1995 ,5 (1) :726.
    [5]朱肾朝,王彦亭,王智发.中国烟草病害[ M] .北京:中国农业出版社,2002.
    [6] Seal S E,Taghavi M,Fegan N,et al.Determination of Ralstonia (Pseudomonas) solanacearum rDNA subgroups by PCR tests[J]. Plant pathology,1999,48:115-120
    [7]何礼远,康耀卫.植物青枯病的致病机制[J].自然科学进展,1995,5(1):7-16
    [8]巫升鑫,方树民,潘建菁,等.烟草种质资源抗青枯病筛选鉴定[J].中国烟草学报,2004,10(1):22-24,40
    [9]杨友才,周清明,朱列书.烟草青枯病抗性基因的遗传分析及RAPD标记[J ].中国烟草学报.2006(4)38-42
    [10]匡传富,罗宽.烟草品种对青枯病抗病性及抗性机理的研究[J].湖南农业大学学报(自然科学版),2002,28(5):395-398
    [11] Salanoubat M, Genin S, Artiguenave F,et al. Genome sequence of the plant pathogen Ralstonia solanacearum[J].Nature,2002,415:497-502
    [12] Eaglesham A, Pueppke SG, Hardy RWF et al. Gentically modifiedfood and the consumer. NABC Report 131 New York: NationalAgricultural Biotechnology Council, 2001
    [13]朱玉贤,李毅.现代分子生物学[M].北京:高等教育出版社,1997:124-125
    [14] Elmayan T, Vaucheret H. Expression of single copies of a stronglyexpressed 35S transgene can be silenced post-transcriptionally. Plant J, 1996, 9: 787–797
    [15]于翠梅,马莲菊,张宝石.特异性启动子在植物基因工程中的应用[J].生物工程学报.2006(11);883-890
    [16] Dickinson CD,Evens RP.Nielsen Nc.RY repeats are c0nserved in the 5'-flanking reslons of legume seed—protein genes. Nuc Acid Res,1988,16:371
    [17] Baumlein H,Nagy I,Villarroel R,Inze D,Wobus U.Cis—analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue—specific expression of a legumin gene.The Plant Journal,1992,2(2):233—239
    [18] Chen Z—L,Schuler M A,Beachy R N.Functional analysis of regula—tory elements in a plant embryo—specific gene Proc Natl』Acad USA,1986,83:8 560—8 564
    [19] Josefsson LG.LenmanM,Ericson M L,Rask L.Structure of a gene encoding the 1.7S storage protein,Napin from Brass&a napus The Journal ofBiological Chemistry,1987,262:1196—1208
    [20] Vincentz M,Leite A,Neshieh G,Vriend G,Matlar C,Burros L,Weinberg D,de Almeida E R,de Carvalho M P,Aragao F,Gander E S.ACGT and vicilin core sequences in a promoter domain required for seed‘specific expression of a 2S storage protein gene are recognized by the opaqu e一2 regulatory protein.Plant Molecular Biulog?,1997,34:879—889
    [21] Kawagoe Y,Mural N.Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein P-phaseolin gene conferring spatial and temporal contro1. Plant J, 1992. 2:927—936
    [22] Nomura M。Katayama K,Nishimura A.1Th。promoter of rbcS in a C3 plant(rice)directs organ—specific,light—dependent expression in a C4 plant(maize),but does not confer bundle sheath cell—specific expression.Plant Mol Biol,2000,44(1):99—106
    [23] Nomura M, Katayama K, Nishimura A, et al. The promoter of rbcS in a C3 plant (rice) directs organ-specific,light-dependent expression in a C4 plant (maize),but does not confer bundle sheath cell-specific expression[J]. Plant Mol Biol, 2000, 44(1): 99-106
    [24] Gillies S D, Morrison S L, Oi V T, et al. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene[J]. CELL, 1983, (33):717~728
    [25] Bostwick D E,Dannenhoffer J M,Skaggs M I,et a1.Pumpkin phloem lectin genes are specifically expressed in companion cells[J].The Plant Cell,1992(4):1 539~1 548.
    [26] Liu YH(刘昱辉),Jia SR(贾士荣).Vascular.specific Promoters and cis—regulatory Elements,Chiru~w Journal of Biotechm~logy(生物工程学报),2003,19:131—135
    [27]南兰,林慧馨,关育成,等.根特异性表达顺式激活序列在转基因烟草中的功能分析[J].科学通报,2002,47(1):49-53
    [28]李桂兰,王文颇,臧少先,等.拟南芥黑芥子酶基因根特异性表达启动子的克隆[J].河北农业大学学报,2005,28(1):49-52
    [29] Cordes S, Deikman J, Margossian LJ et a1. Interaction of a developmentally regu lated DNA—binding factor with sites flanking two different fruit—ripening genes from tomato. Plant Cell,1989, 1(10):1025—1034
    [30] Lincoln JE,Fischer RL.Diverse mechanisms for the regu lation of~hylene—inducible gene expression Mol Gen C,enet,1988, 212(1):71—75
    [31] Yamagata H, Yonesu K, Hirata A, Aizono Y. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit specific expression of the cucumisin gene. J Biol Chem, 2002, 277(13): 11582~11590.
    [32]丛明,凌华,黄惠琴,等.利用REF启动子构建橡胶树乳管特异表达载体及GUS基因的瞬时表达[J].热带作物学报,2005,26(2):29-33
    [33]宋东光,黄大庆,王光清,等.不同长度马铃薯GBSS基因启动子的块茎专一性表达的初报[J].复旦学报(自然科学版),1998,37(4):559-563
    [34] KeHer B,Heierli D.Vascular expression of the grpl 8 promoter is controlled by three specific regulatory elements and one unspecific activating sequence.Plant Mol Biol,1994,26:747—756
    [35] SABLOWSKI R W, BAULCOMBE D C, BEVAN M. Expression of a flower~speciflc Myb protein in leaf cells using a viral vector causes ectopic activation of a target promoter[J]. Proc Natl Acad SciUSA, 1995, 92: 6901-6905.
    [36] Yu H, Yang S H, Goh CJ. Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol Biol, 2002, 49 ( 2):225~237.
    [37]贾士荣,金芜军.国际转基因作物的安全性争论——几个事件的剖析[J].农业生物技术学报. 2003, 11(1): 1-5.
    [38]李建军,倪景涛.植物转基因技术创新中的伦理问题与道德责任[J].宝鸡文理学院学报:社会科学版. 2006, 26(5): 5-9.
    [39]王艳玲,郑永春.转基因作物的利用与安全性评估[J].吉林农业科技学院学报. 2006,15(3): 13-15.
    [40] F Hancock. James. A Framework for Assessing the Risk of Transgenic Crops[J]. BioScience. 2003, 53(5): 512-519.
    [41]卢宝荣.全球转基因逃逸及其生态后果的最新研究动态[J].生物多样性. 2003, 11(2): 177-178.
    [42] D. A. Andow, Claudia Zwahlen. Assessing environmental risks of transgenic plants[J]. Ecology Letters. 2006, 9: 196-214.
    [43]卢洁,施向东,莫祺红.转基因食品的安全问题与检测技术[J].现代预防医学. 2008(20).
    [44]邓平建,赵锦,刘建军.转基因食品致敏性检验和评价技术[J].中国公共卫生. 2004, 20(1): 107-109.
    [45] Oh J, Ko M, Lee H. Evaluation for Allergenicity for Genetically Modified Organic Foods[J]. Journal of Allergy and Clinical Immunology. 2009, 123(2): 36-41.
    [46]贾婕,张金凤,王斌.植物防范转基因逃逸的分子策略[J].中国农学通报. 2008, 24(4): 390-393.
    [47] Daniell H, Wiebe Po, Millan Af. Antibiotic-free chloroplast genetic engineering - an environmentally friendly approach[J]. Trends Plant Sci. 2001, 6(6): 237-239.
    [48]余小林,曹家树.反义CY86MF基因植物表达载体的构建及其对白菜的转化[J].浙江大学学报:农业与生命科学版. 2004, 30(2): 179-184.
    [49]钱方,高志芳,滕木子.转基因作物的安全标记基因[J].河南农业科学. 2007: 17-20.
    [50] Brian Miki, Sylvia Mchugh. Selectable marker genes in transgenic plants: applications, alternatives and biosafety [J]. Journal of Biotechnology. 2004, 3(107): 193-232.
    [51]赵艳,王慧中等.转基因植物中标记基因的安全性新策略[J].遗传. 2003, 25 (1) :119~122
    [52] Daniell H , Muthukumar B , Lee S B. MARKER FREE TRANSGENIC PLANTS:ENGINEERING THE CHLOROPLAST GENOME WITHOUT THE USE OF ANTIBIOTIC SELECTION[J]. Current Genet. 2001, 39: 109-116.
    [53]黎昊雁,王玮.新一代转基因植物研究进展[J].中国生物工程杂志. 2003, 23(6): 22-26
    [54] H Sler H, Stütz A. D-Xylose (D-Glucose) Isomerase and Related Enzymes in Carbohydrate Synthesis[M]. 2001, 77-114.
    [55] Rebecca Todd, Brian W. Tague. Phosphomannose Isomerase: A Versatile Selectable Marker for Arabidopsis thaliana Germ-Line Transformation[J]. Plant Molecular Biology Reporter. 2001, 19: 307-319.
    [56]李文旭.基于Cre/loxP系统诱导删除抗生素基因植物表达载体的构建[D].
    [57] Ow D. Topic 12: Marker Genes.Joint FAO/WHO Expert Consultation on Foods Derived fromBiotechnology[Z]. Switzerland: 20001-6.
    [58] Siriluck Iamtham, Anil Day. Removal of antibiotic resistance genes from transgenic tobacco plastids [J]. Nature Biotechnology. 2000, 18: 1172-1176..
    [59] Meyer C P S E. Techniques for the removal of marker genes from transgenic plants[J]. Biochimie. 2002, 84(11): 1119-1126.
    [60] P M. Engineering the plastid genome of higher plants[J]. Curr Opin Plant Biol. 2002, 5(2): 164-172
    [61]张余洋,欧阳波,叶志彪.无抗性标记基因转基因植物研究进展[J].农业生物技术学报. 2004, 12(5): 589-596.
    [62]倪斌.植物无选择标记转基因技术的研究进展[J].安徽农学通报. 2007, 13(16): 35-37.
    [63]罗克明.一种用于转基因植物安全性控制的高效基因删除系统“Gene一Deletor”的构建[D].重庆:西南农业大学, 2004.
    [64]王立霞,王勇. Cre重组酶结构与功能的研究进展[J].生物工程学报. 2002, 18(5): 532-535.
    [65]徐茂军.利用Cre/loxP位点特异性重组酶系统从转基因植物生产非转基因食品[J].高技术通讯. 2004, 14(8): 24-27.
    [66] Guo F, Gopaul Dn, Van Duyne Gd. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse[J]. nature. 1997, 389(6646): 40-46.
    [67]甄伟,汪阳明. Cre—lox重组系统介导转基因烟草中外源基因删除的研究[J].北京大学学报:自然科学版. 2001, 37(4): 477-482.
    [68] Jianru Zuo, Qi-Wen Niu, Nam-Hai Chua. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants[J]. Plant J. 2000, 24(2): 265-273.
    [69] Jianru Zuo, Qi-Wen Niu, Simon Geir M?ller, et al. Chemical-regulated, site-specific DNA excision in transgenic plants[J]. Nature Biotechnology. 2001, 19: 157-161.
    [70] Cuellar Wilmer, Gaudin Amelie S D, Casas Armando, et al. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato[J]. Plant Mol Biol. 2006, 62: 71-82.
    [1]侯丙凯,夏光敏,陈正华.植物基因工程表达载体的改进和优化策略[J].遗传,2001,23(5):492-497
    [2] Perlak F J. Modification of the Coding Sequence Enhances Plant Expression of Insect Control
    [3] Joshi C P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes [J] .Nucleic Acids Research. 1987,15: 6643-6653
    [4]李一醌,王金发.高等植物启动子研究进展[J].植物学通报,1998,15(增刊):1-6
    [5]张春哓,王文棋,蒋湘宁,等.植物基因启动子研究进展[J].遗传学报,2004,31(12)
    [6] Torgersen H, Soja G, Janssen I, et al. Risk assessment of conventional crop plants in analogy to transgenic plants[J]. Environmental Science and Pollution Research. 1998, 5(2): 89-93.
    [7] Safety of Genetically Engineered Foods-Approaches to Assessing Unintended Health Effects[J]. The National Academy of Sciences. 2004.
    [8]李宝健,朱华晨.论应用多基因转化策略综合改良生物体遗传性研究方向的前景-Ⅰ.多基因转化的基因来源与技术平台[J].中山大学学报:自然科学版. 2004, 43(6): 11-16.
    [9]Elmayan T, Vaucheret H. Expression of single copies of a stronglyexpressed 35S transgene can be silenced post-transcriptionally. Plant J, 1996, 9: 787–797
    [10]于翠梅,马莲菊,张宝石.特异性启动子在植物基因工程中的应用[J].生物工程学报.2006(11);883-890
    [11]财音青格乐,李明春,蔡易等.大豆种子特异性启动子的克隆及序列分析[J].作物学报.2005(1).11-17
    [12]乔光明,李忠诚,陈正华等.水稻胚乳特异性启动子Gtl的克隆及其在玉米中的功能验证[J].激光生物学报, 2006.12.602-607
    [13]胡桂兵,张上隆,徐昌杰等.笋瓜韧皮部特异性启动子的克隆分析及新型植物表达载体构建[J].江西农业大学学报.2005(8).481-485
    [14]闫利明.烟草根特异表达启动子的分离鉴定与抗病基因克隆及表达载体构建[D]
    [15]Yamamoto Y T , Cheng C-L,et al. Rootspecific genes from tobacco and Arabidopsis homologous to an evolutionarily conserved gene family of membrane channel proteins[J]. Nucl. Acids Res,1990,18,7449
    [1] Lefol E, Fleury A, Darmency H. Gene dispersal from transgenic crops[J]. Sexual Plant Reproduction. 1996, 9(4): 189-196.
    [2] Torgersen H, Soja G, Janssen I, et al. Risk assessment of conventional crop plants in analogy to transgenic plants[J]. Environmental Science and Pollution Research. 1998, 5(2): 89-93.
    [3] Safety of Genetically Engineered Foods-Approaches to Assessing Unintended Health Effects[J]. The National Academy of Sciences. 2004.
    [4]李宝健,朱华晨.论应用多基因转化策略综合改良生物体遗传性研究方向的前景-Ⅰ.多基因转化的基因来源与技术平台[J].中山大学学报:自然科学版. 2004, 43(6): 11-16.
    [5]王艳玲,郑永春.转基因作物的利用与安全性评估[J].吉林农业科技学院学报. 2006, 15(3): 13-15
    [6]邓其明,张红宇,李平.植物无选择标记转基因技术的研究进展[J].中国生物工程杂志. 2005: 71-77.
    [7] Dale E C,Ow D W.Gene transfer and subsequent removal of the se—lection gene from the host genome[J].Proc.Nat1.Acad.Sci.USA,1991,88:10558—10562
    [8]甄伟,汪阳明. Cre—lox重组系统介导转基因烟草中外源基因删除的研究[J].北京大学学报:自然科学版. 2001, 37(4): 477-482.
    [9]崔颖鹏,姜傥.糖皮质激素受体结构和功能的关系[J].国外医学:临床生物化学与检验学分册. 2005, 26(12): 916-919.
    [10] Aoyama T. Glucocorticoid-inducible gene expression in plants[Z]. Wallingford (United Kingdom): CAB INTERNATIONAL, 1999.
    [11] Jianru Zuo, Nam-Hai Chua. Chemical-inducible systems for regulated expression of plant genes[J]. Current Opinion in Biotechnology. 2000, 11(2): 146-151.
    [12]Kang Hong-Gu, Fang Yiwen, Singh Karam B. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. [J]. Plant Journal. 1999, 20(1): 127-133.
    [1]潘建青.抗青枯病基因在烟草根部表达及根SSH文库的构建[D]
    [2]朱肾朝,王彦亭,王智发.中国烟草病害[M] .北京:中国农业出版社,2002.
    [3] Hayward A C. Biology and ep idemiology of bacterialwilt caused by Pseudom onas solanacearum. Annual Review of Phytopathology, 1991, 29: 65 - 87
    [4]李乃坚,袁四清,蒲汉丽,等.抗肽菌B基因转化烟草及转基因植株抗青枯病的鉴定[J ] .农业生物技术学报,1998 ,6 (2) :1782184
    [5] Stirpe F,Barbieri L,Battelli M G,et al. Ribosome-inactivating proteins from plants: present status and future prospects[J] . Biotechnology, 1992,10:405-412
    [6] Stirpe F,Barbieri L,Battelli M G,et al. Ribosome-inactivating proteins from plants: present status and future prospects[J] . Biotechnology, 1992,10:405-412
    [7] Irvin J D.Purification and partial characterization of the antiviral protein from phytolacca anericana which inhibits eukaryotic protein synthesis[J].Arch Biochem Biophys,1975,169:522—528
    [8]闫利明.烟草根特异表达启动子的分离鉴定与抗病基因克隆及表达载体构建[D].
    [9]李洪艳,王关林,李建国,等.核糖体失活蛋白研究进展[J].植物学通报,2005,22(4):456-462
    [10]李建国.核糖体失活蛋白的研究进展[J].分子植物育种,2005,3(4):566-570
    [11] Chow T P,Feldman R A, Lovett M,et al. Isolation and DNA sequence of a gene encoding alpha-trichosanthin, a type I ribosome-inactivating protein[J]. J Biol Chem, 1990,265 (15): 8670-8674
    [12]于翠梅,马莲菊,张宝石.特异性启动子在植物基因工程中的应用[J].生物工程学报,2006,22(6),882-890
    [13]财音青格乐,李明春,蔡易等.大豆种子特异性启动子的克隆及序列分析[J].作物学报,2005,31(1),11-17
    [14]乔光明,李忠诚,陈正华等.水稻胚乳特异性启动子Gtl的克隆及其在玉米中的功能验证[J].激光生物学报,2006,15(6),601-607
    [15]胡桂兵,张上隆,徐昌杰.笋瓜韧皮部特异性启动子的克隆分析及新型植物表达载体构建[J].江西农业大学学报.2005,27(4),481-485
    [1]刘焕利,何礼远,毛国璋等.植物青枯病原细菌胞外蛋白相关基因的克隆[J].植物病理学报,1999,29(2):110-119
    [2]张春晓,王文棋,蒋湘宁等.植物基因启动子研究进展[J].遗传学报, 2004,31 (12):1455-1464.
    [3] Subramanian S,Rajagopal B,Rock C D.Harlequin(hlq)and short blue root (sbr),two Arabidopsis mutants that ectopically express an abscisic acid- and auxin-ind- ucible transgenic carrot promoter and have pleiotropic effects on morphogen- esis[J].Plant Mol Biol,2002,49(1):93-105
    [4] Lamppa G,Nang F,Chua N H. Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco [J].Nature,1985,316:750-752
    [5] Czarnecka E,Key J,Gurley W B.Regulatory domains of the GmHsp17.5-E heat shock promoter of soybean [J].Mol Cell Biol,1989,9(8):3457-3463
    [6]赵恢武,陈扬坚,胡鸢雷,等.干旱诱导性启动子驱动的海藻糖-6-磷酸酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000,42(6):616-619
    [7] Xu D,Mcelroy D,Thornburg R W W.Systemic induction of a potato pin2 promoter by wounding,methyl jasmonate,and abscisic acid in transgenic rice plants[J].Plant Molecular Biology,1993,22(4): 573- 588
    [8]李婵娟,杨世湖,武亮,等.pib基因启动子及其诱导启动性初探[J].遗传,2006,28(6):689-694
    [9]李秋莉,张毅,尹辉,等.辽宁碱蓬甜菜碱醛脱氢酶基因(BADH)启动子分离及序列分析[J].生物工程学报,2006,22(1):77-81
    [10] Zhu Jun,Hu Yonghua,Huang Huiqin,et al.Cloning of ACS and HBsAg Genes and their Transient-expressions[J].Molecular Plant Breeding,2005,3(6):787-791
    [11]程忠. Cloning and characterization of gene resistant to Aspergillus flavus and their transformation into peanut[D].
    [12]李春娟等.几丁质酶和β-1,3 -葡聚糖酶基因研究进展[J].生物技术通讯,2004,5:502-505.
    [13]常菊芹,王贤磊,杨艳等.拟南芥冷诱导型启动子CBF 3的克隆及活性检测[J].生物技术.2009,(5)5-7
    [14]张毅,尹辉,李丹,等.植物环境响应启动子的诱导元件及转录因子[J].中国生物工程杂志,2007,27(7):122—128.
    [15]李杰,张福城,王文泉,等.高等植物启动子的研究进展[J].生物技术通讯,2006,17(4):658.661
    [16]张春晓,王文棋,蒋湘宁,等.植物基因启动子研究进展[J].遗传学报,2004,31(12):1455-1464
    [17]聂丽娜,夏兰琴,徐兆师等.植物基因启动子的克隆及其功能研究进展[J].植物遗传资源学报2008,9(3):385—39
    [18]张毅,尹辉,李丹等.植物启动子的化学因素诱导元件[J]植物生理与分子生物学,2007,43(4):787-794
    [1] Eaglesham A, Pueppke SG, Hardy RWF et al. Gentically modifiedfood and the consumer. NABC Report 131 New York: NationalAgricultural Biotechnology Council, 2001
    [2] Koster-TopferM,FrommeWB,Rocha-SosaM,eta1.A classII patatin promoter is under developmental control in both transgenic potato and tobacco plants[J].Molecular Genome Genetics,1989 219:39o一396.
    [3] NitzI,BerkefeldH,nlzi0PS,eta1.Pyk10,a seedlingand root specific gene and promoter fromArabidopsis thaliaua [J].Plant Science,2001,161:337—346.
    [4]于翠梅,马莲菊,张宝石.特异性启动子在植物基因工程中的应用[J].生物工程学报. 2006,1,83-889
    [5] Yamamoto Y T , Cheng C-L,et al. Rootspecific genes from tobacco and Arabidopsis homologous to an evolutionarily conserved gene family of membrane channel proteins[J]. Nucl. Acids Res,1990,18,7449
    [6] Shen S,Li Q,He S Y,et al. Conversion of compatible plant-pathogen interactions into incompatible interactions by expression of the Pseudomonas syringae pv. syringae 61 hrmA gene in transgenic tobacco plants[J].Plant J,2000,23(2):205-13
    [7]盂亮,崔德才.植物几丁质酶及其在抗真菌病害中的应用[J].生物技术通讯,2004,15(4):420—422
    [8]高必达.转几丁质酶基因防植物病害研究:进展、问题与展望.生物工程进展,1999,19(2):21—28.
    [9]郁志芳,陈崇顺,朱雪峰.植物几丁质酶的生物功能.生命的化学,2000,20(1):36—37.
    [10] Zhao K.J.,and Chye M.L.,Methyl jasmonate induce expression of a novel Brassica juncea chitinase with two chitin-binding domains,Plant Mo1.Bio1.,1999,40:1009—1018
    [11] Xu Y.,Zhu Q.,Panbangred W.,Shirasu K.,and Lamb C.,Regulation,expression and function of a new basic chitinasegene in rice(Oryzasativa L.),Plant Mo1.Bio1.,1996,30(3):387—401.
    [12]王军,庞广昌,Wang J.,Pang G.C.抗菌肽抗菌机理的研究现状及趋势.食品科学,2005,26(8):526—529
    [13]李春娟等.几丁质酶和β-1,3 -葡聚糖酶基因研究进展[J].生物技术通讯,2004,5:502-505.
    [14] Potenza C, Aleman L, Sengupta—Gopalan C. Invited Review:Targeting Transgene Expression In Research, Agricultural, And Environmental Applications: Promoters Used In. Plant Transfonnation.In Vitro Cell Dev Biol Plant.2004.40 :1—22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700