用户名: 密码: 验证码:
同源序列法克隆甘蓝型油菜核不育基因BnMS1及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄性不育是指植物在有性繁殖过程中不能产生正常的花药、花粉或雄配子而雌蕊功能正常的现象。雄性不育广泛应用于杂交育种中,图位克隆核不育基因费时费力。目前为止,虽已对许多与细胞核雄性不育相关基因进行分子标记与定位,但尚未有图位克隆到甘蓝型油菜不育基因的报道。
     油菜与拟南芥同属十字花科芸薹属植物,比较基因组学研究证明油菜与拟南芥基因组同源性很高,这意味着可以利用拟南芥育性相关基因克隆油菜的雄性不育基因以及开展育性相关性的研究。目前已分离的拟南芥育性相关基因有:MS2基因、MS5基因、Coll基因、spl基因、MS1基因、eMS1基因、dde2-2基因和mmd1基因等。其中拟南芥MS1只在小孢子释放时期的绒毡层组织中低丰度表达,拟南芥MS1突变体能导致花粉败育而对其它花器官的生长发育没有影响,这在生产上有较大的应用价值。
     因此本研究围绕拟南芥核不育基因MS1开展了以下工作:
     1.克隆甘蓝型油菜核不育基因BnMs1及生物信息学分析:根据拟南芥MS1基因保守区域序列设计特异性引物,PCR扩增甘蓝型油菜超油二号基因组,将PCR产物克隆测序,并将所得序列拼接。根据所得序列两端设计引物,利用PCRWalking技术克隆该基因全长。将克隆的基因序列全长与拟南芥MS1基因全长序列进行同源性比对及生物信息学分析。结果:BnMs1基因全长3424bp,BnMS1与MS1全长序列同源性60.3%;BnMs1与MS1编码序列同源性89.5%;BnMS1基因外显子分别位于521bp-+821bp、1189bp-+1471bp、1876bp-+3296bp;内含子分别位于822bp-+1188bp、1472bp-+1875bp;开放阅读框长2004bp,编码667个氨基酸,蛋白分子量为76.5KD,等电点为8.01;根据BnMS1基因序列推测的蛋白质氨基酸序列与已知拟南芥MS1基因蛋白质氨基酸序列同源性达到93%。
     2.构建BnMS1基因反义表达载体转化拟南芥。克隆BnMS1基因第三个外显子2402-2919bp序列命名为antiMS,反向插入pFGC5941植物表达载体中,并转化入农杆菌中。T1代种子播种,种子萌发3-5d后喷施除草剂筛选抗性植株,后期提取DNA进行PCR鉴定,提取花RNA进行RT-PCR,并观察植株生长情况,对花粉进行取样,碘、碘化钾染色,在显微镜下观察。结果:转anti-MS拟南芥共筛选到14株,PCR阳性植株11株,植株表型、花粉粒数目活性与野生型无区别,RT-PCR均扩出条带且与野生型无明差异。
     3.构建拟南芥MS1基因人工小RNA表达载体转化拟南芥。根据Schwab的方法构建拟南芥MS1基因amiRNA载体,并与pFGC5941表达载体连接,并转入农杆菌中。利用花絮浸润法转化拟南芥,转化种子播种,种子萌发3-5d后喷施除草剂筛选抗性植株,后期提取DNA进行PCR鉴定,提取花RNA进行RT-PCR,并观察植株生长情况,对花粉进行取样,碘、碘化钾染色,在显微镜下观察。结果:转amiRNA载体拟南芥共筛选到27株转化株,PCR阳性植株25株,其中8株转基因植株表现出中间型雄性不育的性状:植株部分荚短小不育,在早期花中观察到花粉囊中含有数目极少的花粉粒,后期与野生型并无明显区别,其余转基因植株与野生型无区别。
     4.构建BnMS1启动子序列与pGUS-eGFP双标记连接的植物表达载体。PCR克隆BnMS1启动子序列,将启动子序列与pGUS-eGFP双标记连接的植物表达载体连接,并转化入农杆菌中,以待转化拟南芥,验证启动子是否具有功能。对重组农杆菌的PCR结果表明,启动子序列已转入农杆菌中,载体构建成功。
Male srerility is a phenomenon that in the process of sexual reproduction in plants, anthers, pollen and male gametes are abnormal but the function of the female bud is normal.Male srerility of rapeseed is wildly used in domestic and international hybridization.because of the genome of brassica napus is complicated,so far there is no report on map-based cloning of male sterility gene on brassica napus.
     Rapeseed and Arabidopsis belong to the Brassica species of Cruciferae plant.Comparative genomics studies have shown that the rape and Arabidopsis thaliana share highly homologous genome,which means that we can make use of fertility-related genes in Arabidopsis thaliana cloning male sterile gene in Rape and conducting research on male sterility.So far there are many fertility-related genes separated and cloned from Arabidopsis thaliana, such as MS2,MS5,Coll, spl, MS1, eMSl,dde2-2,mmdl and so on. The gene of MS1 expresses during the period of spores release in tapetal tissues,and the expression is low in abundance.The pollen of MSI mutation is abortion and the development of the other floral organs are not affected, which can be have a great use in production.
     In this research,we carried some works on MS1 gene,as follows:
     1.The cloning of male sterile gene BnMS1 in Brassica napus and its bioinformatics analysis.According to the coding sequences of Arabidopsis MS1 gene,a series of primers were designed to clone the homologous sequences in Brassica napus. PCR Walking method was used to clone the full sequence of MS1 gene of Brassica napus. The total lengh of the BnMSl gene cloned here is 3424bp,and we deduce there are three exons located at 521bp-+821 bp,1189bp-+1471 bp and1876bp-+3296 bp;while introns located at 822bp-+1188 bp,and 1472bp-+1875 bp.The MS1 from Brassica napus shared a similarity of 89.5% in encoding sequence and 60.3% in full sequence with that from Arabidopsis thaliana. According to the results we deduced that it has an open reading frame(ORF) of 2004bp;encoding a protein of 667 amino acid, with protein molecμlar weight of 26kD and isoelectric point of 8.01.The similarity between the MS1 from Brassica napus and that from Arabidopsis thaliana is 93% in amino acid sequence.
     2.A plant expressed vector with AntiMS was constructed. Cloning the third exon sequence between 2402-+2919bp of BnMSl gene and liagased with pFGC5941 Vector reversed. Recombinant plasmid was transformed into Agrobacterium tumefaciens.Using Floral-Dip transformation method to invert the expressed vector with Anti-MS into Arabidopsis thaliana. Identificat of the transgenic plants by PCR amplification and use RT-PCR amplification to analysis the expression of MS1 gene.Stain and Observ the pollens under the microscope. The results:14 transgenic plants have been selected,11 of them are positive and there are no significant difference between positive transgenic Arabidopsis thaliana and col-o Arabidopsis thaliana on Phenotype,pollen activity and expression of MS1 gene.
     3.A plant expressed vector with amiRNA of MS1 was constructed. Clone the amiRNA of MS1 then liagsed with pFGC5941 vector.Recombinant plasmid was transformed into Agrobacterium tumefaciens.Using Floral-Dip method to invert the expressed vector with amiRNA into Arabidopsis thaliana. Identificat of the transgenic plants by PCR amplification and using RT-PCR to analysis the expression of MSI gene.Stain and Observe the pollens under the microscope. The results:we have selected 27 transgenic plants,25 of them are positive. Some strains of transgenic Arabidopsis showed intermediate male sterility,and the Pods are shorter and the number of pollen grains in early flower anthers are fewer than col-0 Arabidopsis.there are no significant difference between the other transgenic Arabidopsis thaliana and col-o Arabidopsis thaliana.
     4.Construct a expressed vector with the promoter of BnMSl.Using PCR to amplified the promoter sequence of BnMSl then connecting the promoter sequence with the pGUS-eGFP double-labeled plant expression vector, at last it was transferred to agrobacterium tumefaciens for future study. Identification of the transgenic Agrobacterium tumefaciens by PCR amplification.the results showed that the promoter sequence was transferred into Agrobacterium,so the vector was successfully constructed.
引文
[1]林良斌,官春云.油菜雄性不育分子机理的研究进展[J].湖南农业大学学报1996,122(4):406-414.
    [2]吴巧雯,侯思宇,郭三堆等.植物细胞质雄性不育及其育性恢复的分子生物学研究进展[J].生物技术通讯,2008,19(3):456-462.
    [3]李泽福,夏加发,唐光勇.植物雄性不育类型及其遗传机制的研究进展[J].安徽农业科学,2000,28(6):742-746.
    [4]张海艳,于元杰,周玉亮.植物细胞质雄性不育的生物学研究进展[J].山东农业大学学报(自然科学版),2004,35(1):137-141.
    [5]刘旭吴.两个新发现的油菜雄性不育系花药败育机理的研究[D].兰州,兰州大学生命科学院,2006.
    [6]叶纨芝,曹家树.植物雄性不育的分子机理[J].植物生理学通讯,2000,36(2):176-181.
    [7]谢潮添,魏冬梅,田惠桥.高等植物雄性不育的细胞生物学研究进展[J].植物生理与分子生物学学报,2006,32(1):17-23.
    [8]马三梅,王永飞.关于植物细胞质雄性不育概念的商榷[J].种子,2005,24(6):61-62.
    [9]傅廷栋,杨光圣.国内外油菜杂种优势的研究与利用概况[C]华中农业大学1994年油菜研究年报,1995,39-41.
    [10]王永飞,马三梅,郑学勤等.植物细胞质雄性不育分子机理研究进展[J].自然科学进展,2002,12(10):1009-1014.
    [11]郭东林,毕影东,李集临等.高等植物细胞质雄性不育的研究进展[J].黑龙江农业科学,2005,(2):41-43.
    [12]张俊,陈德富.植物细胞质雄性不育的分子机制研究[J].生命的化学,1999,19(5):203-205.
    [13]郝岗平,杨清.植物胞质雄性不育及育性恢复的分子机制研究进展[J].亚热带植物科学,2002,31(3):78-84.
    [14]沈金雄,万正杰,傅廷栋等.油菜细胞质雄性不育及恢复的分子机理研究进展[J].中国油料作物学报,2008,30(3):374-383.
    [15]王道杰,杨翠玲,李殿荣等.油菜雄性不育分子机理研究进展[J].中国农学通报,2001,17(2):43-46.
    [16]刘燕,董振生,张改生等,甘蓝型油菜细胞质雄性不育研究进展[J].西北农业学报,2004,13(1):114-119.
    [17]马三梅,王永飞.与油菜细胞质雄性不育相关的DNA位点和育性恢复基因的研究进展[J].植物生理与分子生物学学报,2005,31(2):119-125.
    [18]徐一兰,唐海明,官春云,油菜细胞质雄性不育的分子生物学及杂种优势利用研究进展[J].作物研究,2006,(5):446-452.
    [19]赵军良,梁爱华.高等植物细胞质雄性不育分子机理的研究进展[J].西北植物学报,2004,24(8):1543—1546.
    [20]高健强.油菜中与细胞质雄性不育相关基因的研究现状[J].铜仁学院学报,2008,2(2):111-114.
    [21]袁美,杨光圣,傅廷栋.油菜细胞质雄性不育的分子生物学研究进展[J].中国油料作物学报,2002,24(2):87-90.
    [22]Signh.M,Brown.G.G. Suppression of cytoplasmic male sterility by nuclear genes alter expression of a novel mitochondrial gene region[J].PlantCell,1991,3:1349-1362.
    [23]Makaroff.C.A,Palmer.J.D.Mitochondria DNA rearrangement and transcrip-t ional alternations in the male sterile cytoplasm of Ogura radish [J].MolCell Biol, 1988,8:1474-1480.
    [24]高健强,余显权,赵德刚.油菜细胞核雄性不育基因研究进展[J].广西农业科学,2008,39(3):279-283.
    [25]周锦.油菜雄性不育相关基因的表达差异及克隆与序列分析[D].武汉,中南民族大学生命科学学院,2008.
    [26]赵志伟.甘蓝型油菜(Brassica napus)BAN基因同源片段的克隆分析及油菜花序浸泡法转基因研究[D].成都,四川大学生命科学学院,2002.
    [27]贺华良.甘蓝型油菜细胞核雄性不育的基因表达研究[D].武汉,华中农业大学植物科学与技术学院,2003.
    [28]王丽侠.油菜拟南芥比较基因组学研究[D].武汉,华中农业大学植物科学与技术学院,2001.
    [29]Aarts.M.G,Dirkse.W.G,Stiekema.W.J,et,al.Transposon tagging of a male sterility gene in A rabidopsis[J].Nature,1993,363:715-717.
    [30]Aarts.M.G,Hodge.R,Pereira.A,et,al..The Arabidopsis MALE STERILITY2 protein shares similarity with reductasesin elongation/condensation complexes[J]. PlantJ,1997,12:615-623.
    [31]Kazuo Shinozak.Arabidopsis MALE STERILITY1 Encodes a PHD-Type Transcription Factor andgμlates Pollen and Tapetum Development[J].Plant Cell J 2007,19:3549-3562.
    [32]Wilson.Z.A, Morroll.S.M, Swarup.R,et al.The Arabidopsis MALE STERILITY1 (MSI)gene is a transcriptional regμlator of male gametogenesis, with homology to the PHD-finger family of transcription factors [J].Plant J,2001,28(1):27-39.
    [33]Sanders P M, Weterings K, Mclintire K N,et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J].Sex Plant Reprod,1999, (11):297-322.
    [34]李德谋,罗小英,杨广伟等.甘蓝型油菜隐性核不育两用S45AB中与MS2BnaP基因同源片段的克隆及序列分析[J].作物学报,2002,28(1):1-5.
    [35]S.W. Hu,Y. F.Fan,H. x. Zhao.et,al. Wang.Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L.)[J].Theor Appl Genet,2006, 113:397-406.
    [36]陈玉峰.甘蓝型油菜隐性细胞核雄性不育恢复基因的精细定位[D].武汉:华中农业大学,2007.
    [37]牛佳田.花药壁及其中绒毡层的结构与功能,生物学通报[J].1995(10):8-9.
    [38]Mariani.C,Beuckeleer.M.D, Truettner.J,etal.Induction of male sterility in plants by a chimaeric Ribonuclease gene [J].Nature,1990,347:737-741.
    [39]张英涛,杨海东,陈朱希昭.绒毡层研究进展植物学通报[J].1996,13(4):6-13.
    [40]Mascarenhas.J.P.A nnu, R ev. Plant Physiol[J].PlantM ol.B iol,1990,41: 317-338.
    [41]陈辉.绒毡层发育[D].上海,上海师范大学生命与环境科学学院,2007.
    [42]Steiglitz.H.Role of A-1,3-Glucansae in post meiotic microspore relesae [J].Developmental Biology,1977,57:87-97.
    [43]吕世友,陈祖铿,林金星等.花粉发育的研究进展[J].植物学通报,2001,18(4):340-346.
    [44]Worrall.D, Hird.D.L,Paul.W, et al. Premature dissolution of the m icro sporocyte callose wall causes male sterility in transgenic tobacco [J]. P lant Cell,1992,4:759-771.
    [45]刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M]中国农业出版社2000.
    [46]王长海,蓝海燕,陈正华等.利用植物绒毡层及花药发育特异基因创造雄性不育[J].西北农业学报,1999,8(2):108-112.
    [47]罗鑫娟,刘旭吴,王新宇.绒毡层小体,一种在花药绒毡层细胞中新发现的含油细胞器[J].细胞生物学杂志,2006,28:61-65.
    [48]Liang P,Lidia.A,Arthur B P.Distribution and cloning of eukaryotic mRNA by means of differential display:refinements and optimization[J].Nucleic Acids Research,1993,21(14):3269-3275.
    [49]Liang P,Weimin Zhu,Xiaoying Zhang,et al.Differential display using one base anchored oligo-dT primers [J].Nucleic Acids Research,1994,22(25):5763-5764.
    [50]闫桂平,马凤鸣,李文华等.mRNA差别显示技术在植物发育研究中的应用[J].植物学通报,2001,18(1):52-57.
    [51]庄楚雄,徐是雄.运用cDNA缩减杂交法克隆水稻花粉发育有关的cDNA[J].科学通报,1999,44:1842-1846.
    [52]米志勇,王树生,吴乃虎.水稻低分子量GTP结合蛋白基因osTACD的分离[J].科学通报,2000,45(19):2047-2055.
    [53]吴建勇,沈俊儒,刘平武,等.应用cDNA-AFLP研究甘蓝型油菜显性细胞核雄性不育差异表达基因[J].中国农业科学,2006,39(9):1921-1926.
    [54]李强,斯钦巴特尔,郭树春,等.植物雄性育性相关基因的克隆方法[J].内蒙古农业科技,2008(3):21-24.
    [55]Chaudhury.A.M,Craig.S.Genetic control of male sterility in higher plants[J].Aust J Plant Physiol,1992,19:419-426.
    [56]Xie D, Feys.B.F.COL1 an Arabidopsis gene required for jasmonate-regulated defense and fertility[J].Science,1998,280:1091-1094.
    [57]Komori T,Ohta S,Murai N,et al.Map-based cloning of a fertility restorer gene,Rf-l,in rice(Oryza sativa L)[J].Plant,2004,37:315-325.
    [58]王泽立,戴景瑞,王斌.植物基因的图位克隆[J].生物技术通报2000(4):21-27.
    [59]侯雷平,李梅兰.T-DNA标签在植物基因克隆和功能分析中的应用[J].西北植物学报,2006,26(5):1066-1070.
    [60]Cavell.A.C,Lydiate.D.C, Dean.C,et al.Colinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome[J]. Genome,1998,41:62-69.
    [61]Sillito.D, Mayerhofer.R, Lydiate.D.J.,et al. Arabidopsis thaliana:a source of candidate disease resistance gene for Brassica napus[J].Genome,2000,43(3):452-460.
    [62]O'Neill, Bancroft.I.C.Comparative physical mapping of the genome of Brassica oleracea var. alloglabra that are homeologous to sequenced regions of chromosome 4 and 5 of Arabidopsis thaliana[J].Plant J,2000,23:233-243.
    [63]Parkin. I.A.P, Lydiate.D.J, Trick.M. Assessing the level of collinearity between Arabidopsisthaliana and Brassica napus for A.thaliana chromosome5[J].Genome,20 02,45 (3):56-366.
    [64]Jack.T,Brockman.L.L,Meyerowitz.E.M.The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens[J].Cell,1992,68:683-697.
    [65]Dawson.J,WilsonZ.A.,Kliehe,et al.Microspore and pollen development in six male-Sterile mutants of Arabidopsis thalian[J].Can. J.BoL,1993,71,629-638.
    [66]Glover.J, Grelon.M, Chaudhury.A,et al. Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis[J].Plant J,1998,15(3):345-356.
    [67]Yang M, McCombie.W. R, Ma H,et al. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation[J].Proc Natl Acad Sci USA,1999,96:11416-11421.
    [68]Sehiefthaler.U,Balasubrafnanian.S,Sehneitz.K,et al.Molecular analysis of NOZZLE a gene involve d in Pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana[J].ProeNatlAeadSei USA,1999,96:11664-11669.
    [69]Zhao D-Z, Wang G-F, and Ma, H,et al.The excess microsporocytesl gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes Dev,2002,16: 2021-2031.
    [70]Von malek.B, Van der Graaff.E. The Arabidopsis male-sterile mutant dde2-2 is defective in the allene oxide synthase gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway[J]. Planta,2002,216(1):187.
    [71]Takuya Ito,Noriko Nagata, Van der Graaff E,et al.The Arabidopsis male-sterile mutant dde2-2 is defective in the allene oxide synthase gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway[J]. Planta,2002,216(1):187.
    [72]Caiyun Yang,Gema Vizcay-Barrena, and Zoe A. Wilson,et al. MALE STERILITY1 is Required for Tapetal Development and Pollen Wall Biosynthesis[J].Plant Cell,2003,15 (12):2792-2811.
    [73]Doyle.J.J and Doyle. J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J].Phytochemistry Bμlletin,1987,19:11-15.
    [74]Snowdon.R.J,Kohler.W,and Kohler.A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids[J].Theor APPL Genet 1997,95:1320-1324.
    [75]Ulrike Bellin and Heiko.C.Becker. Evaluation B-genome intergration in Brassica napus with GISH [R].proceeding of the 10th international Rapeseed Congress.canberra,1999,Ausrtalia.
    [76]易斌,甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆[D]武汉,华中农业大学,2008.
    [77]孟博,朱大海.反义RNA技术的应用与进展[J].国外医学遗传学分册,2001,24(6):289-292.
    [78]许本波,张学昆,李加纳.反义RNA技术在现代作物遗传改良中的应用[J].中 国农学通报,2003,19(3):84-88.
    [79]李祥,易自力,陈智勇等.反义RNA及其在植物基因工程领域的应用[J].生物技术通讯,2003,14(2):162-164.
    [80]冯丽玲.反义RNA在植物基因工程领域的应用进展[J].山西中医学院学报,2009,10(4):69-72.
    [81]伍林涛,阮颖,刘春林等.miRNA研究进展[J].作物研究,2006(5):572-576.
    [82]吴丹,胡兰.:miRNA及其研究进展[J].中国畜牧兽医,2006,33(1):40-42.
    [83]王磊,范云六.植物微小RNA(microRNA)研究进展[J].中国农业科技导报,2007,9(3):18-23.
    [84]张云峰,季勤,邢宇俊等.植物miRNA在植物生长发育中的作用研究[J].安徽农业科学,2007,35(31):9834-9836.
    [85]张松莲,曾富华,饶力群等.植物miRNA的功能及其作用机制[J].热带亚热带植物学报,2006,14(5):444-450.
    [86]高宁,李龙.微小RNA调控靶基因作用机制的研究进展[J].国际口腔医学杂志,2008,35(1):35-37.
    [87]郑玉姝,赵朴,刘兴友.特异性miRNA调节机理研究进展[J].中国生物工程杂志,2008,28(2):106-109.
    [88]俞焙秦,刘炳亚.miRNA的生物学特性和功能[J].上海交通大学学报(医学版)2007,(05):621-623.
    [89]Wesley, S.V, Helliwell,C.A, Smith.N.A,etal. Construct design for efficient, effective and high-throughput gene silencing in plants[J].Plant J.,2001,27:581-590.
    [90]Chuang, C.F.,and Meyerowitz, E.M.Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J].Proc. Natl. Acad. Sci. USA,2000, 97:4985-4990.
    [91]Schwab.R, Ossowski.S,Riester.M, Warthmann.N,et,al.Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis[J].Plant Cell,2006,18:1121-1133.
    [92]Clough,S.J.and Bent.A.F.Floral dip:a simplifid method for Agrobacteriu-mediated transformation of Arabidopsis thaliana[J].ThePlant J,1998,16(6):735-742.
    [93]何业华,熊兴华,周小云.根癌农杆菌介导TA292Barnase基因转化甘蓝型油菜 的研究[J].作物学报,2003,29(4):615-620.
    [94]娄虹,杨淑琴.反义RNA技术及其在农业领域的应用[J].辽宁大学学报自然科学版,2005,32(4):328-333.
    [95]石东乔,陈正华.反义RNA及其在植物学研究中的应用[J].遗传,2001,23(1):73-76.
    [96]李婉莎,杨红玉.花药绒毡层发育相关基因的研究进展[J].安徽农业科学,2007,35(14):4120-4123.
    [97]王勇,林忠平,王关林.通过转基因途径获得植物雄性不育[J].辽宁师范大学学报(自然科学版),25(2):169-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700