用户名: 密码: 验证码:
饶阳凹陷留西—河间地区古近系储层沉积学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以层序地层学、沉积学、储层地质学理论为指导,从地层划分对比入手,将研究区古近系划分为10个三级层序,并进一步细分为27个体系域。根据岩心、钻井、测井、地震资料的综合分析认为,研究区古近系主要发育河流、辫状河三角洲、湖泊、冲积扇和扇三角洲等5种沉积相,并进一步划分出15种亚相和近50种微相类型,其中辫状河道、水下分流河道、河口坝、席状砂、河道充填、心滩、河漫滩和滩坝是本区主要的微相类型,并详细总结出各种亚相和微相在岩石类型、颜色、结构、沉积构造、韵律性、测井曲线响应和地震相中的识别标志。系统研究了不同三级层序和体系域下沉积相和砂体的平面展布特征,认为本区古近系储层的砂体类型主要为辫状河三角洲相的三角洲前缘砂体、河流相中的河道砂体、浅湖亚相中的滩坝砂体。
     依据大量岩石薄片、铸体薄片和扫描电镜分析,系统研究了不同成因类型储集砂体的岩石学特征、物性特征以及储层的孔隙类型,认为本区砂岩储层的成分成熟度与结构成熟度中等偏低;储层在沙河街组以低孔低渗为主,中孔低渗和低孔特低渗次之,东营组大多为中高孔中高渗储层,少数为低孔低渗储层;研究区砂岩储层孔隙类型分为原生粒间孔、残留粒间孔和由溶蚀作用形成的粒间溶孔、粒内溶孔、铸模孔、自生矿物晶间微孔及微裂缝等。本区储层主要受构造、沉积和成岩作用影响。构造在宏观上控制着沉积体系的发育,进而控制砂体的分布,不同构造部位发育不同成因类型的砂体。相同的埋深条件下,沉积相带基本控制着储层物性的好坏,优质储层多分布于河流相中的河道砂体和心滩砂体、辫状河三角洲相的分流河道砂体和河口坝砂体。压实作用对储层物性的影响表现在埋深小于4000m范围内,每增加100m,孔隙度平均降低0.75%。胶结作用在埋深2500~3500m范围内,对储层物性起较强的破坏作用。溶解作用是改善埋深在2800~4000m的深部储层储集性能的主要因素。
In this paper, directed by sequence stratigraphy, sedimentology and reservoir geology, starting with stratigraphic classification and correlation, Paleogene is divided into 10 third grade sequences with 21 system tracts in the research area. By taking full advantage of the core, drilling, logging and seismic data, it is shown that the main sedimentary facies are fluvial facies,braided river deltas, lakes, alluvial fans and fan deltas in Paleogene of this area, and it can be further divided into subdivided into 15 subfacies and nearly 50 microfacies, among them, the main microfacies of the area are braided channel, underwater distributary channel, mouth bar, sheet sand, channel fill, diara, flood-plain and beach bar, and detailedly summarize all kinds of subfacies and microfacies identifier on rock type, colour, texture, sedimentary structures, rhythmicity, logging and seismic. In addition, the paper systematically study the plane distribution of sedimentary facies and sandstones in different 3-order sequences and system tracts, and it is shown that the main reservoir bodies in Paleogene of the area include the sandbodies in the delta front and the river sandbodies of fluvial facies as well as beach-bar sandstone in the shallow lake.
     According to plenty of thin section, casting lamella and scanning electron microscope, petrologic characterishcs, physical properties and the pore types of different genetic type reservoir bodies are systematically studied, and it is shown that reservoir sandstone has medium and somewhat low compositional maturity and medium textural maturity; in Shahejie Formation reservoir primarily belongs to low porosity and low permeability,secondly medium porosity and low permeability or low porosity and extra-low permeability, reservoir primarily belongs to middle-high porosity and middle-high permeability in Dongying Formation, few low porosity and low permeability; pore type in the resevoir of the area includes primary intergranular pores, rudimental intergranular pores and intergranular dissolved pore, intragranular dissolved pore, moldic pore, intercrystalline pore and fracture formed by corrosion. Reservoir is mainly influenced by tectonic, deposition and diagenesis. Tectonics controls the development of depositional systems macroscopically, and then control the distribution of sandstone, different sand body types developed in different tectonic positions. At the same range of depth, the reservoir property are basically controlled by sedimentary facies zones, usually, the favorable reservoir mainly distributed in the channel sandbodies and diaras of the fluvial facies, the sandbodies of distributary channel and river mouth dam of braided river deltas. The influence in squeezingaction shows that porosity decreases 0.75% for each additional 100 meters in the range of 0~4000m. Cementaction have strong damaging effect on reservoir properties in the range of 2500~3500m. Dissolution plays a leading role in improving sandstone reservoir quality of deep reservoirs in the range of 2800~4000m.
引文
[1] Allen G P,Posamentier H W.Sequence stratigraphy and facies model of an incised valley fill:The gironde estuary,France[J].Sedimentary Petrology,1993,63(3):378~391.
    [2]朱筱敏.层序地层学[M].东营:中国石油大学出版社,2006:1~42,119~133.
    [3] Vail P R,Mitehum R M.Seismic Stratigraphy and global changes in sea level[J].AAPG Memoir,1977,(26):10~11.
    [4] Cross T A.High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[A].In:Proceedings of Northwestern European Sequence Stratigraphy Congress[C],1994,105~123.
    [5] Galloway,W.E.Genetic stratigraphic sequences in basin analysis I:Architec-ture and genesis of flooding-surface bounded depositional units[J].American Association of Petroleum Geologists Bulletin,1989,73:125~142.
    [6] Johnson J G,Klapper G,Sandberg C A.Devonian eustatic fluctuations in Euramer-ica[J].Geological Society of America Bulletin,1995:567~587.
    [7] Van Wagoner J C.An overview of the fundamentals of sequence stratigraphy and key definition.In:WilgusCK,ed.Sea-levelchanges:AnIntegratedApprouch.SEPM.Spec.Publ.,1988,42:39~45
    [8]侯明才,陈洪德,田景春.层序地层学的研究进展.矿物岩石,2001,21(3):128~134.
    [9]纪友亮,张世奇.陆相断陷湖盆层序地层学[M]北京:石油工业出版社, 1996
    [10]李思田,林畅松,解习农等.大型陆相盆地层序地层学研究.地学前缘, 1995;2(3-4):133~136
    [11]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学.石油与天然气地质,1995,16(2):89~97.
    [12]冯娟萍.陕北姚店油田北区延长组沉积相及储层微观特征研究(D),2008:3-41.
    [13]谢渊,王剑,刘家铎等.鄂尔多斯盆地东南部延长组湖盆致密砂岩储层层序地层与油气勘探[M].北京:地质出版社,2004:1~42,71~106.
    [14]于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002.
    [15]曾允孚,覃建雄.沉积学发展现状与前瞻.成都理工学院学报(自然科学版),1999,26(l):1~7.
    [16]裘亦楠.储层沉积学研究工程流程.石油勘探与开发,1990,17(1):85~90.
    [17]张永贵,李允,陈明强.储层地质统计随机建模.石油大学学报(自然科学版),1998,22(3):113~119.
    [18]印兴耀,刘永社.储层建模中地质统计学整合地震数据的方法及研究进展.石油地球物理勘探,2002,37(4):423~430.
    [19]郑浚茂,吴仁龙.黄骅坳陷砂岩储层的成岩作用与孔隙分带性.石油与天然气地质,1996,17(4):268~275.
    [20]黄思静,侯中健.地下孔隙率和渗透率在空间和时间上的变化及影响因素.沉积学报,2001,19(2):224~232.
    [21]黄思静,武文慧,刘洁,等大气水在碎屑岩次生孔隙形成中的作用)以鄂尔多斯盆地三叠系延长组为例.中国地质大学学报,2003,28(4):419~424.
    [22]邱隆伟,姜在兴,陈文学等.一种新的储层孔隙成因类型——石英溶解型次生孔隙.沉积学报,2002,20(4):621~627.
    [23]吕晓光,李长山,蔡希源等.松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型.沉积学报,1999,17(4):572~577.
    [24]张文朝,崔周旗,韩春元等.冀中坳陷老第三纪湖盆演化与油气[J].古地理学报,2001,3(1):45~54.
    [25]钱奕忠.层序地层学理论和研究方法.成都:四川科学技术出版社,1994,179~182.
    [26]姜在兴.层序地层学原理及应用.北京:石油工业出版社,1996
    [27]王卫红,姜在兴,操应长.测并曲线在识别陈家庄凸起北部缓坡带层序边界中的应用[J].江汉石油学院学报,2003,25(1):62~64.
    [28]操应长,姜在兴,夏斌,等.利用测井资料识别层序地层界面的几种方法[J].石油大学学报:自然科学版,2003,27(2):23~26.
    [29]纪友亮,杜金虎,赵贤正,等.冀中坳陷饶阳凹陷古近系层序地层学及演化模式[J].古地理学报,2006,8(3):398~406.
    [30]宋万超,刘波,宋新民.层序地层学概念、原理、方法及应用[M].北京:石油工业出版社,2003:35~137.
    [31]李丕龙,等.陆相断陷盆地油气地质与勘探(卷五.陆相断陷盆地层序地层学应用)[M].北京:石油工业出版社,地质出版社,2003:19~151.
    [32]操应长,姜在兴,李春华,等.山东惠民凹陷中央隆起带古近系沙三段层序地层及沉积演化[J].古地理学报,2002,4(3):40~46.
    [33]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [34] Galloway,W.E.and D.K.Hobday. Terrigenous Clastic Depositional Systems.1996, 219~225 (Springer-Verlag Berlin)
    [35]张大智,纪友亮,韩春元,等.饶阳凹陷沙河街组辫状河三角洲沉积特征及储集性[J].中国地质,2009,36(2):344~353.
    [36]袁静.惠民凹陷古近系碎屑岩主要沉积环境粒度概率累积曲线特征[J].石油勘探与开发,2003,30(3):103~106.
    [37] Friedman G M,Sanders J E. Principles of Sedimentology.USA, 1978,199~234.
    [38] Collinson J D Martinsen O Bakken B,et al. Early fill of the Western Irish Namurian Basin: a complex relationship between turbidites and deltas.Basin reserch,1991,3:223~242
    [39]付兆辉,张在振,李德纯,等.渤海湾盆地埕北凹陷古近系沉积体系分析与油气成藏[J].沉积学报,2009,27(1):25~31.
    [40] Galloway,W.E.and D.K.Hobday,1996,Terrigenous Clastic Depositional Systems 219~225 (Springer Verlag Berlin)
    [41]金凤鸣,陆相断陷盆地隐蔽油气藏形成与勘探—以冀中坳陷饶阳凹陷为例(D),2007:65~71.
    [42]朱筱敏等,济阳拗陷古近系碎屑岩储层特征和评价[M].北京:科学出版社,2008:17~49.
    [43]蒋有录,查明.石油天然气地质与勘探[M].北京:石油工业出版社,2006:102~124.
    [44]张莉.惠民凹陷古近系砂岩储层物性控制因素评价[J].吉林大学学报,2007,37(1):106~110
    [45]钟大康.冀中廊固凹陷砂岩储层物性影响因素[J].天然气工业,1993,13(6):27~30.
    [46]蔡春芳,梅博文,马亭,等.塔里木盆地有机酸来源、分布及对成岩作用的影响[J].沉积学报,1997,15(3):103~108.
    [47]顾家裕,宁从前,贾进华.塔里木盆地碎屑岩优质储层特征及成因分析[J].地质论评,1998,44(1):83~89.
    [48]陈永武等.储集层与油气分布[M].北京:石油工业出版社,1995, 56~78.
    [49]罗静兰,郭德运,尹鹏,等.蟠龙探区长2砂岩储层物性的控制因素[J].西北大学学报:自然科学版,2003,33(6):723-728.
    [50]宋广寿,杨技,张治国,等.城华地区延安组储层物性研究[J].西南石油学院学报,2000,22(2):15~17.
    [51]刘长江.渤海湾盆地石炭_二叠纪沉积作用与储层形成[J].天然气工业,2008,28(4): 23~25.
    [52]尹伟,林双运,赵郁文,等.马东地区深部储层物性影响因素分析[J].中国海上油气:地质,2003,17(2):104~107.
    [53]蒋建平,康贤,邓礼正.储层物性参数展布的相控模型[J].成都理工学院学报,1995,22(1):12~17.
    [54]孟卫工.辽河坳陷古近系碎屑岩储层[M].北京:石油工业出版社,2007,24~70.
    [55]康健等.文东深层低渗油藏成岩作用及成岩相模式研究[J].西南石油,2005,14(5):5~15.
    [56]周海燕,胡见义,郑俊章等.南图尔盖盆地储层成岩作用及孔隙演化[J].岩石矿物学杂志,2008,27(6):547~558.
    [57]付国民,李鑫,梁志录等.油层砂岩成岩作用及其对储层性质的影响[J].西安科技大学学报,2007,27(3):377~381.
    [58]朱如凯.四川盆地须家河组沉积体系与有利储集层分布[J].石油勘探与开发,2009,36(1): 47~55.
    [59]徐志强,熊明,饶阳凹陷下第三系碎屑岩储集条件分析[J].沉积学报,1996,14(2):95~101.
    [60]高星,陈洪德,朱平等,苏里格气田西部盒8段储层成岩作用及其演化[J].天然气工业,2009,29(3):17~22.
    [61]党录瑞.川东邻水_渝北地区石炭系有利储集相带预测[J].天然气工业, 2009,29(3): 9~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700