用户名: 密码: 验证码:
利用重组自交系群体对水稻主要性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻的生育期、产量和粒型性状都是典型的数量性状,利用传统的育种方法对其进行改良,效率较低,而分子标记辅助选择(MAS)是一种较为有效的育种途径。要实现MAS在育种中的应用,首先就要获得主效QTL。目前的绝大部分研究只是在单一环境下针对少数几个性状进行相关QTL的检测,缺乏环境稳定性分析和对控制多种性状的重要染色体区间的检测,难以发掘出对环境钝感的QTL和重要染色体区间。本研究利用热研2号(粳稻)和密阳23(籼稻)为亲本构建的含111个株系的F_6和F_7重组自交系群体,在2005与2006年对生育期、株高和9个产量性状、2006年对精米的4个粒型性状进行了QTL定位及遗传参数分析。主要研究结论如下:
     1.对生育期、株高、穗长、一次枝梗数、二次枝梗数、单株穗数、每穗颖花数、每穗实粒数、结实率、千粒重和单株产量等11个性状进行QTL分析的结果,共检测到分布于第1、第2、第3、第4、第6、第7、第8和第10条染色体上的38个QTL,其中2005年共检测到22个QTL,2006年共检测到27个QTL,两年共同检测到的QTL共有11个。它们分布于第1、第3、第4、第6、第8和第10条染色体上,分别是qHD8、qPH8、qPH10、qPL6a、qPBN8、qSBN4、qPNP1、qSP4、qSP8a、qFGP8和qGWP8b。其中,qHD8的平均LOD值为7.83,平均贡献率为24.2%;qPH8和qPH10的平均LOD值分别为5.84和3.18,平均贡献率分别为15.92%和12.94%;qPL6a的平均LOD值为3.44,平均贡献率为9.24%;qPBN8的平均LOD值为6.90,平均贡献率为20.83%;qSBN4的平均LOD值为4.79,平均贡献率为14.16%;qPNP1的平均LOD值为5.19,平均贡献率为17.27%;qSP4和qSP8a的平均LOD值分别为3.69和6.46,平均贡献率分别为13.76%和17.91%;qFGP8的平均LOD值为4.36,平均贡献率为13.28%;qGWP8b的平均LOD值为7.17,平均贡献率为22.86%。
     2.2006年对粒长、粒宽、粒厚、长宽比4个性状进行了QTL分析,共检测到分布于5条染色体上的12个QTL。其中第2染色体上控制粒宽的qGW2与控制千粒重的qTGW2位于同一区域,并与控制粒厚的qGT2位于相邻区域。这与相关性分析中粒重与粒宽的相关性最大(0.631),与粒厚的相关性其次(0.487)的结果一致。
     综上所述,本研究共检测到15个控制株高、穗长、产量性状和粒型性状的50个QTL。其中在2年间能够稳定表达的QTL有11个,分别是qHD8、qPH8、qPH10、qPL6a、qPBN8、qSBN4、qPNP1、qSP4、qSP8a、qFGP8和qGWP8b。同时大多数性状之间具有显著的表型相关性,相关性较强的性状之间具有较多共同或紧密连锁的QTL。如第2染色体存在一个既控制粒宽和千粒重又影响粒厚的QTL簇;第4染色体上RM303—RM280区域内检测到了同时控制二次枝梗数的qSBN4、控制每穗颖花数的qSP4、控制每穗实粒数的qFGP4和控制株高的qPH4;第8染色体上则存在一个与产量相关的QTL热点区域(RM5556—RM331),同时存在6个控制两年产量相关性状qGWP8b、qHD8、qPH8、qPBN8、qSP8a和qFGP8)。这些研究结果为水稻的优质高产MAS育种奠定了基础。
Heading date,yield component traits and grain shape related traits have been shown to be quantitatively inherited.Therefore,the use of marker-assisted selection(MAS) may provide a more efficient approach for improving these quality traits than classical breeding alone.The first step of MAS that to be carried out is mapping major loci.However,most of the studies were conducted in a single environment of only a few traits,the stability of the resultant QTL and the important chromosome regions that control different traits could not be evaluated.In this study,a set of 111 recombinant inbred lines(RIL) population derived from a rice cross between Nikken 2 and Milyang 23 through successive selfing for six and seven generations were used to investigate the QTLs of heading date,plant height,nine yield component traits in 2005 and 2006.We also investigate the QTLs of 4 grain shape traits in 2006.The main results were as follows:
     1.We detected eleven traits including heading date,plant height,panicle length, primary branch number,secondary branch number,spikelet numbers per panicle,number of filled grains per panicle,seed setting rate,number of panicles per plant,1000-grain weight and grain yield per plant in both two years.A total of 38 QTLs were identified on chromosome 1,2,3,4,6,7,8 and 10.We detected 22 QTLs in 2005 and 27 QTL in 2006. Of which 11 QTLs were detected in the two years.These QTL were identified on chromosome 1,3,4,6,8 and 10.The stable QTLs were qHD8,qPH8,qPH10,qPL6a, qPBN8,qSBN4,qPNP1,qSP4,qSP8a,qFGP8 and qGWP8b,whose averge PVEs were 24.2%,15.92%,12.94%,9.24%,20.83%,14.16%,17.27%,13.76%,17.91%,13.28%, 22.86%,with average LOD scores of 7.83,5.84,3.18,3.44,6.90,4.79,5.19,3.69,6.46, 4.36,7.17,respectively.
     2.In 2006,we analysis the QTLs of four grain shape traits including grain length,grain width,grain thickness and length/width ratio.A total of twelve QTLs distributed on five chromosomes were detected.QTL mapping showed that on chromosome 2 grain width shared the same chromosome region with 1000-grain weight,which closed to qGT2.This result was consistent with the result of correlation analysis in which grain weight was closely correlated with grain width(0.631),and then with grain thickness(0.487).
     In conclusion,a total of 50 QTLs for fifteen traits including heading date,plant height, yield component traits and grain shape traits.Of which qHD8,qPH8,qPH10,qPL6a, qPBN8,qSBN4,qPNP1,qSP4,qSP8a,qFGP8 and qGWP8b were detected in two years. Some QTLs controlling different traits shared the same marker interval in the chromosome with each other,which is consistent with their significant phenotypic correlations.A QTL cluster for grain width,1000-grain weight and grain thickness was located on chromosome 2.We also found a QTL cluster on chromosome 4(RM303-RM280),which including 4 QTL--qPH4,qSBN4,qFGP4 and qSP4.The most important chromosome region we found in this research is the QTL cluster on chromosome 8(RM5556-RM331) which concluding qGWP8b,qHD8,qPH8,qPBN8,qSP8a and qFGP8.These results will provide useful information for elite rice breeding by MAS.
引文
Ahn S N, Bollich C N, McClung A M, Tanksley S D. RPLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theor Appl Genet, 1993, 87:27-32
    Alam S N, Cohen M B. Detection and analysis of QTLs for resistance to the brown planthopper. Nilaparvata lugens, in a doubled-haploid rice population. Theor Appl Genet, 1998, 97:1370-1379
    Ashikari M, Sakakibara H, Lin S Y, et al. Cytokinin oxidase regulates rice grain production. Science, 2005, 309 (5735): 741-745.
    
    Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphism. Am J Hum Genet, 1980, 32:314-331.
    Champoux M C, Wang G, Sarkarung S, et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to RFLP markers. Theor Appl Genet, 1995, 90: 969-981
    Chu Z H, Fu B Y, Xu C G, et al. Targeting xal3, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2005, 112:455-461
    Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genet, 1994, 138(3): 963-971
    Doi K, Izawa T, Fuse T, Yamanouchi U, et al. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-liks gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936
    Fan C C, Xing Y Z, Mao H L, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
    
    Guangming He, Xiaojin Luo, Feng Tian, Kegui Li, Zuofeng Zhu, Wei Su, Xiaoyin Qian, Yongcai Fu, Xiangkun Wang, Chuanqing Sun and Jinshui Yang. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research, 2006, 16: 618-626.
    Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F_2 population. Genet, 1998, 148:1-16.
    He P, Li S G, Qian Q, et al. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502-508.
    Ishimaru K, Yano M, Aoki N, et al. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparsion between QTLs and expressed sequence tags. Theor Appl Genet, 2001,102: 793-800
    Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering down stream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105
    Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genet, 1989, 121:185-199
    
    Li C B, A Zhou, T Sang. Rice domestication by reducing shattering. Science, 2006, 311: 1936—1939
    Li Z, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading time and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91:374-381
    Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci( QTLs ) for heading date and plant height in cultivated rice(Oryza sativa L.). Theor Appl Genet, 1995, 91: 374-381.
    Lian X M, Xing Y Z, Yan H, et al. QTLs for low nitrogen tolerance at seedling stage identified using arecombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005, 112:85-96
    Lin H X, Zhu M Z, Yano M, et al. QTL for Na~+ and K~+ updateof the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108:253-260
    Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza Sativa L., using backcross inbred lines. Theor Appl Genet, 1998,96: 997-1003.
    Maheswaran M, Huang N, Sreerangasamy S R, McCouch S R. Mapping quantitative trait loci associatedwith days to flowering and photoperiod sensitivity in rice (Oryza Sativa L.). Molecular Breeding, 2000,6: 145-155.
    McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
    McCouch S, Kochert G, Yu Z, et al. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76:815-829.
    Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649-659.
    Motoyuki A, Hitoshi S ,Shaoyang L, et al.Cytokinin oxidase regulates rice grain production. Science, 2005, 309:741-745
    Redona E D, D J Mackill. Quantitative traits locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998, 96: 957-963.
    Ren Z H, Gao J P, LI L G, et al.A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37:1141-1146.
    Paterson A H, Danmon S, et al. Mendelian factors underlying quantitative traits in tamato: comparison across species, generations, and environments. Genetics, 1991, 127: 181 - 197
    Sawko K, Izawa T, Lin S Y, Ebana K, et al. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396
    Shen L S, He P, Xu Y B, et al. Genetic molecular linkage map construction and genome analysis of rice doubled haploid population. Acta Bot Sin, 1998, 40: 1115-1122
    Shen L S, Zhu L H. Genetic mapping of the rice telomeric region through PCR.Acta Genet Sin, 1998, 25: 508-516
    Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Thero Appl Genet, 1976, 47:35-39
    Song X J, H W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623-630.
    Song Y L, Wang G L, Chen L L, et al. A receptor kinase-like protein encode by the rice disease resistance gene, Xa21. Science, 1995, 279:1084-1086
    Sripongpangkul K, Posa G B T, Senadhira D W D, et al.Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet, 2000, 101:1074-1081
    Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the -subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927
    Tan Y F, Sun M, Xing Y Z, et al. Mapping quantitative trait loci for milling quality, protein content an d color characteristics of rice using a recombinan t inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2001,103:1037-1045
    Tanksley S D, Nelson J C. Advanced backcross QTL analy-sis: a method for the simultaneous discovery and tran- sfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92(2): 191 -203.
    Temnykh S, Declerck G, Luashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.), frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11(8): 1441-1452.
    Wan X Y, Wan J M, Weng J F, et al . Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334 - 1346
    Williams J G, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic makers. Nucl Acids Res, 1990, 18: 6531-6535.
    Wu P,Liao C Y,Hu B,et al.QTLs and epistasis for aluminum tolerance in rice(Oryza sativa L.) at different seedling stages.Theor Appl Genet,2000,100:1295-1303
    Yamamoto T,Kubiki Y,Lin S Y,et al.Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice,as single Medelian factors.Theor Appl Genet,1998,97:37-42
    Yamamoto T,Lin H X,Sasaki T,,et al.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 inrice using advanced backcross progeny.Genetics,2000,154:885-891
    Yamaya T,Obara M,Nakajima H,et al.Genetic manipulation and quanitative-trait loci mapping for mitrogen recycling in rice.J Exp Bot,2002,53:917-925
    Yano M,Katayose Y,Ashlkarl M,et al.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,2000,12:2473-2484
    Yano M,Harushima Y,Nagamura Y,et al.Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map.Theor Appl Genet,1997,95:1025-1032.
    Yoshimura S,Yoshimura A,lwata N,et al.Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP marker8.Mol Breed,1995,1:375-387
    Yu S B,LI J X,Xu C G,Tan Y F,Gao Y J,Li X H,Zhang Q F.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc.Nati.Acad.Sci.USA,1997,94:9226-9231
    Zeng Z B.Precision mapping of quantitative trait loci.Genet,1994,136:1457-1468
    Zhu J,Weir B S.Mixed model approaches for genetic analysis of quantitative traits//Chen L S,Ruan S G,Zhu J.Advanced Topics in Biomathematics.Proceedings of International Conference on Mathematical Biology.World Scientific Publishing Co,Singapore,1998:321-330.
    Zhuang J Y,Lin H X,Lu J,et al.Analysis of QTL×environment interaction for yield components and plant height in rice.Theor Appl Genet,1997,95:799-808
    曹立勇,占小登,庄杰云,等.利用分子标记辅助育种技术育成优质高产抗病杂交稻国稻1号.杂交水稻。2005,20(3):16-18
    曹立勇,占小登,庄杰云,等.水稻产量陛状的QTL定位与上位性分析.中国农业科学,2003,36(11):1241-1247.
    曹立勇,庄杰云,占小登,等.抗白叶枯病杂交水稻的分子标记辅助育种.中国水稻科学,2003,17(2):184-186
    陈顺强,汪洋,章志宏等.用RFLP标记剖析水稻穗颈维管束及穗部性状的遗传基础.武汉植物学研究,2004,22(1):15-21.
    崔克辉,彭少兵,邢永忠等.水稻产量库相关穗部性状的遗传分析.遗传学报,2002,29(2):144-152.
    郭龙彪,罗利军,邢永忠,等.水稻重要农艺性状的两年QTL剖析.中国水稻科学,2003,17(3):211-218.
    郭咏梅,穆平,刘家富,等.水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位.作物学报,2007,33(1):50-56
    高用明,朱军,宋佑胜,等.水稻永久F_2群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报,2004,30(9):849-854.
    国广泰史,钱前,佐藤宏之等.水稻纹枯病抗性QTL分析.遗传学报,2002,29(1):50-55.
    韩龙植,乔永利,高熙宗,等.水稻幼苗期耐冷选择对主要农艺性状的影响.中国水稻科学,2002,16(4):315-320
    韩龙植,乔永利,张三元,等.不同生长环境下水稻主要农艺性状的QTL分析.中国农业科学,2005,38(6):1080-1087
    何风华,席章营,曾瑞珍等.利用单片段代换系鉴定水稻株高及其构成因素的QTL中国水稻科学.2005,19(5):387-392.
    胡立中,孙其信,张修富,等.检测QTL互作的相关分析方法.科学通报,2002,47(2):122-126
    黄廷友,李仕贵,王玉平,等.分子标记辅助选择改良蜀恢527对白叶枯病的抗性.生物工程学报,2003。19(2):153-157
    江玲,曹雅君,王春明,等.利用RIL和CSSL群体检测种子休眠性QTL.遗传学报,2006,30(5):453-458
    李晶炤,何平,郑先武等.用水稻重组自交系群体对一些重要农艺性状进行基因定位和互作分析.植物学报,1999,41(11):1199-1203.
    李仕贵,马玉清,何平等.不同环境条件下水稻生育期和株高的QTL分析.作物学报,2002,28(4):546-550.
    李泽福,万建民,夏加发,等.水稻外观品质的数量性状基因位点分析等.遗传学报,2003,30(3):251-259
    李泽福,夏加发,苏泽胜,等.水稻产量及其相关性状的数量性状基因座分析.南京农业大学学报,2002,25(2):1-6.
    林鸿宣,闵绍楷,能振民,等.应用RFLP图谱定位分析籼稻粒型数量性状基因座位.中国农业科学,1995,28(4):1-7
    林鸿宣等,钱惠荣,熊振民,等.几个水稻品种抽穗期主效基因与微效基因的定位研究.遗传学报,23(3):205-213
    林荔辉,吴为人.水稻粒型和粒重的QTL定位分析.分子植物育种,2003,1(3):337-342
    罗林广.水稻抽穗期的基因型分析、抽穗期的QTL定位以及籼粳交F_1超亲晚熟的分子基础研究.博士学位论文,南京农业大学,2001.
    罗彦长,王守海,李成茎,等.应用分子标记辅助选择培育抗白叶枯病光敏核不育系3418s.作物学报,2003,29(3):402-407
    马大鹏,罗利军,汪朝阳,等.利用重组自交系群体对水稻产量相关性状的QTL分析.分子植物育种,2004,2(4):507-512
    穆平,张洪亮,姜德峰,等.利用水、早稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学,2005,38(9):1725-1733.
    倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t).分子植物育种,2005,3(3):329-334
    欧阳由男.水稻主要农艺性状和叶片发育动态QTL及其与环境(水分)互作效应分析.浙江大学硕士论文,2004,72
    彭应财,李文宏,樊叶扬,等.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218.杂交水稻,2003,18(5):5-7
    彭应财,李文宏,方又平,等.利用分子标记技术育成优质抗病杂交稻新组合中优218.杂交水稻,2004,19(3):13-16
    彭勇,梁永书,王世全,等.水稻SSR标记在RI群体的偏分离分析.分子植物育种,2006,4(6):786-790
    钱前,曾大力,华平,等.水稻籼粳交DH群体苗期的耐冷性QTLs分析.科学通报,1999,44(22):2402-2407
    沈圣泉,庄杰云,舒小丽,等.水稻幼苗耐Al~(3+)胁迫的QTL定位分析.作物学报,2006,32(4):479-483
    苏昌潮,程遐年,翟虎渠,等.利用回交重组自交群体检测水稻抗褐飞虱数量性状基因座.遗传学报,2002,29(4):332-338
    童海军,薛庆中.抗病杂交水稻新组合Ⅱ优8220.杂交水稻,2003,18(5):73-74
    万建林,翟虎渠,万建民,等.利用粳稻染色体片段置换系群体检测水稻抗亚铁毒胁迫有关性状QTL.遗传学报,2003,30(10):893-898
    汪斌,兰涛,吴为人,等.水稻叶绿素含量的QTL定位.遗传学报,2003,30(12):1127-1132
    王春明,安井秀,吉村醇等.水稻F_2不育和抽穗期QTL分析.遗传学报,2002,29(4):339-342.
    夏明元,李进波,张建华,等.利用分子标记辅助选择技术选育具有中等直链淀粉含量的早稻品种.华中农业大学学报,2004,23(2):183-186
    邢永忠,徐才国,华金平,等.水稻穗部性状的QTL与环境互作分析.遗传学报,2001,28(5):493-446.
    邢永忠,徐才国,华金平,等.水稻株高和抽穗期基因的定位和分离.植物学报,2001,43(7):721-726.
    徐吉臣,李晶昭,郑先武,等.苗期水稻根部性状的QTL定位.遗传学报,2001,28(5):433-438
    徐建龙,薛庆中,罗利军,等.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001,28(8):752-759.
    徐建龙,薛庆中,罗利军,等.水稻粒重及其相关性状的遗传解析.中国水稻科学,2002,16(1):6-10
    薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病恢复系.浙江农业大学学报,1998,24(6):581-582
    叶少平,张启军,李杰勤,等.用(培矮64s/Nipponbare)F_2群体对水稻产量构成性状的QTL定位分析.作物学报,2005,31(12):1620-1627.
    袁爱平,曹立勇,庄杰云等.水稻株高、抽穗期和有效穗数的QTL与环境的互作分析.遗传学报,2003,30(10):899-906.
    张光恒,张国平,钱前,等.不同环境条件下稻谷粒形数量性状的QTL分析.中国水稻科学,2004,18(1):16-22
    张祖新,刘纪.分子标记在作物育种中的应用.湖北农学院学报,1998,13(3):228-234
    郑景生,江良荣,曾建敏等.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL.分子植物育种,2003,1(5/6):633-639.
    朱军.复杂数量性状基因定位的混合模型方法.全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998,19-20
    朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335
    祝莉莉,谭光轩,任翔等.5种重要农艺性状基因在水稻重组自交系群体中的定位.武汉大学学报(理学版),2003,787-792.
    庄杰云,樊叶杨,吴建利,等.应用二种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报,2001,28(5):458-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700