用户名: 密码: 验证码:
乙烯与脱落酸对HrpN_(Ea)促进植物生长过程的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Harpins是由革兰氏阴性植物病原细菌产生的一类蛋白类激发子,目前研究较多的有蔷薇科植物火疫病的病原细菌Erwinia amylovora产生的HrpN_(Ea)和水稻白叶枯病菌Xanthomonas oryzae pv.oryzae的HpaG_(Xoo)。当外源使用时,harpins可以诱导多种植物抗病、抗虫、耐旱、促进植物生长,乙烯信号传导因子EIN2和脱落酸(ABA)信号传导因子ABI2对harpin诱导的植物生长和对于耐旱性起关键调控作用。但是,harpins是否同时及如何同时行使这些功能,目前还不清楚。本文着重研究了乙烯和脱落酸对HrpN_(Ea)促进植物生长的调控作用;为深入研究乙烯和脱落酸信号传导对植物生长的交叉调控机制,产生了ein2 abi2双突变体;为深入研究harpin信号在植物体内传导的机制,产生了表达HpaG_(Xoo)。的转基因拟南芥,并测定了转基因植物的抗病防卫反应。
     1.脱落酸和乙烯信号互作对HrpN_(Ea)诱导拟南芥根生长的调控作用
     用HrpN_(Ea)处理植物可以激发乙烯和ABA的产生,从而诱导植物生长和对干旱的抗性。本文报道了乙烯和ABA两种激素的相互作用可以介导由HrpN_(Ea)引起的在拟南芥上促进根的生长作用。野生型拟南芥的种子Columbia(Col-0)和Landsberg erecta(Ler-0)用HrpN_(Ea)溶液浸泡处理后在促进乙烯和ABA水平升高的同时促进根的生长。当溶液中混合有合成乙烯或者感知乙烯和ABA信号的抑制剂时,这些反应会得到控制。HrpN_(Ea)影响植物根系生长的效应同样会在乙烯不敏感突变体etr1-1和ein5-1以及ABA不敏感突变体abi2-1中失效。我们的研究结果建立了乙烯和ABA信号与HrpN_(Ea)促进根长之间的相关性的一种机制。然而,当施用HrpN_(Ea)于植物叶片时,乙烯信号可以在缺失ABA信号的情况下起作用的,这就表明在HrpN_(Ea)促进植物生长时,在植物的不同组织叶子和根系中存在不同的信号机制。
     2.乙烯和ABA信号通路双突变体的产生
     乙烯是植物生长发育最重要的内源信号,乙烯介导的植物抗病防卫基本信号通路(Dangl and Jones,2001)对于植物的基本防卫十分重要。逆境激素ABA调控了植物营养生长和生殖生长过程中的许多重要事件,包括调节气孔关闭(Finkelstein and Rock,2002),抵抗逆境,促进种子后熟和休眠等。在植物发育过程中,乙烯与ABA信号途径之间大多表现为协同作用,高浓度ABA抑制乙烯的合成。为了研究在植物抗病信号转导中的乙烯和ABA信号的上下游关系,以及解析乙烯信号的关键因子EIN2和脱落酸信号的关键因子ABI2之间的联系与作用,我们构建了RNAi的沉默载体,转化乙烯通路突变体ein2生态型植物,得到双突变体功效的植物,检测转基因植物中ABI基因的表达,为以后的表型分析,生理生化鉴定以及深入研究植物在胁迫信号转导过程中的级联关系提供了材料与依据。
     3.HpaG_(Xoo)在转基因拟南芥中表达诱导植物生长和抗病性
     我们将编码HpaG_(Xoo)的基因hpaG_(Xoo)转入拟南芥,发现不同的转基因株系都获得了对Pseudomonas syringae pv.tomato DC3000的抗性,并表达抗病防卫反应基因NPR1、PR-1和PR3b。但是,所有的转基因株系都没有发现HCD的发生。根据这些结果,我们认为HpaG_(Xoo)在拟南芥中转基因表达可以诱导抗病防卫基因的表达,诱导抗病性,但不发生HCD。另外,信号肽的有无似乎对HpaG_(Xoo)。在植物体内表达所启动的信号通路及多种表型没有影响。
Harpins are glycine-rich,protease-sensitive,heat-stable,acidic proteins produced by Gram-negative plant pathogenic bacterial,and are required for induction of the hypersensitive response(HR) or hypersensitive cell death(HCD) in nonhost plants of bacteria.Application of harpins to many plants can enhance plant growth,induce resistance to pathogens,insects and drought.These effects have been observed in plants treated with HrpNEa from Eriwinia amylovora,HrpZ_(Pss) from Pseudomonas syringae pv.syringae, HrpZ_(psph) from P syringae pv.Phaseolicola,and HpaG_(Xoo) from Xanthomonas oryzae pv. oryzae.How harpins perform these diverse functions has not been well demonstrated.
     1.Root growth ofArabidopsis thaliana is regulated by ABA and ethylene signaling interaction in response to HrpN_(Ea)
     Treating plants with HrpN_(Ea) stimulates ethylene and abscisic acid(ABA) to induce plant growth and drought tolerance,respectively.Herein,we report that both growth hormones cooperate to mediate the role of HrpNEa in promoting root growth of Arabidopsis thaliana seedlings.Root growth is promoted coordinately with elevation in levels of ABA and ethylene subsequent to soaking of germinating seeds of wild-type(WT) Arabidopsis in a solution of HrpN_(Ea).However,these responses are arrested by inhibiting WT roots from synthesizing ethylene as well as sensing of ABA and ethylene.The effects of HrpN_(Ea) on roots are also nullified in ethylene-insensitive etr1-1 and ein5-1 mutants and in the ABA-insensitive mutant abi2-1 of Arabidopsis.These results provide evidence for presence of a relationship between root growth enhancement and signaling by ABA and ethylene in response to HrpN_(Ea).Nevertheless,when HrpN_(Ea) is applied to leaves,ethylene signaling is active in the absence of ABA signaling to promote plant growth.This suggests the presence of a different signaling mechanism in leaves from that in roots.
     2.The construction and generation of a double mutant involving ABA and ethylene signal pathways.
     Ethylene is one of the most important endogenous signals in plant growth and development.It induces the primary disease-resistant response signaling pathway,which is essential for the fundamental self-defense by plants.Abscisic acid(ABA) as the stress hormone modulated many important events in plant growth and development which include modulating stoma closing,resistance to stresses,promoting seeds maturity and dormancy. The roles of ABA and ethylene in plant growth are mostly antagonistic.Specifically,ABA at high concentrations inhibits the synthesis of ethylene.We constructed ABI2-silencing vector,which was able to silence ABI2 in ein2-1 for further study on the roles of the interaction of ABA and Ethylene in plant development and signal transduction in resistance to disease.The silencing line we obtained was named ein2 abi2 Then distinctions of ein2-1 and ein2 abi2 were detected to study the function of ABI2 in Arabidopsis.This study will provide further materials and evidences for the research of relationship between ABA and Ethylene pathways in plant signal transduction in biostress.
     3.Transgenic expression of HpaG_(Xoo) of enhances plant growth and confers resistance.
     Harpins,a group of proteins produced by plant pathogenic bacteria,elicit hypersensitive cell death(HCD) in non-host plants of bacteria and induce resistance to pathogens and insects and enhance plant growth in many plants.HpaG_(Xoo),encoded by the hpaG_(Xoo) gene of X.oryzae pv.oryzae,is a member of harpin group of proteins.Like others harpins,HpaG_(Xoo) induces HR and others various effects in the plant.Here we show that expression of the hpaG_(Xoo) gene in transgenic Arabidopsis enhances plant growth and confers pathogen defense without HCD.Resistance to Pseudomonas syringae pv.tomato DC3000 was enhanced at various levels in HATA1 lines.Genes NPR1,PR-1,PR3b,which are involved in pathogen defense,were expressed to various levels in HATA1 plants tested. However,cell death was not observed in HATA1 plants.Based on these data,we concluded that expression of HpaG_(Xoo) in transgenic Arabidopsis plants enhances plant growth and induces expression of defense-related genes and confers nonspecific resistance to pathogenic bacteria in the absence of HCD.In addition,plant growth and resistance to bacteria expression can be induced in transgenic plants expressing HpaG_(Xoo) constructed with or without a signal peptide in the transformation unit.
引文
1. Adie B, Chico JM, Rubio-Somoza I, Solano R (2007). Modulation of Plant Defenses by ethylene. Plant Growth Regul 26:160-177.
    
    2. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152.
    
    3. Assmann SM (1994). Ins and outs of guard cell ABA receptors. Plant Cell 6: 287-288.
    
    4. Bauer DW, Wei ZM, Beer SV, Collmer A (1995). Erwinia chrysanthemi harpin_(Ech): an elicitor of the hypersensitive response that contributes to soft rot pathogenesis. Mol Plant-Microbe Interact 8:484-491.
    
    5. Benavente LM, Alonso JM (2006). Molecular mechanisms of ethylene signaling in Arabidopsis. Mol Biosyst 2: 165-173.
    
    6. Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker, AB, Vierstrab, RD (2007).The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. The Plant Cell 19: 509-523.
    
    7. Bleecker AB, Kende H (2000). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1-18.
    
    8. Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003). Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131: 78-92.
    
    9. Brummell DA, Balint-Kurti PJ, Harpster MH, Palys JM, Oeller PW, Gutterson N (2003). Inverted repeat of a heterologous 3'-untranslated region for high-efficiency, high-throughput gene silencing. Plant J, 33:793-800.
    
    10. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE 3 and related proteins. Cell 89: 1133-1144.
    
    11. Chard P, Baghour M, Chappie A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104: 6484-6489.
    
    12. Chuang C F, Meyerowitz E M (2000). Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA, 97: 4985-5054.
    
    13. Cogoni C. (2001). Homology-dependent gene silencing mechanisms in fungi. Annu Rev Microbiol 55:381-406.
    14. Culter S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239-1241.
    
    15. Dangl JL, Jones JD (2001). Plant pathogens and integrated defence responses to infection. Nature 411:826-833.
    
    16. Debeaujon I, Koornneef M (2000). Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415-424.
    
    17. Dong HP, Peng JL, Bao ZL, Meng XD, Bonasera JM, Chen GY, Beer SV, Dong HS (2004). Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136: 3628-3638.
    
    18. Dong HP, Yu HQ, Bao ZL, Guo XJ, Peng JL, Yao Z, Chen GY, Qu SP, Dong HS (2005). The ABI2-dependent abscissic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327.
    
    19. Dong HS, Delaney TP, Bauer DW, Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIMI gene. Plant J 20: 207-215.
    
    20. Dong HS, Beer SV (2000). Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811.
    
    21. Finkelstein RR, Gampala SS, Rock CD (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15-S45.
    
    22. Finkelstein RR, Lynch TJ (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609.
    
    23. Fire A, Xu SQ, Montgomery MK (1998). Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegan . Nature 391: 806-810.
    
    24. Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278: 34725-34732.
    
    25. Ghassemian M, Nambara EJ, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126.
    
    26. Gubler F, Millar AA, Jacobsen JV (2005). Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8: 183-187.
    
    27. Guo S, Kemphues K. (1995). par21, a gene required for establishing polarity in C. elegans embryos, encodes a putative SerPThr kinase that is asymmetrically distributed. Cell 81:611-620.
    
    28. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999). RESP0NSIVE-T0-ANTAG0NIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383-393.
    
    29. Hohjoh H. (2004). Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett. 557:193-198.
    
    30. Hua J, Meyerowitz EM (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271.
    
    31. Johnson, P.R. and Ecker, J.R. (1998). The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet 32:227-254.
    
    32. Kalantidis K, Psaradakis S, Tabler M, Tsagris M. (2002). The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15: 826-833.
    
    33. Kang J, Choi H, Im M, Kim SY (2002). Arabidopsis basic leucine zipper proteins that mediate stress- responsive abscisic acid signaling. Plant Cell 14: 343-357.
    
    34. Kennerdell J R, Carthew R W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled 1 and frizzled 2 actin the wingless pathway. Cell 95 :1017-1026.
    
    35. Kevin W, Hai L, Joseph R. E (2002). Ethylene biosynthesis and signaling networks. Plant Cell 19:131-135
    
    36. Kim JF, Beer SV (2000). hrp genes and harpins of Erwinia amylovora: A decade of discovery. In Fire Blight and Its Causative Agent, Erwinia amylovora (Vanneste, JL, ed). CAB International, Wallingford, pp 141-162.
    
    37. LeNoble ME, Spollen WG, Sharp RE (2004). Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55: 237-245.
    
    38. Leung J, Merlot S, Giraudat J (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABO) and ABIl genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771.
    
    39. Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S (2002). The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J 21:1909-1915.
    
    40. Li HJ, Guo HW (2007).Molecular basis of the ethylene signaling and response pathway in Arabidopsis. J Plant Growth Regul 26: 106-117.
    
    41. Li, L., Li, C, and Howe, G.A. (2001). Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol. 127:1414-1417.
    42. Lipardi C, Wei Q, Paterson B M.(2001). RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297-307.
    
    43. Liu FQ, Liu HX, Jia Q, Wu XJ, Guo XJ, Zhang SJ, Song F, Dong HS (2006). The internal glycine-rich motif and cysteine suppress several effects of the HpaGx_(ooc) protein in plants. Phytopathology 96:1052-1059.
    
    44. Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007). A G Protien-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 23:1712-1716.
    
    45. Liu Y, Zhang S (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386-3399.
    
    46. Matzke M A, Matzke A J, Pruss G J, Vance V B. (2001). RNA-based silencing strategies in plants. Curr Opin Genet Dev. 11: 221 -227.
    
    47. Matzke M, Matzke A J ,Kooter J M. (2001). RNA: guiding gene silencing. Science 293:1080 -1083
    
    48. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Gpin Plant Biol 8:409-414.
    
    49. McDonald KL, Cahill DM (1999). Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interactions between Phytophthora sojae and soybean (Glycine max). Eur J Plant Pathol 105: 651-658.
    
    50. Mengiste T, Chen X, Salmeron J, Dietrich R (2003). The BOTRYTIS SUSCEPTIBLE 1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15: 2551-2565.
    
    51. Mohr PG, Cahill DM (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30: 461-469.
    
    52. Montgomery M K, Xu S, Fire A.(1998). RNA as a target of doule-arranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:15502-15507.
    
    53. Napoli C, Lemieux C, Jorgensen R A. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. The Plant Cell 2: 279-289.
    
    54. Nishikura K. (2001). A short primer on RNAi: RNA-directed RNA polymerse acts as a key catalyst. Cell 107: 415-418.
    
    55. Nykanen A, Haley B, Zamore P D. (2001). ATP requirement s and small interfering RNA structure in the RNA interference pathway. Cell 107: 309-312.
    
    56. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003). Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15: 1591-1604.
    
    57. Peng JL, Bao ZL, Li P, Chen GY, Wang JS, Dong HS (2004a). Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sinica 46: 1083-1090.
    
    58. Peng JL, Dong HS, Dong HP, Delaney TP, Bonasera JM, Beer SV (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol 62: 317-326.
    
    59. Razem FA, E1-Kereamy A, Abrams SR, Hill RD (2006). The RNA-binding protein FCA is an abscisic receptor. Nature 439: 291-294.
    
    60. Ren HY, Gu GY, Long JY, Wu TQ, Song T, Zhang SJ, Chen ZY, Dong HS (2006a). Combinative effects of a bacterial type-Ill effector and a biocontrol bacterium on rice growth and disease resistance. J Biosci 31:617-627.
    
    61. Ren HY, Song T, Wu TQ, Sun LJ, Liu YX, Yang FF, Chen ZY, Dong HS (2006b). Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-Ill effector. Annals of Microbiology 56: 281-287.
    
    62. Rock CD, Sun X (2005). Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L) Heynh. Planta 222: 98-106.
    
    63. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995). Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139: 1393-1409.
    
    64. Romano N, Macino. G1 (1992). Quelling : transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6: 3343-3353.
    
    65. Schroeder JI, Kwak JM, Allen GJ (2001). Guard cell abscisic acid signaling and engineering drought hardiness in plant. Nature 410: 327-330.
    
    66. Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R. (2000). Double- stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24: 895-903.
    
    67. Segal G, Song R, Messing J. (2003).A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165: 387-397.
    
    68. Shen YY, Wang X F, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823-826.
    
    69. Soderman E, Brocard I, Lynch T, Finkelstein R (2000). Regulation and function of Arabidopsis ABA-INSENSITIVE4 (ABI4) gene in seed and ABA response signaling networks. Plant Physiol 124: 1752-1765.
    
    70. Solano R, Stepanova A, Chao QM, Ecker JR (1998). Nuclear events in ethylene signaling: a transduction cascade mediated by ETHYLENE INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703-4714.
    
    71. Stoutjesdijk PA, Singh SP,Liu Q, Hurlstone CJ, WaterhousePA, Green AG.(2002).hpRNA-mediated targeting of the Arabidiosis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723-1731.
    
    72. Strobel RN, Gopalan JS, Kuc JA, He SY (1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. Syringae 61 HrpZ_(Pss) protein. Plant J 9: 431-439.
    
    73. Tabara H, Sarkissian M, Kelly W G (1999). The rde21 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123-132.
    
    74. Tenllado F, Diaz-Ruiz JR. (2001). Double-stranded RNA-mediated interference with plant virus infection. J Virol 75:12288-12297.
    
    75. Thaler SJ, Bostock RM (2004). Interactions between abscisic-acid mediated responses and plant resistance to pathogens and insect. Ecology 85:48-58.
    
    76. Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000). The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97: 5663-5668.
    
    77. Timmons L, Fire A. (1998) Specific interference by ingested dsRNA. Nature 395: 854-863.
    
    78. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632-11637.
    
    79. Vance V, Vaucheret H. (2001). RNA silencing in plants defense and counterdefense. Science 292:2277-2280.
    
    80. Waterhouse P M, Graham M W, Wang M B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA,95:13959-13964.
    
    81. Wei ZM, Lacy RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88.
    
    82. Wu XJ, Wu TQ, Long JY, Yin Q, Zhang Y, Chen L, Liu RX, Gao TC, Dong HS (2007). Productivity and biochemical properties of green tea in response to full length and functional fragments of hpaGxoo, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv.oryzicila.J Biosci 22:1119-1131.
    83.Xie Z,Chen Z(2000).Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells.Mol Plant-Microbe Interact 13:183-190.
    84.Yamauchi Y,Ogawa M,Kuwahara A,Hanada A,Kamiya Y,Yamaguchi S(2004).Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds.Plant Cell 16:367-378.
    85.李平(2002)水稻黄单胞菌无毒基因avrXa3的克隆与鉴定以及过敏反应激发子Hrf蛋白质遗传多样性和功能域的研究。博士学位论文南京农业大学。
    86.李平,陆徐忠,邵敏等(2004)水稻黄单胞细菌Harpin蛋白的遗传多样性及其诱导烟草过敏反应和抗病性功能。中国科学C辑生命科学:136-143。
    87.刘文宝等(2007)RNA沉默研究进展。潍坊学院学报:81-84。
    88.彭建令(2003)两类激发子(harpins和核黄素)启动植物抗病防卫和生长信号传导的分子遗传学解析。博士学位论文 南京农业大学。
    89.闻伟刚(2001)水稻黄单胞菌过敏性反应激发子的研究。博士学位论文 南京农业大学。
    90.闻伟刚,王金生(2001)水稻白叶枯病菌harpin基因的克隆与表达。植物病理学报:295-300。
    91.余晓江(2002)Harpin_(Xoo)启动番茄Pto介导的蛋白质激酶级联抗病防卫反应。硕士学位论文南京农业大学。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700