用户名: 密码: 验证码:
鲶鱼骨酶解物的制备、抑菌性能、抑菌机理及其在食品中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上水产品产量最大的国家,也是世界上唯一养殖量超过捕捞量的国家。我国水产养殖中淡水鱼资源十分丰富,其中鲶鱼养殖产业在我国有着良好的发展前景。随着生活水平的提高和消费习惯的逐渐改变,人们己经不再满足于吃鲜活鱼,而是更多地转向方便化、营养化和具有保健功能的鱼加工食品,这给鱼加工产业及其下脚料利用提供了良好的发展机遇和发展空间。目前,鲶鱼加工品是我国主要淡水鱼出口产品之一,产生的大量副产物未被很好地加以利用。鱼头及脊椎骨是鲶鱼产品加工过程中产生的主要下脚料,在鲶鱼加工副产物中所占比例极大,因此,本文以鲶鱼骨为原料,从鲶鱼骨理化性质,鲶鱼骨酶解工艺优化,鲶鱼骨酶解物抑菌性能、抑菌机理及其在食品中的应用三个方面对鲶鱼骨副产物高附加值利用进行了系统的研究。
     本文首先研究了鲶鱼骨的理化性质和微观结构,鲶鱼骨的主要化学成分为蛋白质和灰分,分别占鱼骨的30.6%和50.4%,钙磷比为1.84;氨基酸组成中甘氨酸和脯氨酸含量较高,甘氨酸质量百分含量为4.917%,占总氨基酸质量的23.23%,为典型骨胶原的氨基酸组成;对鲶鱼骨进行红外扫描,结果表明除了在酰胺带区域有很多小峰外,其余特征峰与碳酸羟基磷灰石的红外特征峰基本吻合;用原子力显微镜对鲶鱼骨进行微观结构观测发现鲶鱼骨表面有清晰明显的孔洞结构和从孔洞发散出来的矿化胶原纤维。
     根据鲶鱼骨的理化性质和微观结构,本文采用酶解和脱矿同步进行的方法对鲶鱼骨的酶解工艺优化进行研究。实验中直接以鲶鱼骨粉为原料,用胰蛋白酶、胃蛋白酶、木瓜蛋白酶、中性蛋白酶及碱性蛋白酶五种酶对其进行酶解并对酶解产物的抑菌效果进行筛选,结果表明胃蛋白酶酶解产物的抑菌效果最好。进而对胃蛋白酶的酶解工艺条件借助响应面法(Response surface method,RSM)进行优化,回归分析,得到抑菌效果最佳的酶解条件即pH 3.5,酶解时间4h,酶解温度40℃,底物浓度0.15g/ml,酶与底物比例1.97g/100 g。
     对最佳酶解条件下得到的鲶鱼骨酶解物的抑菌性能进行研究,结果表明鲶鱼骨酶解物对大肠杆菌、枯草芽孢杆菌和藤黄微球菌均具有很好的抑制作用。以大肠杆菌为供试菌,对鲶鱼骨酶解物的热稳定性等抑菌性能进行研究,结果表明鲶鱼骨酶解物具有较好的耐热、耐储存及耐受紫外线照射的抑菌性能,且NaCl对其抑菌性能有协同增效作用。
     以大肠杆菌为供试菌,对鲶鱼骨酶解物的抑菌机理进行了探索和研究。实验中将酶解物未作用的大肠杆菌作为对照组,采用生长曲线测定、膜通透性、SDS-PAGE分析、原子力显微镜和扫描电镜观察等实验方法研究酶解物的抑菌机理。实验结果表明加入鲶鱼骨酶解物后,大肠杆菌的生长曲线发生了明显的变化,酶解物作用的大肠杆菌生长缓慢,没有出现和对照组一样的对数生长,这种差异说明鲶鱼骨酶解物能够减缓并最终抑制大肠杆菌的生长。加入酶解物后,电导率立刻高于对照组,随着时间的延长而增大,而对照组的电导率几乎没有变化;表征核酸含量的OD260值随时间的延长明显增加,6h后增加速度逐渐变缓,随后趋于稳定,而对照组的大肠杆菌的OD260值一直趋于稳定;葡萄糖含量随时间的延长明显增加,4h后增加速度开始变缓,而对照组葡萄糖含量随时间的延长呈下降趋势;经酶解物作用的大肠杆菌菌体的蛋白电泳谱带与对照组的相比呈现明显差别,对照组大肠杆菌菌体的谱带随时间的延长,变化不明显,而经酶解物作用后的实验组,随时间的延长蛋白谱带明显变浅,一些谱带甚至消失。这些都说明酶解物改变了大肠杆菌细胞膜的通透性,使胞内物质大量外泄,并且随时间的延长泄漏量明显增加。原子力显微镜观察到对照组的大肠杆菌菌体形态饱满、表面光滑,而经酶解物处理6h后,大肠杆菌菌体发生严重皱缩,完全失去正常形态。透射电镜观察到对照组大肠杆菌基本呈现形态饱满、胞质均匀,细胞壁与细胞膜完整,可见核区;酶解物作用0.5 h后,大肠杆菌较对照组发生了明显的变化,部分菌体出现皱缩现象,大部分菌体胞质减少,细胞膜受损,仅在菌体的一侧可见细胞膜,已不见核区;经酶解物作用6h的大肠杆菌与作用0.5h的大肠杆菌相比,则发生了进一步的变化,菌体基本上都发生了皱缩,胞质进一步减少,部分菌体已完全没有胞质,己完全不见细胞膜,只剩下一个空壳。可以推断,反应的第一步是酶解物与大肠杆菌表面带有大量负电荷的基团结合,然后在菌体表面发生界面接触反应,进而导致菌体细胞膜受损,表面形成孔洞,胞内物质外泄,最终抑制大肠杆菌生长。
     最后将鲶鱼骨酶解物分别用于香肠和酸奶生产。鲶鱼香肠中酶解物的添加量为1.5%时防腐效果最佳;酸奶中酶解物的添加量为0.15%时既可促进酸奶酸化,又能使酸奶具有良好的物理和感官性能。这说明鲶鱼骨酶解物可以很好地应用于食品加工。
China has the highest output of aquatic products in the world. In China, the production of aquiculture is more than that of fishing. Freshwater fish is the richest resource in culture and catfish is a good kind of freshwater fish. With the improvement of living standards, the fresh fish can not meet the demands of people's daily life anymore. Thus the processed fish products with convenient, nutritive and health function have been generated. Currently, catfish has been processed into a variety of products, which are one of the export processed products. During this process a lot of byproducts including bones, skins, viscera and heads are produced, which account for more than half of the total fish weight, especially fish head and backbone. Therefore, the objective of this study was to investigate the bone as raw materials. The physico-chemical properties of catfish bone, optimization of enzymatic hydrolysis of the bone and the enzymatic hydrolysates from it were studied, especially, the antimicrobial activity, antimicrobial mechanism and application in foods of the enzymatic hydrolysates were systematically investigated.
     Fitstly, the physico-chemical property and the microstructure of catfish bone were studied. The main chemical compositions of catfish bone were protein and ash, accounting for 30.6% and 50.4% of the total weight respectively, with the ratio of calcium and phosphorus being 1.84. The glycine was 4.917% which was the richest amino acid and its ratio to the total amino acids was 23.23%. This amino acid composition was in conformity with that in collagen. The infrared characteristic peak of bone tallied with the peak of carbonated hydroxyapatite, except for many small peaks existed in the area of amide. With atomic force microscope, the obvious hole-like structure and the mineralized collagen fibre released from the holes were was observed in the surface of bone.
     According to the physico-chemical properties, catfish bones were hydrolyzed with one of five proteases (alcalase, neutrase, papain, pepsin and trypsin) in order to generate antimicrobial agents. The antimicrobial activity of hydrolysates recovered through enzyme hydrolysis was tested by radial diffusion assay (RDA). Pepsin hydrolysate was found to have the greatest antimicrobial activity. Thus, the conditions of hydrolysis with pepsin were further optimized by response surface methodology (RSM). After screening and optimization, a quadratic model was proposed. The model predicted the optimum antimicrobial activity with a hydrolysis condition of pH 3.5, reaction temperature of 40℃, enzyme-substrate ratio of 1.97/100 (g/g), substrate concentration of 0.15 g/ml and reaction time of 4 h.
     The antimicrobial activity of catfish bone hydrolysate was evaluated. The results showed that the hydrolysate could inhibit the growth of E. coli、B. subtilis and M. luteus. Antimicrobial properties of the hydrolysate were stable under temperature, storage and ultraviolet radiation treatment. However, with the increase of the pH and time of freeze-thaw, the antimicrobial properties reduced quickly, although NaCl could increase the antimicrobial property greatly.
     Determination of growth curve and membrane permeability, together with application of SDS-PAGE and electron microscopy were used to investigate the antimicrobial mechanism of bone hydrolysate. The results of growth curve indicated that the hydrolysate could inhibit the logarithmic growth of E. coli. The conductivity of E. coli treated with hydrolysate increased with time while conductivity of the control group hardly changed. OD260 value of the E. coli treated with hydrolysate increased significantly with time while for the control group it was stable. Glucose levels of the E. coli treated with hydrolysate increased significantly whereas the control had a descending trend. Bacterial protein was analyzed by SDS-PAGE. Obviously, the band of E. coli treated with hydrolysate turned lighter or even disappeared while in the control it was stable. All these results indicated that the hydrolysate changed the bacterial membrane permeability. It made the cells leaky. After being treated with hydrolysate, E. coli was observed by transmission electron microscope. When the bacteria were treated for 0.5 h, some bacteria were found to shrink a bit, and their cytoplasm reduced, cell membrane damaged and nucleus blurred. In contrast, after being treated for 6 h, the bacteria shrank completely, cytoplasm reduced further, some bacteria even lost all of their cytoplasm, cell membrane disappeared or only a shell remained. All these evidence indicated that the inhibitory mechanism of the hydrolysate could be summarized as follows. First, the hydrolysate contacted the surface containing a lot of negatively-charged groups, then caused damages to cell membrane, resulting in the leak of the material in the cell.
     At last the hydrolysate was applied to sausage and yogurt production. For catfish sausage, the adding amount of 1.5% was the best for its preservation while adding 0.15% of hydrolysate facilitated the yogurt production. The data suggested that catfish bone hydrolysate could be applied in food processing.
引文
[1]Ferraris CJ JR. Checklist of catfishes, recent and fossil (Osteichthyes:Siluriformes), and catalogue of siluriform primary types. Zootaxa.2007,1418:1-628.
    [2]Teugels GG. Taxonomy, phylogeny and biogeography of catfishes (Ostariophysi, siluroidei):An overview. Aquatic Living Resources.1996,9:9-34.
    [3]Bruton MN. Alternative life-history strategies of catfishes. Aquatic Living Resources. 1996,9:35-41.
    [4]罗相忠,邹桂伟,潘光碧,梁宏伟.大口鲶人工繁殖与苗种培育技术要点.淡水渔业.2006,36(1):54-56.
    [5]Wellborn TL. Channel catfish: Life history and biology. SRAC publication (USA).1988.
    [6]Silva JL. Processed catfish:Product forms, packaging, yields and product mix. SRAC publication (USA).2001.
    [7]Ma X, Bangxi X, Yindong W, Mingxue W. Intentionally introduced and transferred fishes in China's inland waters. Asian Fisheries Science.2003,16 (3):279-290.
    [8]Huang X, Wang K, Du Z, Geng Y, Deng Y. Identification, isolation and in vitro antimicrobial susceptibility testing of Aeromonas veronii associated with an acute death of Channel Catfish (Ictalurus lunetas) in China. African Journal of Biotechnology.2010, 9(14):2161-2164.
    [9]Brambilla I, Porto G, Tarozzi A. Adjusting to trade policy:Evidence from U.S. antidumping duties on Vietnamese catfish. National Bureau of Economic Research Cambridge, Mass., USA; 2008.
    [10]倪啸.革胡子鲶人工繁殖和养殖的试验.水产科学.1986,5(3):4-7.
    [11]Zheng W, Pan J, Liu W. Culture of catfish in China. Aquaculture.1988,75:35-44.
    [12]周润健.新技术使鲶鱼产量提高近40倍.中国食品质量报2006-5-23(4).
    [13]Silva JL, Ammerman GR, Dean S. Processing channel catfish. SRAC publication (USA). 2001.
    [14]Raksakulthai N, Chantikul S, Chaiyawat M. Production and storage of Chinese style fish sausage from hybrid clarias catfish. Kasetsart Journal:Natural Sciences.2004, 38:102-110.
    [15]Nortvedt R. The opportunities in the catfish surplus market in Vietnam. Fiskeriforskning; 2007.
    [16]Yang H, Wang Y, Jiang M, Oh J, Herring J, Zhou P.2-step optimization of the extraction and subsequent physical properties of channel catfish(ictalurus punctatus) skin gelatin. Journal of Food Science.2007,72 (4):C188-C195.
    [17]See S, Hong P, Ng K, Wan Aida W, Babji A. Physicochemical properties of gelatins extracted from skins of different freshwater fish species. International Food Research Journal.2010,17:809-816.
    [18]Yin H, Pu J, Wan Y, Xiang B, Bechtel PJ, Sathivel S. Rheological and functional properties of catfish skin protein hydrolysates. Journal of Food Science.2010,75 (1):E11-E17.
    [19]Eun JB, Chung HJ, Hearnsberger J. Chemical composition and microflora of channel catfish(Ictalurus punctatus) roe and swim bladder. Journal of Agricultural and Food Chemistry.1994,42 (3):714-717.
    [20]Sathivel S, Yin H, Bechtel PJ, King JM. Physical and nutritional properties of catfish roe spray dried protein powder and its application in an emulsion system. Journal of Food Engineering.2009,95:76-81.
    [21]Hoke M, Jahncke M, Silva J, Hearnsberger J, Chamul R, Suriyaphan O. Stability of washed frozen mince from channel catfish frames. Journal of Food Science.2000,65 (6):1083-1086.
    [22]Sathivel S, Prinyawiwatkul W, Grimm CC, King JM, Lloyd S. FA composition of crude oil recovered from catfish viscera. Journal of the American Oil Chemists' Society.2002, 79(10):989-992.
    [23]Liu HY, Li D, Guo SD. Studies on collagen from the skin of channel catfish(Ictalurus punctaus). Food Chemistry.2007,101 (2):621-625.
    [24]Liu H, Han J, Guo S. Characteristics of the gelatin extracted from channel catfish (Ictalurus punctatus) head bones. LWT-Food Science and Technology.2009,42 (2):540-544.
    [25]Cameron JN. The bone compartment in a teleost fish, Ictalurus punctatus:Size, composition and acid-base response to hypercapnia. Journal of Experimental Biology. 1985,117:307-318.
    [26]Kranenbarg S, Van Cleynenbreugel T, Schipper H, Van Leeuwen J. Adaptive bone formation in acellular vertebrae of sea bass(Dicentrarchus labrax L.). Journal of Experimental Biology.2005,208 (18):3493-3502.
    [27]Weiss R, Watabe N. Studies on the biology of fish bone. Ⅲ. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcified Tissue International.1979,28:43-56.
    [28]Toppe J, Albrektsen S, Hope B, Aksnes A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology.2007,146 (3):395-401.
    [29]Glowacki J, Cox K, O'sullivan J, Wilkie D, Deftos L. Osteoclasts can be induced in fish having an acellular bony skeleton. Proceedings of the National Academy of Sciences. 1986,83(11):4104-4107.
    [30]Horton JM, Summers AP. The material properties of acellular bone in a teleost fish. Journal of Experimental Biology.2009,212 (9):1413-1420.
    [31]Nordvik K, Kryvi H, Totland GK, Grotmol S. The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. Journal of Anatomy.2005,206 (2):103-114.
    [32]Skierka E, Sadowska M, Karwowska A. Optimization of condition for demineralization Baltic cod (Gadus morhua) backbone. Food Chemistry.2007,105:215-218.
    [33]王镜岩,朱圣庚,徐长法.生物化学.上册.北京:高等教育出版社,2002.
    [34]Beniash E. Biominerals—hierarchical nanocomposites:the example of bone. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology.2011,3:47-69.
    [35]Hay ED. Extracellular matrix. The Journal of Cell Biology.1981,91 (3):205s-223s.
    [36]Kimura S, Miyauchi Y, Uchida N. Scale and bone type Ⅰ collagens of carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part B:Comparative Biochemistry. 1991,99(2):473-476.
    [37]Weiner S, Traub W. Bone structure:From angstroms to microns. The FASEB Journal. 1992,6 (3):879-885.
    [38]Ou-Yang H, Paschalis E, Mayo W, Boskey A, Mendelsohn R. Infrared microscopic imaging of bone:Spatial distribution of CO32-. Journal of Bone and Mineral Research. 2001,16(5):893-900.
    [39]Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Materials Science and Engineering:C.2005,25 (2):131-143.
    [40]Kim HM. The packing nature of apatite in calcified collagen fibrils of fish bone. Journal of Oral Biology.1993,17(1):65-70.
    [41]Burger C, Zhou H, Wang H, Sics I, Hsiao BS, Chu B, et al. Lateral packing of mineral crystals in bone collagen fibrils. Biophysical Journal.2008,95 (4):1985-1992.
    [42]Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials.2005,4 (8):612-616.
    [43]Malde MK, Bugel S, Kristensen M, Malde K, Graff IE, Pedersen JI. Calcium from salmon and cod bone is well absorbed in young healthy men:A double-blinded randomised crossover design. Nutrition & Metabolism.2010,7:61-69.
    [44]Larsen T, Thilsted SH, Kongsbak K, Hansen M. Whole small fish as a rich calcium source. British Journal of Nutrition.2000,83:191-196.
    [45]徐铮奎.开发新型补钙保健食品原料市场前景广阔.中国医药情报.2003,9(6):37-39.
    [46]夏宇.鱼体不可食部分—鱼头和骨刺的加工利用.南京农业大学学报.1995,18(2):103-107.
    [47]张菳,朱志伟,曾庆孝.鱼骨利用的研究现状.食品研究与开发.2007,28(9):182-185.
    [48]Kim SK, Mendis E. Bioactive compounds from marine processing byproducts-a review. Food Research International.2006,39 (4):383-393.
    [49]Ozawa M, Suzuki S. Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. Journal of the American Ceramic Society. 2002,85 (5):1315-1317.
    [50]Ozawa M, Kanahara S. Removal of aqueous lead by fish-bone waste hydroxyapatite powder. Journal of Materials Science.2005,40 (4):1037-1038.
    [51]Herpandi, Huda N, Adzitey F. Fish bone and scale as a potential source of halal gelatin. Journal of Fisheries and Aquatic Science.2011,6 (4):379-389.
    [52]Gildberg A, Arnesen JA, Carlehog M. Utilisation of cod backbone by biochemical fractionation. Process Biochemistry.2002,38 (4):475-480.
    [53]Zelechowska E, Sadowska M, Turk M. Isolation and some properties of collagen from the backbone of baltic cod (Gadus morhua). Food Hydrocolloids.2010,24 (4):325-329.
    [54]Lee YS, Noguchi T, Naito H. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. British Journal of Nutrition.1980,43:457-467.
    [55]Jung WK, Kim SK. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. European Food Research and Technology.2007,224 (6):763-767.
    [56]Jung WK, Karawita R, Heo SJ, Lee BJ, Kim SK, Jeon YJ. Recovery of a novel ca-binding peptide from alaska pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochemistry.2006,41 (9):2097-2100.
    [57]Safari R, Motamedzadegan A, Ovissipour M, Regenstein JM, Gildberg A, Rasco B. Use of hydrolysates from yellowfin tuna(Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology.2009, DOI 10.1007/s11947-009-0225-8.
    [58]Maccari F, Ferrarini F, Volpi N. Structural characterization of chondroitin sulfate from sturgeon bone. Carbohydrate Research.2010,345 (11):1575-1580.
    [59]李勇.生物活性肽研究现况和进展.食品与发酵工业.2007,33(1):3-9.
    [60]Gomez-Guillen M, Gimenez B, Lopez-Caballero M, Montero M. Functional and bioactive properties of collagen and gelatin from alternative sources:A review. Food Hydrocolloids.2011,25:1813-1827.
    [61]Hartmann R, Meisel H. Food-derived peptides with biological activity:From research to food applications. Current Opinion in Biotechnology.2007,18 (2):163-169.
    [62]Korhonen H, Pihlanto A. Bioactive peptides:Production and functionality. International Dairy Journal.2006,16 (9):945-960.
    [63]Bauchart C, Morzel M, Chambon C, Mirand PP, Reynes C, Buffiere C, et al. Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs. British Journal of Nutrition.2007,98 (6):1187-1195.
    [64]Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D, Hernandez-Escalante VM. Bioavailability of bioactive peptides. Food Reviews International.2011,27 (3):213-226.
    [65]Sarmadi BH, Ismail A. Antioxidative peptides from food proteins:A review. Peptides. 2010,31 (10):1949-1956.
    [66]Batista I. Recovery of proteins from fish waste products by alkaline extraction. European Food Research and Technology.1999,210 (2):84-89.
    [67]Sanmartin E, Arboleya JC, Villamiel M, Moreno FJ. Recent advances in the recovery and improvement of functional proteins from fish processing by-products:Use of protein glycation as an alternative method. Comprehensive Reviews in Food Science and Food Safety.2009,8 (4):332-344.
    [68]Rustad T, Storro I, Slizyte R. Possibilities for the utilisation of marine byproduct-s. International Journal of Food Science & Technology.2011, DOI 10.1111/j.1365-2621.2011.02736.x.
    [69]Clemente A. Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology.2000,11 (7):254-262.
    [70]Jung S, Roussel-Philippe C, Briggs J, Murphy P, Johnson L. Limited hydrolysis of soy proteins with endo-and exoproteases. Journal of the American Oil Chemists' Society. 2004,81 (10):953-960.
    [71]Lovati MR, Manzoni C, Gianazza E, Arnoldi A, Kurowska E, Carroll KK, et al. Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. The Journal of Nutrition.2000,130 (10):2543-2549.
    [72]Gibbs BF, Zougman A, Masse R, Mulligan C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International.2004,37 (2):123-131.
    [73]Bueno-Solano C, Lopez-Cervantes J, Campas-Baypoli O, Lauterio-Garcia R, Adan-Bante N, Sanchez-Machado D. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chemistry.2009,112 (3):671-675.
    [74]Zhao Y, Li B, Liu Z, Dong S, Zhao X, Zeng M. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochemistry.2007,42 (12):1586-1591.
    [75]Haque ZU, Mozaffar Z. Casein hydrolysate. Ⅱ. Functional properties of peptides. Food Hydrocolloids.1992,5 (6):559-571.
    [76]Kanekanian A, Gallagher J, Evans EP. Casein hydrolysis and peptide mapping. International Journal of Dairy Technology.2000,53 (1):1-5.
    [77]Tello PG, Camacho F, Jurado E, Paez M, Guadix EM. Enzymatic hydrolysis of whey proteins. Ⅱ. Molecular-weight range. Biotechnology and Bioengineering.1994,44 (4):529-532.
    [78]De Souza MWS, Biasutti EAR, Carreira RL, Afonso W, Silva VDM, Silvestre MPC. Obtaining oligopeptides from whey:Use of subtilisin and pancreatin. American Journal of Food Technology.2008,3 (5):315-324.
    [79]Aspmo SI, Horn SJ, H. Eijsink VG. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry.2005,40 (5):1957-1966.
    [80]Wang JS, Zhao MM, Zhao QZ, Jiang YM. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chemistry.2007,101 (4):1658-1663.
    [81]Zhao Y, Li B, Dong S, Liu Z, Zhao X, Wang J, et al. A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides.2009,30 (6):1028-1033.
    [82]Udenigwe CC, Lin YS, Hou WC, Aluko RE. Kinetics of the inhibition of renin and angiotensin Ⅰ-converting enzyme by flaxseed protein hydrolysate fractions. Journal of Functional Foods.2009,1 (2):199-207.
    [83]Escudero E, Sentandreu MA, Arihara K, Toldra F. Angiotensin Ⅰ-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat. Journal of Agricultural and Food Chemistry.2010,58 (5):2895-2901.
    [84]Morato AF, Carreira RL, Junqueira RG, Silvestre MPC. Optimization of casein hydrolysis for obtaining high contents of small peptides:Use of subtilisin and trypsin. Journal of Food Composition and Analysis.2000,13 (5):843-857.
    [85]Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H. Antioxidant activities of the rice endosperm protein hydrolysate:Identification of the active peptide. European Food Research and Technology.2009,229 (4):709-719.
    [86]Sathivel S, Bechtel P, Babbitt J, Smiley S, Crapo C, Reppond K, et al. Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science.2003,68 (7):2196-2200.
    [87]Arihara K, Nakashima Y, Mukai T, Ishikawa S, Itoh M. Peptide inhibitors for angiotensin Ⅰ-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Science.2001,57 (3):319-324.
    [88]Vandanjon L, Johannsson R, Derouiniot M, Bourseau P, Jaouen P. Concentration and purification of blue whiting peptide hydrolysates by membrane processes. Journal of Food Engineering.2007,83 (4):581-589.
    [89]Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, et al. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chemistry.2008,111 (2):302-308.
    [90]Qian Z-J, Jung W-K, Kim S-K. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology.2008,99 (6):1690-1698.
    [91]Guang C, Phillips RD. Purification, activity and sequence of angiotensin Ⅰ converting enzyme inhibitory peptide from alcalase hydrolysate of peanut flour. Journal of Agricultural and Food Chemistry.2009,57 (21):10102-10106.
    [92]Boye JI, Roufik S, Pesta N, Barbana C. Angiotensin Ⅰ-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Science and Technology.2010,43 (6):987-991.
    [93]Soccol MCH, Oetterer M. Seafood as functional food. Brazilian Archives of Biology and Technology.2003,46 (3):443-454.
    [94]Nazeer R, Deeptha R, Jaiganesh R, Sampathkumar N, Naqash SY. Radical scavenging activity of seela (Sphyraena barracuda) and ribbon fish (Lepturacanthus savala) backbone protein hydrolysates. International Journal of Peptide Research and Therapeutics.2011,17:209-216.
    [95]Theodore AE, Raghavan S, Kristinsson HG. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. Journal of Agricultural and Food Chemistry.2008,56 (16):7459-7466.
    [96]Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proceedings of the National Academy of Sciences.1988,85 (9):3175-3179.
    [97]Storey KB. Oxidative stress:Animal adaptations in nature. Brazilian Journal of Medical and Biological Research.1996,29:1715-1733.
    [98]Jun SY, Park PJ, Jung WK, Kim SK. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology.2004,219:20-26.
    [99]Naqash SY, Nazeer R. Evaluation of bioactive properties of peptide isolated from Exocoetus volitans backbone. International Journal of Food Science & Technology.2011, 46:37-43.
    [100]Naqash SY, Nazeer RA. Antioxidant activity of hydrolysates and peptide fractions of Nemipterus japonicus and Exocoetus volitans muscle. Journal of Aquatic Food Product Technology.2010,19:180-192.
    [101]Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry. 2007,102 (4):1317-1327.
    [102]刘立闯,胡志和,贾嘉.利用海洋生物蛋白制备ACE抑制肽的研究进展.食品科学2007,28(10):585-589.
    [103]Wilson J, Hayes M, Carney B. Angiotensin- Ⅰ-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products. Food Chemistry.2011,129:235-244.
    [104]Geirsdottir M, Sigurgisladottir S, Hamaguchi PY, Thorkelsson G, Johannsson R, Kristinsson HG, et al. Enzymatic hydrolysis of blue whiting(Micromesistius poutassou); functional and bioactive properties. Journal of food science.2011,76 (1):C14-C20.
    [105]Byun H-G, Kim S-K. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry.2001,36 (12):1155-1162.
    [106]Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science.1999, 284(5421):1835-1837.
    [107]Dinarello CA. Biology of interleukin 1. The FASEB Journal.1988,2 (2):108-115.
    [108]Yang R, Zhang Z, Pei X, Han X, Wang J, Wang L, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chemistry.2009,113 (2):464-470.
    [109]Gildberg A, Bogwald J, Johansen A, Stenberg E. Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on Atlantic salmon (Salmo salar) head kidney leucocytes. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology.1996,114 (1):97-101.
    [110]孙超,王晖,孙波,彭学贤.多肽抗生素研究进展.中国药理学通报.2000,16(6):605-609.
    [111]Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides:Premises and promises. International Journal of Antimicrobial Agents.2004,24:536-547.
    [112]Hancock REW. Cationic peptides:Effectors in innate immunity and novel antimicrobials. The Lancet Infectious Diseases.2001,1:156-164.
    [113]Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP:A useful resource for research on antimicrobial peptides. Nucleic Acids Research.2010, 38:D774-D780.
    [114]Bulet P, St cklin R, Menin L. Anti-microbial peptides:From invertebrates to vertebrates. Immunological Reviews.2004,198:169-184.
    [115]梁永利.天然抗菌肽的来源及分类.安徽农业科学.2006,34(18):4728-4734.
    [116]De Arauz LJ, Jozala AF, Mazzola PG, Vessoni Penna TC. Nisin biotechnological production and application:A review. Trends in Food Science & Technology.2009, 20:146-154.
    [117]Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother.1999, 43 (6):1317-1323.
    [118]Tossi A, Sandri L, Giangaspero A. Amphipathic, a-helical antimicrobial peptides. Peptide Science.2000,55:4-30.
    [119]Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs.2010,8 (4):1213-1262.
    [120]Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochemistry and Cell Biology.1998,76:235-246.
    [121]Hancock REW, Lehrer R. Cationic peptides:A new source of antibiotics. Trends in Biotechnology.1998,16 (2):82-88.
    [122]Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews.2003,55:27-55.
    [123]Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by a-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta.1999,1462:55-70.
    [124]Huang HW. Action of antimicrobial peptides:Two-state model. Biochemistry.2000,39 (29):8347-8352.
    [125]Brogden KA. Antimicrobial peptides:Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology.2005,3:238-250.
    [126]Carlsson A, Engstrom P, Palva ET, Bennich H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infection and immunity.1991,59 (9):3040-3045.
    [127]Ando K, Natori S. Inhibitory effect of sarcotoxin ⅡA, an antibacterial protein of Sarcophaga peregrina, on growth of Escherichia coli. Journal of Biochemistry.1988,103 (4):735-739.
    [128]Rajanbabu V, Chen J-Y. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides.2011,32 (2):415-420.
    [129]Rieger AM, Barreda DR. Antimicrobial mechanisms of fish leukocytes. Developmental & Comparative Immunology.2011, DOI 10.1016/j.dci.2011.03.009.
    [130]Douglas SE, Gallant JW, Liebscher RS, Dacanay A, Tsoi SCM. Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Developmental & Comparative Immunology.2003,27:589-601.
    [131]Shike H, Lauth X, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. European Journal of Biochemistry.2002,269 (8):2232-2237.
    [132]Su Y. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology.2011,158 (2):149-154.
    [133]Agyei D, Apostolopoulos V, Danquah MK. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology.2011, DOI 10.1016/j.tifs.2011.08.010.
    [134]Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology.2011,29 (9):464-472.
    [135]Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K. Twenty-five years of research on bovine lactoferrin applications. Biochimie.2009,91 (1):52-57.
    [136]无锡轻工大学,天津轻工业学院合编.食品分析.北京:中国轻工业出版社,1983.
    [137]GB/T 5009.92-2003,食品中钙的测定.
    [138]GB/T 5009.87-2003,食品中磷的测定.
    [139]Kim JS, Park J. Characterization of acid-soluble collagen from Pacific whiting surimi processing byproducts. Journal of Food Science.2004,69 (8):C637-C642.
    [140]闻辂,梁婉雪,章正刚,黄进初.矿物红外光谱学:重庆大学出版社,1988.
    [141]刘丽莉.牛骨降解菌的筛选及其发酵制备胶原多肽螯合钙的研究.华中农业大学博士论文,2010.
    [142]Currey JD. Bones:Structure and mechanics. Princeton University Press,2002.
    [143]Chen PY, Toroian D, Price PA, McKittrick J. Minerals form a continuum phase in mature cancellous bone. Calcified Tissue International.2011,88:351-361.
    [144]Herpandi NH, Rosma A, Wan Nadiah W. The tuna fishing industry:A new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety. 2011,10 (4):195-207.
    [145]Kurozawa L, Park K, Hubinger M. Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science.2008,73 (5):C405-C412.
    [146]Guo Y, Pan D, Tanokura M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chemistry.2009,114 (1):328-333.
    [147]Guerard F, Sumaya-Martinez MT, Laroque D, Chabeaud A, Dufosse L. Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochemistry.2007,42 (11):1486-1491.
    [148]Je JY, Qian ZJ, Byun HG, Kim SK. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry.2007,42 (5):840-846.
    [149]Li GH, Mine Y, Hincke MT, Nys Y. Isolation and characterization of antimicrobial proteins and peptide from chicken liver. Journal of Peptide Science.2007,13 (6):368-378.
    [150]Ahmad A, Derek C, Zulkali M. Optimization of thaumatin extraction by aqueous two-phase system (ATPS) using response surface methodology (RSM). Separation and Purification Technology.2008,62 (3):702-708.
    [151]Balti R, Nedjar-Arroume N, Bougatef A, Guillochon D, Nasri M. Three novel angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Research International.2010,43 (4):1136-1143.
    [152]Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. Journal of Dairy Science.1991,74(12):4137-4142.
    [153]Design-Ease. Design-ease 7 manual with tutorials. Available from: http://www.statease.com/ Stat-ease, Inc, Minneapolis, MN.2006.
    [154]Guerard F, Sumaya-Martinez MT, Laroque D, Chabeaud A, Dufose L. Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochemistry.2007,42 (11):1486-1491.
    [155]Bhaskar N, Benila T, Radha C, Lalitha R. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla(Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource technology.2008,99:335-343.
    [156]Dubois V, Nedjar-Arroume N, Guillochon D. Influence of pH on the appearance of active peptides in the course of peptic hydrolysis of bovine haemoglobin. Preparative Biochemistry & Biotechnology.2005,35 (2):85-102.
    [157]Carreira RL, De Marco LM, Dias DR, Morais HA, Silvestre MPC. Analysis of peptide profiles of casein hydrolysates prepared with pepsin, trypsin and subtilisin. Acta Farmacutica Bonaerense.2004,23 (1):17-26.
    [158]Song R, Wei R, Zhang B, Wang D. Optimization of the antibacterial activity of half-fin anchovy(Setipinna taty) hydrolysates. Food and Bioprocess Technology.2011, DOI 10.1007/s11947-010-0505-3.
    [159]Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects;structure and function. Developmental & Comparative Immunology.1999,23:329-344.
    [160]Galvez A, Abriouel H, Lopez RL, Omar NB. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology.2007,120:51-70.
    [161]Wimley WC, Hristova K. Antimicrobial peptides:Successes, challenges and unanswered questions. Journal of Membrane Biology.2011,239:27-34.
    [162]Jeon YJ, Byun HG, Kim SK. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry.1999,35 (5):471-478.
    [163]Tao Y, Qian LH, Xie J. Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus. Carbohydrate Polymers.2011,86:969-974.
    [164]Tang YL, Shi YH, Zhao W, Hao G, Le GW. Discovery of a novel antimicrobial peptide using membrane binding-based approach. Food Control.2009,20 (2):149-156.
    [165]Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials.2002,23 (16):3359-3368.
    [166]钱丽红,陶妍,谢晶.茶多酚对金黄色葡萄球菌和铜绿假单胞菌的抑菌机理.微生物学通报.2010,37(11):1628-1633.
    [167]刘安军,李海燕,王云霞,邓颖.核桃种皮多糖抑制大肠杆菌的研究.现代食品科技.2011,27(1):29-31.
    [168]王盼盼.肉制品加工中使用的辅料——防腐剂.肉类研究.2011,25(4):33-40.
    [169]GB/T 5009.44-2003,肉与肉制品卫生标准的分析方法.
    [170]GB 4789.2-2010,食品安全国家标准食品微生物学检验菌落总数测定.
    [171]Andres SC, Garcia ME, Zaritzky NE, Califano AN. Storage stability of low-fat chicken sausages. Journal of Food Engineering.2006,72 (4):311-319.
    [172]GB 4789.35-2010,食品微生物学检验乳酸菌检验.
    [173]Angioloni A, Collar C. Small and large deformation viscoelastic behaviour of selected fibre blends with gelling properties. Food Hydrocolloids.2009,23 (3):742-748.
    [174]Aichinger PA, Michel M, Servais C, Dillmann ML, Rouvet M, D'Amico N, et al. Fermentation of a skim milk concentrate with Streptococcus thermophilus and chymosin: Structure, viscoelasticity and syneresis of gels. Colloids and Surfaces B:Biointerfaces. 2003,31:243-255.
    [175]Tamime AY, Robinson RK. Yoghurt:Science and technology. England:Woodhead Publishing Ltd,1999.
    [176]Liu D-C, Tsau R-T, Lin Y-C, Jan S-S, Tan F-J. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chemistry.2009,117 (1):106-113.
    [177]De Brabandere AG, De Baerdemaeker JG. Effects of process conditions on the pH development during yogurt fermentation. Journal of Food Engineering.1999, 41:221-227.
    [178]Dave RI, Shah NP. Ingredient supplementation effects on viability of probiotic bacteria in yogurt. Journal of Dairy Science.1998,81 (11):2804-2816.
    [179]Hemantha Kumar H, Monteiro PV, Bhat GS, Ramachandra Rao H. Effects of enzymatic modification of milk proteins on flavour and textural qualities of set yoghurt. Journal of the Science of Food and Agriculture.2001,81:42-45.
    [180]Sodini I, Lucas A, Tissier J, Corrieu G. Physical properties and microstructure of yoghurts supplemented with milk protein hydrolysates. International Dairy Journal.2005, 15:29-35.
    [181]Beal C, Skokanova J, Latrille E, Martin N, Corrieu G. Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt. Journal of Dairy Science.1999,82 (4):673-681.
    [182]Lucas A, Sodini I, Monnet C, Jolivet P, Corrieu G. Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. International Dairy Journal.2004,14:47-53.
    [183]Salvador A, Fiszman SM. Textural and sensory characteristics of whole and skimmed flavored set-type yogurt during long storage. Journal of Dairy Science.2004,87 (12):4033-4041.
    [184]Atasoy AF. The effects of carob juice concentrates on the properties of yoghurt. International Journal of Dairy Technology.2009,62 (2):228-233.
    [185]Sert D, Akin N, Dertli E. Effects of sunflower honey on the physicochemical, microbiological and sensory characteristics in set type yoghurt during refrigerated storage. International Journal of Dairy Technology.2011,64(1):99-107.
    [186]Garcia-Perez FJ, Lario Y, Fernandez-Lopez J, Sayas E, Perez-Alvarez JA, Sendra E. Effect of orange fiber addition on yogurt color during fermentation and cold storage. Color Research & Application.2005,30 (6):457-463.
    [187]Lee YH, Marshall RT. Strength of rennet curd made from milk and chemically modified soy proteins. Journal of Dairy Science.1984,67 (2):263-269.
    [188]Roesch R, Juneja M, Monagle C, Corredig M. Aggregation of soy/milk mixes during acidification. Food Research International.2004,37 (3):209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700