用户名: 密码: 验证码:
卫星跟飞编队控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天科学技术的发展,人类对空间资源的开发越来越深入。卫星跟飞编队控制技术是空间服务和空间对抗的关键性基础技术,对它的研究将为卫星编队发展提供重要的技术支持。本文以对空间非合作目标进行跟踪编队飞行服务应用为研究背景,开展了跟飞编队控制相关问题研究,主要内容如下:
     (1)跟飞编队构型设计:在给出本文研究的跟飞编队问题所涉及的基本概念和相对动力学方程的基础上,提出了任务约束下的跟飞构型设计方案,推导了满足任务约束的构型初始化约束条件,给出了典型构型参数,为跟飞编队构型设计奠定了基础。
     (2)轨道交会控制与优化:在对跟飞编队问题涉及的交会任务进行分析的基础上,研究了基于Lambert冲量交会方法的交会控制算法,提出了考虑观测的双冲量交会求解算法;针对经典粒子群算法计算效率低下的问题,提出了多邻域改进粒子群算法,通过经典算法验证,该算法效率远优于现有一些算法;随后,提出了基于粒子群算法的有限推力轨道转移控制优化方案,解决了轨道交会控制的求解与优化问题。
     (3)跟飞编队自主导航:针对跟飞编队的相对导航问题,设计了虚拟观测量及相应的测量矩阵,避免了求解雅可比矩阵的复杂计算;提出了模型误差在线估计算法,算法能够适应不同构型尺寸的编队导航需求;在此基础上,提出了基于自适应扩展卡尔曼滤波的相对导航算法,算法具有较快的收敛速度和较高的估计精度;为了提高稳态情况下的导航估计精度,进一步提出了基于超球面分布采样变换的无迹卡尔曼滤波(UKF)跟飞编队导航算法,算法估计精度明显优于扩展卡尔曼滤波。
     (4)跟飞编队控制:在给出跟飞控制问题基本假设和标称构型方案的基础上,进行了绝对轨道参数预报偏差影响分析,给出了推力脉冲控制脉宽调制解决方案;针对构型捕获与重构控制问题,提出了沿径向等速转移重构方案,解决了视线约束下的构型重构问题;提出了跟飞编队李亚普诺夫控制律,该控制律能够完成大偏差下的构型捕获与重构控制;为了提高稳态控制精度,提出了基于椭圆参考轨道的线性二次型调节器编队精确保持控制律,算法在轨道面内和法向方向进行独立控制,具有较高的构型保持精度。
     (5)编队安全防碰撞:在完成编队碰撞影响因素分析的基础上,提出了碰撞因素解决策略;提出了基于拟瞬时最大碰撞概率的碰撞预警策略和基于变尺度直接逼近算法的编队碰撞预警算法,该算法明显提高了碰撞预警计算效率。
     (6)编队分布式仿真系统:为了解决卫星编队分布式仿真系统的设计与开发问题,提出了分布式仿真软件三层设计开发模式,并以此给出了编队分布式仿真系统的总体设计方案;通过对卫星编队仿真数据管理任务的分析,提出了卫星编队仿真通用数据管理系统方案,该方案能够完成各种复杂仿真数据的管理任务,使得数据重用和管理更加便利。
With the continually progressing of space technology, the mankind’s explorations to the space resources become more extensive. The control technology for leader-follower satellite formation flying is the basic issue of the space services and counterspace applications. The research on these key problems would be great support for the development of satellite formation flying applications. This dissertation studies the control problems of the leader-follower satellite formation flying, based on the non- collaborated target’s service application. The main work and achievements are summarized as follows:
     (1) The design problems for the leader-follower satellite formation are studied. The definitions and the relative dynamics equations involved in the leader-follower satellite formation flying application are presented. Based on those, the formation design scheme is proposed under the flying task’s constrains. The initial conditions for the formation’s initialization are derived. The typical formation parameters are also presented, which would be the foundation of the leader-follower satellite formation’s design.
     (2) The rendezvous control and optimization problems are studied. After the analysis of rendezvous problems related to the leader-follower satellite formation flying application, the control theory based on Lambert impulse rendezvous algorithm are studied. An iterative algorithm for optimal dual-impulse rendezvous incorporating ground observations is proposed. The Multi-Neighborhood Improved Particle Swarm Optimization Algorithm (MNI-PSO) is proposed, for the purpose of improving the capability of the standard Particle Swarm Optimization (PSO). The optimization results of the classical testing problems show that, the MNI-PSO has performed a great capability for the complex optimization problems, and its performance is better than some another popular algorithms. After that, the optimization scheme of the limited thrust rendezvous based on MNI-PSO is proposed, which solved the rendezvous control and optimization problems.
     (3) The autonomous navigation problems for the leader-follower satellite formation are studied. Focused on the relative navigation problems for the leader-follower satellite formation flying application, a dummy variable expression of the measuring parameters and matrix is proposed, avoiding the complex calculation for the Jacobi matrix. The online estimation of the model error covariance matrix is formulated to adapt the formation changing. Based on those above, the navigation algorithm of adaptive extended Kalman filter is presented, which is rapid convergence and has a high estimate precision. For the purpose of increasing the estimate precision of steady state, the navigation algorithm based on the Spherical Simplex Unscented Transformation Kalman Filter (SSUKF) is proposed. The algorithm’s estimate precision is better than extended Kalman filter obviously.
     (4) The formation control problems for the leader-follower satellite formation are studied. Under the basic assumptions of control problems and typical scheme of nominal formation, the influences of the absolute orbit forecast decination are analyzed. The pulse-width modulation scheme is presented for the propulsion output modulation. An in-track direction drift transition formation is proposed for the leader-follower formation capture and reconfiguration under vision constrains. The Lyapunov control law basing ellipse reference orbit is proposed, which used for the leader-follower formation control under a large aberration. For the sake of improve the control abilities under steady state, the Linear Quadratic Regulator (LQR) control law basing on ellipse reference orbit is proposed, which separated into two independent controls in the orbit plane and orbit normal direction. The LQR control law has a high formation keeping precision.
     (5) The formation safeties of collision avoiding problems for the leader-follower satellite formation are studied. The factors affecting collision probabilities between formation-flying satellites are concluded and discussed. Solutions to those factors are proposed. The collision forecast strategy based on the quasi maximum instantaneous collision probability (Q-MICP) is proposed, for the collision monitoring problem of the formation-flying satellites. The calculation of the Q-MICP needs derivation of the minimum distance and happen epoch in the early-warning time period. The scaled step-size directly approaching (SSDA) algorithm is proposed creatively, based on the analysis of the derived function of the squared distance, for the pole searching of the function. It can solve the problem of the minimum distance’s acquisition. The algorithm has improved the efficiency of collision forecast obviously.
     (6) The Distributed Interactive Simulation (DIS) problems for the leader-follower satellite formation are studied. Three-Level Design Pattern (TLDP) is proposed creatively, for the purpose of solving satellite formation DIS software design and development problems. The system design is presented for the satellite formation flying simulation, based on the TLDP. Through the detail analysis of the simulation data management tasks, the scheme of the Satellite Formation Simulation Data Management System (SFSDMS) is proposed creatively. The SFSDMS give us a universal tool for the data management of different simulations, which makes the data reuse more convenient.
引文
[1]林来兴.小卫星技术的发展和应用前景[J].中国航天. 2006, (11):43-47.
    [2]林来兴.国外微小卫星在空间攻防中的应用研究[J].装备指挥技术学院学报. 2006, 17(6):47-49.
    [3] Guinn J. R. Earth Oberving-1 Preliminary Technology and Science Validation Report: JPL Enhanced Formation Flying[R]. Pasadena, California: Jet Propulsion Laboratory, California Institute of Technology, 2002:4~6.
    [4] Mohammed J. L. Space CAPS: Automated Mission Planning for the TechSat 21 Formation-Flying Cluster Experiment[R]. New Mexico: US Air Force Research Laboratory, 2002.
    [5]孙文科.低轨道人造卫星(CHAMP,GRACE,GOCE)与高精度地球重力场[J].大地测量与地球动力学. 2002, 22(1).
    [6]吴勤.“轨道快车”计划及其军事应用[J].太空探索. 2007, (5):20-23.
    [7]车汝才,张洪华.跟踪星跟踪空间非合作目标的相对轨道设计[J].航天控制. 2006, Vol.24(No.5):40-45.
    [8]闻新,王秀丽,刘宝忠.美国试验小卫星XSS-10系统[J].中国航天. 2006, (6):36-38.
    [9]闻新,王秀丽,刘宝忠.美国试验小卫星XSS-11系统[J].中国航天. 2006, (7):22-25.
    [10]陈小前,袁建平,姚雯,等.航天器在轨服务技术[M].北京:中国宇航出版社, 2009.
    [11]张育林,曾国强,王兆魁, etc.分布式卫星系统理论及应用[M].北京:科学出版社, 2008.
    [12]陈荔莹,徐东宇,赵振岩.国外卫星星座自主运行技术发展综述[J].航天控制. 2008, 26(2):92-96.
    [13] Mazanek D. D., Kumar R. R., Qu M. , etc. Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft[R]. Hampton, Virginia 23681-2199: Langley Research Center, 2000.
    [14] Kirschner M., Monotenbruck O., Bettadpur S. Flight Dynamics Aspects of the Grace Formation Flying[C]. 2nd International Workshop on Satellite Constellations and Formation Flying. Haifa, Israel, 2001.
    [15] NASA. NASA Facts: The Earth Science Enterprise Series: Formation Flying: The Afternoon“A-Train”Satellite Constellation[R]. Greenbelt, Maryland: National Aeronautics and Space Administration, Goddard Space Flight Center, 2003.
    [16]耿长福.航天器动力学[M].第一版.北京:中国科学技术出版社, 2006.
    [17]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空. 2005, (2):23-27.
    [18]吴勤,高雁翎.美国反卫星武器的新进展[J].国际太空. 2007, (4):22-26.
    [19]曹秀云.美国反卫星武器技术发展途径与进展[J].中国航天. 2008, (3):32-35.
    [20]张玉锟,戴金海,王石,等.基于Hill方程的编队卫星群运动分析与轨道设计[J].国防科技大学学报. 2000, 22(16):1-5.
    [21]肖业伦,张晓敏.编队飞行卫星群的轨道动力学特性与构形设计[J].宇航学报. 2001, 22(4):7-12.
    [22]高云峰,宝音贺西,李俊峰.卫星编队飞行的动力学特性与相对轨道构形仿真[J].清华大学学报(自然科学版). 2002, 42(4):458-461.
    [23]李响,李俊峰,高云峰.卫星编队飞行中的相对轨道构形[J].清华大学学报(自然科学版). 2002, 42(11):1496-1499.
    [24]杏建军.编队卫星周期性相对运动轨道设计与构形保持研究[D].湖南长沙:国防科学技术大学研究生院[博士]. 2007.
    [25] Schaub H., Alfriend K. T. J2 Invariant Reference Orbits for Spacecraft Formations[J]. Celestial Mechanics and Dynamical Astronomy 2001, (79):77-95.
    [26] Ross I. M., King J. T., Fahroo F. Designing Optimal Spacecraft Formations[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4635
    [27]韦娟,宁方立.考虑摄动影响的空间站伴随卫星群轨道设计[J].西安电子科技大学学报(自然科学版). 2006, 33(4):588-592.
    [28]李芳,王岩飞,闫鸿慧,等.分布式卫星SAR沿航迹干涉编队构型优化[J].电子与信息学报. 2007, 29(6):1433-1437.
    [29]吴宝林,曹喜滨,任子武.一种长期稳定的卫星编队队形优化设计方法[J].航空学报. 2007, 28(1):167-172.
    [30] Hoskins A. B., Atkins E. M. Spacecraft Formation Optimization with a Multi-Impulse Design[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, 2005. AIAA 2005-5835
    [31]刘磊,郗晓宁.定常基线卫星编队构形设计[J].空间科学学报. 2007, 27(2):157-161.
    [32]车汝才,张洪华.跟踪星跟踪空间非合作目标的相对轨道设计[J].航天控制. 2006, 24(5):40-45.
    [33] Carraher E. Y. Periodic Methods for Controlling a Satellite in Formation[D].Wright-Patterson Air Force Base, Ohio, USA:Department of Aeronautics and Astronautics Graduate School of Engineering and Management[Master of Science in Astronautical Engineering]. 2002.
    [34] Clohessy W. H., Wiltshire R. S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Science. 1960, 27:653 -674.
    [35]张洪波,郑伟,汤国建.混合遗传算法在远程交会轨道设计中的应用[J].航天控制. 2006, 24(2):34-37.
    [36]刘鲁华,汤国建,余梦伦.圆轨道近程自主交会轨道设计[J].宇航学报. 2007, 28(3):653-658.
    [37]罗亚中.空间最优交会路径规划策略研究[D].湖南长沙:国防科学技术大学研究生院[博士]. 2007.
    [38] Tschauner J., Hempel P. Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel[J]. Astronautica Acta. 1965, 11(2):104-109.
    [39]朱仁璋,汤溢,李颐黎,等.航天器交会飞行设计方法研究[J].中国空间科学技术. 2006, (1):9-16.
    [40] Ma Z., Ma O., Shashikanth B. N. Optimal Control for Spacecraft to Rendezvous with a Tumbling Satellite in a Close Range[C]. Proc. of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:4109-4114.
    [41]韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术. 2004, (5):9-14.
    [42]郭海林,曲广吉.航天器空间交会过程综合变轨策略研究[J].中国空间科学技术. 2004, (3):60-67.
    [43] Hall C. D., Collazo-Perez V. Minimum-Time Orbital Phasing Maneuvers[J]. Journal of Guidance, Control and Dynamics. 2003, 26(6):934-941.
    [44] Olsen C. D., Fowler W. T. Use of a Genetic Algorithm to Assess Relative Motion in Highly Elliptic Orbits[J]. Journal of the Astronautical Sciences. 2007, 55(3).
    [45] Breger L., How J. P. Safe Trajectories for Autonomous Rendezvous of Spacecraft[C]. AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, South Carolina, 2007. AIAA 2007-6860
    [46]王华.交会对接的控制与轨迹安全[D].湖南长沙:国防科学技术大学研究生院[工学博士学位论文]. 2007.
    [47]朱仁璋,汤溢,蒙薇.空间交会近程导引段控制方法与控制算法[J].中国空间科学技术. 2005, (5):17-23.
    [48]张健.分布式卫星自主构形重构技术研究[D].湖南长沙:国防科学技术大学研究生院[博士]. 2006.
    [49] Wang P. K. C., Mokuno M., Hadaegh F. Y. Formation Flying of Multiple Spacecraft with Automatic Rendezvous and Docking Capability[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, 2003. AIAA 2003-5363
    [50] Wang P. K. C., Hadaegh F. Y. Formation Flying of Multiple Spacecraft with Autonomous Rendezvous and Docking Capability[J]. IET Control Theory Application. 2007, 1(2):494–504.
    [51]韩潮,谭田,杨宇.编队飞行卫星群构型保持及初始化[J].中国空间科学技术. 2003, (2):51-57.
    [52]王兆魁,张育林.分布式卫星群构形初始化控制策略[J].宇航学报. 2004, 25(3):334-338.
    [53] Vadali S. R., Schaub H., Alfriend K. T. Initial Conditions and Fuel Optimal Control for Formation Flying of Satellites[C]. AIAA GNC Conference. Portland, Oregon, 1999. AIAA-99-4265
    [54] Busse F. D., How J. P. Real-time Experimental Demonstration of Precise Decentralized Relative Navigation for Formation Flying Spacecraft[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, CA, 2002. AIAA-2002-5003
    [55] Busse F. D., How J. P., Simpson J. Demonstration of Adaptive Extended Kalman Filter for Low Earth Orbit Formation Estimation Using CDGPS[J]. Journal of The Institute of Navigation. 2002
    [56] Wu S. C., Kuang D. Positioning with Autonomous Formation Flyer(AFF) on Space Technology[C]. ION-GPS’99, Nashville, TN. 1999.
    [57] Mitchell G. High-Accuracy Ranging Using Spread-Spectrum Technology[C]. 15th AIAA/USU Small Satellite Conference, 2001, SSC01-VI-2.
    [58]雪丹,曹喜滨.主从式卫星编队相对轨道的自主确定[J].上海航天. 2005, (6):17-20.
    [59] Junkins J. L., Hughes D. C., Wazni K. P. , etc. Vision-Based Navigation for Rendezvous, Docking and Proximity Operation[C]. 22nd Annual AAS Guidance and Control Conference. Breckenridge, CO, 1999. AAS Paper 99-021
    [60] Alonso R., Crassidis J. L., Junkins J. L. Vision-Based Relative Navigation for Formation Flying of Spacecraft[C]. AIAA Guidance, Navigation and Control Conference and Exhibit. Denver, CO, 2000. AIAA 2000-4439
    [61]郝继刚.分布式卫星编队构形控制研究[D].湖南长沙:国防科学技术大学研究生院[博士]. 2006.
    [62] Crassidis J. L., Alonso R., Junkins J. L. Optimal Attitude and Position Determination From Line-of-sight Measurements[C]. The Richard H. Battin Astrodynamics Conference. College Station, Texas, 2000.
    [63] Ferguson P., How J. Decentralized Estimation Algorithms for FormationFlying Spacecraft[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, 2003. AIAA 2003-5442
    [64] Dong S., Fengqi Z., Jun Z. Relative Navigation Based on UKF for Multiple Spacecraft Formation Flying[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, 2004. AIAA 2004-5137
    [65] Kim S.-G., Crassidis J. L., Cheng Y. , etc. Kalman Filtering for Relative Spacecraft Attitude and Position Estimation[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, 2005. AIAA 2005-6087
    [66] Thein M. L., Thienel J. K., Luquette R. J. , etc. Relative Position Estimation and Control for Precision Formation Flying of Two Spacecraft Formations[C]. AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, South Carolina, 2007. AIAA 2007-6754
    [67]刘也,余安喜,朱炬波.编队卫星轨道参数的量测融合估计[J].电子与信息学报. 2007, 29(11):2679-2682.
    [68]朱庆华,李英波.伴飞卫星自主相对导航衰减记忆滤波算法[J].上海航天. 2006, (5):20-23.
    [69] Perea L., How J. P., Breger L. S. , etc. Nonlinearity in Sensor Fusion: Divergence Issues in EKF, modified truncated SOF, and UKF[C]. AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, South Carolina, 20 - 23 August 2007. AIAA 2007-6514
    [70]张洪华,林来兴.卫星编队飞行相对轨道的确定[J].宇航学报. 2002, 23(6):77-81.
    [71] Alighanbari M., How J. P. An Unbiased Kalman Consensus Algorithm[C]. Proc. of Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA, 2006:3519-3524.
    [72] Julier S. J., Uhlmann J. K., Durrant-Whyte H. F. A new approach for filtering nonlinear systems[C]. Proc. of the 1995 American Control Conference. 1995:1628-1632.
    [73]贺东雷,曹喜滨,苗赢.基于平方根UKF的双星编队相对状态自主确定[J].系统工程与电子技术. 2007, 29(1):139-142.
    [74]王建琦,曹喜滨,孙兆伟.基于UKF算法的航天器自主导航研究[J].飞行力学. 2004, 22(2):41-44.
    [75]刘勇,徐世杰.基于SSUKF的航天器自主导航算法[J].北京航空航天大学学报. 2007, 33(2):127-131.
    [76] Ac??kmes?e B. e., Daniel P. Schar, Murray E. A. , etc. A Convex Guidance Algorithm for Formation Reconfiguration[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado, 2006 AIAA 2006-6070
    [77] D'Souza C. N. An Optimal Guidance Law for Formation Flying andStationkeeping[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4960
    [78] Tillerson M., How J. P. Advanced Guidance Algorithms for Spacecraft Formation Flying[C]. Proc. of the American Control Conference. May 2002:2830-2835.
    [79]曹喜滨,贺东雷. J2摄动下编队构形保持脉冲控制方法[J].系统仿真学报. 2007, 19(23):5447-5450.
    [80]贺东雷,曹喜滨. J2和大气阻力摄动下卫星编队队形控制[J].系统工程与电子技术. 2007, 29(8):1327-1330.
    [81] Marcos F. A., Kendra M. J., Bass J. N. Recent Advances in Satellite Drag Modeling[C]. 317th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 1999. AIAA 99-0631
    [82] Koon W. S., Marsden J. E., Murray R. M. , etc. J2 Dynamics and Formation Flight[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada, 2001. AIAA 2001-4090
    [83]张玉锟,戴金海.卫星编队飞行的地球扁率摄动分析[J].宇航学报. 2002, 23(3):72-77.
    [84]侯育卓,赵军.近圆轨道编队飞行星座相对构型稳定性分析[J].航天控制. 2004, 22(1):11-16.
    [85]孟鑫,李俊峰,高云峰.卫星编队飞行相对轨道的摄动研究综述[J].宇航学报. 2004, 25(4):473-479.
    [86]安雪滢,杨乐平,张为华等.大椭圆轨道航天器编队飞行相对运动分析[J].国防科技大学学报. 2005, 27(2):1-5.
    [87]刘世元,刘春保,刘林.卫星轨道变化规律的综合分析[J].飞行器测控学报. 2005, 24(3):43-50.
    [88]孟云鹤,韩宏伟,戴金海. J2摄动作用下近地轨道卫星编队构形长期演化机理分析[J].宇航学报. 2007, 28(2):253-258.
    [89] Pak D. C. Linearized Equations for J2 Perturbed Motion Relative to an Elliptical Orbit[D]. The Faculty of the Department of Mechanical and Aerospace Engineering San Jose State University[Master of Science in Aerospace Engineering]. 2005.
    [90]罗建军,杨宇和,袁建平.共面快速受控绕飞轨迹设计与控制[J].宇航学报. 2006, 27(6):1389-1392.
    [91] Alfriend K. T., Yan H., Vadali S. R. Nonlinear Considerations in Satellite Formation Flying[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4741
    [92] Gim D.-W., Alfriend K. T. The State Transition Matrix of Relative Motion for the Perturbed Non-circular Reference Orbit[C]. AAS/AIAA Space Flight MechanicsMeeting. Santa Barbara, California, 2001. AAS 01-222
    [93] Tillerson M., How J. P. Formation Flying Control in Eccentric Orbits[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada, 2001. AIAA-2001-4092
    [94] Inalhan G., Tillerson M., How J. P. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits[J]. Journal of Guidance, Control and Dynamics. 2002, 25 (1):48-59.
    [95] Shan J., Liu H.-T., Liu G. Dynamics and Fuzzy Control for Formation Flying with Elliptical Reference Orbits[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, 2004. AIAA 2004-5025
    [96]于萍,张洪华.椭圆轨道编队飞行的典型模态与构型保持控制方法[J].宇航学报. 2005, 26(1):7-13.
    [97]于萍,张洪华.椭圆轨道编队常值推力构形变化控制方法[J].宇航学报. 2006, 27(1):1-5.
    [98]崔海英,李俊峰,高云峰.椭圆参考轨道的卫星编队队形保持控制设计[J].工程力学. 2007, 24(4):147-151.
    [99]李化义,张迎春,强文义, etc.大椭圆轨道卫星编队T-S模糊控制[J].宇航学报. 2007, 28(6):1624-1627.
    [100]黎康,林来兴.椭圆参考轨道卫星编队构形的最优机动控制[J].宇航学报. 2008, 29(3):760-764.
    [101] Nelson E., Sparks A., Kang W. Coordinated Nonlinear Tracking Control for Satellite Formations[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada, 2001. AIAA-2001-4025
    [102]郝继刚,张育林.基于大气阻力的卫星编队构形沿航迹模糊控制方法[J].国防科技大学学报. 2007, 29(3):6-10.
    [103] Belanger G., Ananyev V., Chichka D. , etc. Decentralized Control of Satellite Clusters under Limited Communication[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4434
    [104] Ren W., Beard R. W. Virtual Structure Based Spacecraft Formation Control with Formation Feedback[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4963
    [105] Gurfil P. Optimal Single-Impulse Formationkeeping[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, 2005. AIAA 2005-5860
    [106] Rahmani A., Mesbahi M., Hadaegh F. Y. On the Optimal Balanced-Energy Formation Flying Maneuvers[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, 2005. AIAA 2005-5836
    [107] Sultan C., Seereeram S., Mehra R. K. Matrix Inequalities and Energy Optimal Reconfiguration for Formation Flying Spacecraft[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, 2004. AIAA 2004-4895
    [108] Veres S. M., Lincoln N. K. Vision Assisted Satellite Formation Control[C]. Proc. of the 45th IEEE Conference on Decision & Control. Manchester Grand Hyatt Hotel, San Diego, CA, USA, , 2006:5712-5717.
    [109] Anonymous. url: http:\\acl.mit.edu\publications\formationflying.html
    [110] Patera R. P. General Method for Calculating Satellite Collision Probability[J]. Journal of Guidance, Control and Dynamics. 2001, 24(4):716-722.
    [111] Akella M. R., Alfriendy K. T. The Probability of Collision Between Space Objects[J]. Journal of Guidance, Control and Dynamics. 2000, 23(5):769-772.
    [112] Alfriend K. T., Akella M. R., Frisbee J. , etc. Probability of Collision Error Analysis[J]. Space Debris. 1999, 1(1):21-34.
    [113] Patera R. P. Satellite Collision Probability for Nonlinear Relative Motion[J]. Journal of Guidance, Control and Dynamics. 2003, 26(5):728-733.
    [114] Patera R. P. Satellite collision probability for non-linear relative motion[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4632
    [115] Campbell M. E. Collision Monitoring within Satellite Clusters[J]. IEEE Transactions on Control Systems Technology. 2005, 13(1):42-55.
    [116] Campbell M. E., Udrea B. Collision Avoidance in Satellite Clusters[C]. Proc. of American Control Conference. Anchorage, AK, United States, 2002:1686-1692.
    [117] Slater G. L., Byram S. M., Williams T. W. Collision Avoidance for Satellites in Formation Flight[J]. Journal of Guidance, Control and Dynamics. 2006, 29(5):1140-1146.
    [118] Singh G., Hadaegh F. Y. Collision Avoidance Guidance for Formation-flying Applications[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada, 2001. AIAA-01-4088
    [119] Wang S., Schaub H. Spacecraft Collision Avoidance Using Coulomb Forces with Separation Distance and Rate Feedback[J]. Journal of Guidance, Control and Dynamics. 2008, 31(3):740-750.
    [120] Breger L. S., How J. P. Powered Safe Abort for Autonomous Rendezvous of Spacecraft[C]. the 2007 AIAA Guidance, Navigation and Control Conference. AIAA-2007-6860
    [121] Sun D., Zhou F., Zhou J. Trajectory Planning and Control for Satellite Formation Flying Maneuver of Leaving and Joining[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, 2003. AIAA 2003-5588
    [122] Schwartz J. L. The Distributed Spacecraft Attitude Control System Simulator:From Design Concept to Decentralized Control[D]. Blacksburg, Virginia:the Faculty of the Virginia Polytechnic Institute and State University[Doctor of Philosophy in Aerospace Engineering]. 2004:124.
    [123] Ferguson P., Yang T., Tillerson M. , etc. New Formation Flying Testbed for Analyzing Distributed Estimation and Control Architectures[C]. AIAA Guidance, Navigation, and Control Conference. 2002
    [124]郭齐胜,张伟,杨立功.分布交互仿真及其军事应用[M].北京:国防工业出版社, 2003.
    [125]文援兰,廖瑛,梁加红,等.卫星导航系统分析与仿真技术[M].北京:中国宇航出版社, 2009.
    [126] Schaub H. Relative Orbit Geometry through Classical Orbit Element Differences[J]. Journal of Guidance, Navigation and Control. 2004, 27(5):839-848.
    [127] Lawden D. F. Optimal Trajectories for Space Navigation[M]. London: Butterworths, 1963.
    [128] Carter T. E., Humi M. Fuel-Optimal Rendezvous near a Point in General Keplerian Orbit[J]. Journal of Guidance, Control, and Dynamics. 1987, 10(6):567-573.
    [129] Hill G. W. Researches in the Lunar Theory[J]. American Journal of Mathematics. 1878, 1(1):5-26.
    [130]彭坤,徐世杰.基于冲量变轨原理的地球同步卫星有限推力变轨策略[J].空间控制技术与应用. 2008, 34(6):48-51.
    [131]韩先伟,何洪庆,唐金兰,等.基于微波等离子推力器的地球同步轨道卫星任务优化计算[J].上海航天. 2002, (6):1-6.
    [132]赵建民,夏智勋,罗振兵.基于全模式遗传算法的飞行器最佳变轨策略研究[J].宇航学报. 2006, 27(Sup):15-18.
    [133] Dewell L. D., Menon P. K. Low-thrust Orbit Transfer Optimization Using Genetic Search[C]. The 1999 AIAA Guidance, Navigation and Control Conference. Portland, OR, 1999. AIAA 99-4151
    [134]赵旭,李果,李铁寿.基于递推二次规划算法的燃料最优有限推力远地点变轨[J].航天控制. 1997, (2):23-28.
    [135]李亮,和兴锁,张娟,等.考虑地球扁率影响的任意椭圆轨道小推力最优交会控制[J].西北工业大学学报. 2005, 23(3):401-405.
    [136] Sims J. A., Finlayson P. A., Rinderle E. A. , etc. Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone, Colorado, 2006. AIAA 2006-6746
    [137] Mantia M. L., Casalino L. Optimization of Low-Thrust Capture and EscapeTrajectories[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, Arizona, 2005. AIAA 2005-4266
    [138] Lee S., Fink W., Russell R. P. Evolutionary Computing for Low-Thrust Navigation[C]. Space 2005. Long Beach, California 2005. AIAA 2005-6835
    [139] Lee S., Allmen P. v., Fink W. , etc. Design and Optimization of Low-thrust Orbit Transfers[C]. Proc. of 2005 IEEE Aerospace Conference 2005:1-15.
    [140] Bader J. L., Gurfil P., Kasdin N. J. Optimal Low-thrust Out-of-ecliptic Trajectories [C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey, California, 2002. AIAA 2002-4896
    [141] Bate R R.著.,吴鹤鸣,李肇杰[译].航天动力学基础[M].北京:北京航空航天大学出版社, 1990.
    [142] Battin R. H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. New York: AIAA Education Series, 1987.
    [143]唐国金,罗亚中,张进.空间交会对接任务规划[M].北京:科学出版社, 2008.
    [144]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [145]张育林,曾国强,王兆魁,等.分布式卫星系统理论及应用[M].北京:科学出版社, 2008.
    [146]骆晨钟,邵惠鹤.用混沌搜索求解非线性约束优化问题[J].系统工程与理论实践. 2000, 20(8):54-58.
    [147] Homaifar A. Constrained Optimization via Genetic Algorithms[J]. Simulation. 1994, 62(4):242-254.
    [148] Fogel D. B. A Comparison of Evolutionary Programming and Genetic Algorithms on Selected Constrained Problems[J]. Simulation. 1995, 64(6):399-406.
    [149] Kennedy J., Eberhart R. Particle Swarm Optimization[C]. Proc. of IEEE Int. Conf. Neural Networks. Perth, Australia, 1995:1942-1948.
    [150]谭皓.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术. 2005, 27(8):1471-1474.
    [151] Nakagawa N., Ishigame A., Yasuda K. Particle swarm optimization with velocity control[J]. IEEJ Transactions on Electrical and Electronic Engineering. 2009, 4(1):130-132.
    [152] Shi Y., Eberhart R. C. Fuzzy Adaptive Particle Swarm Optimization[C]. Proc. of IEEE International Congress on Evolutionary Computation. Piscataway, NJ, 2001:101-106.
    [153] Li J., Xiao X. Multi- swarm and multi- best particle swarm optimization algorithm[C]. Proc. of Chongqing, China, 2008:6277-6280.
    [154]高鹰.基于种群密度的粒子群优化算法[J].系统工程与电子技术. 2006, 28(6):922-924.
    [155]倪庆剑.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报. 2009, 20(2):339-349.
    [156]杨维,李歧强.粒子群优化算法综述[J].中国工程科学. 2004, 6(5):87-94.
    [157] Cai T., Pan F., Chen J. Adaptive Particle Swarm Optimization Algorithm[C]. Proc. of Fifth World Congress on Intelligent Control and Automation, 2004. WCICA 2004. June 2004 2245-2247.
    [158] Elshamy W., Emara H. M., Bahgat A. Clubs-based Particle Swarm Optimization[C]. Proc. of 2007 IEEE Swarm Intelligence Symposium. 2007 289-296.
    [159] Janson S., Middendorf M. A Hierarchical Particle Swarm Optimizer[C]. Proc. of The 2003 Congress on Evolutionary Computation. 2003:770-776.
    [160] Jun-jie X., Zhan-hong X. An Extended Particle Swarm Optimizer[C]. Proc. of 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05). 2005.
    [161] Stacey A., Jancic M., Grundy I. Particle Swarm Optimization with Mutation[C]. Proc. of The 2003 Congress on Evolutionary Computation. 2003:1425-1430.
    [162] Coello Coello C. A., Pulido G. T., Lechuga M. S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation. 2004, 8(3):256-279.
    [163] Luo Y.-z., Tang G.-j. Parallel Simulated Annealing Using Simplex Method[C]. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. New York, 2004. AIAA 2004-4584
    [164] NASA. NASA Langley Multidisplinary Design Optimization (MDO) Test Suite. url: http://mdob.larc.nasa.gov.
    [165] Azarm S., Li W. C. Multi-Level Design Optimization Using Global Monotonicity Analysis[J]. Journal of Mechanism, Transmissions, and Automation in Design. 1989, 111:259-263.
    [166] Kuang J. K., Rao S. S., Chen L. Taguchi-Aided Search Method for Design Optimization of Engineering Systems[J]. Engineering Optimization. 1998, 30(1):1-23.
    [167] Rao S. S. Engineering Optimization (3rd ed)[M]. New York: Wiley, 1996.
    [168] Ray T. Golinski’s Speed Reducer Problem Revisited[J]. AIAA Journal,. 2003, 41(3):556-558.
    [169] Li H. L., Papalambros P. A. Production System for Use of Global Optimization Knowledge[J]. Journal of Mechanism, Transmissions, and Automation in Design. 1985, 17(2):277-284.
    [170]张雷.基于粒子群优化算法的无人战斗机路径规划方法[J].系统工程与电子技术. 2008, 30(3):506-510.
    [171]王东,吴湘滨.利用粒子群算法优化SVM分类器的超参数[J].计算机应用. 2008, 28(1):134-135.
    [172]贾兆红.面向多目标的自适应动态概率粒子群优化算法[J].系统仿真学报. 2008, 20(18):4959-4963.
    [173]雪丹,曹喜滨,吴云华.多星编队相对轨道的自主确定[J].宇航学报. 2006, 27(6):1406-1408.
    [174] Julier S. J. The spherical simplex unscented transformation[C]. Proc. of American Control Conference. 2003:2430-2434.
    [175]赵龙,吴康.新型自适应Kalman滤波算法及其应用[J].压电与声光. 2009, 31(6):908-911.
    [176]杜小平,赵继广,崔占忠.航天器位置姿态的光学测量方法研究[J].兵工学报. 2004, 25(1):121-123.
    [177]李捷,陈义庆.航天器自主导航的新进展[J].航天控制. 1997, (2):76-81.
    [178] Rajan J A B. P., RawiczH, et al. Modernizing GPS Autonomous Navigation with Anchor Capability[C]. Proc. of GNSS 2003. Portland, 2003.
    [179]荆武兴,崔乃刚,巨涛.基于高动态GPS接收机输出数据的卫星自主导航[J].中国空间科学技术. 2000, (6):23-29.
    [180]周凤岐,赵黎平,周军.基于星光大气折射的卫星自主轨道确定[J].宇航学报. 2002, 23(4):20-23.
    [181] White R L T. S. W., Barnes F A. Autonomous Satellite Navigation Usim Observation of Starlight Ahnospheric Refraction[C]. Proc. of Proceedings of the Forty -First Aimual Meeting,the Institute of Navigation. 1995:83-89.
    [182]韩潮,章仁为.利用雷达测高仪的卫星自主定轨[J].宇航学报. 1999, 20(3).
    [183]吴云华,曹喜滨.编队飞行卫星自主相对导航算法研究[J].哈尔滨工业大学学报. 2007, 39(13):354-359.
    [184] Julier S. J. The scaled unscented transformation[C]. Proc. of American Control Conference. 2002:4555-4559.
    [185] Julier S. J., Uhlmann J. K. Unscented filtering and nonlinear estimation[C]. Proc. of the IEEE. 2004:401-422.
    [186] Julier S. J., Uhlmann J. K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations[C]. Proc. of American Control Conference. 2002:887-892.
    [187]张玉馄.卫星编队飞行的动力学与控制技术研究[D].湖南长沙:国防科学技术大学研究生院[博士]. 2002.
    [188]张健,戴金海.基于Agent的分布式卫星自主构形重构技术[J].国防科技大学学报. 2007, 29(2):5-9.
    [189] Burns R., McLaughlin C., Leitner J. , etc. TechSat 21: Formation Design, Control, and Simulation[R]. New Mexico: US Air Force Research Laboratory, 2000:19-25.
    [190]张健,戴金海.卫星编队构形重构的螺旋控制策略[J].系统仿真学报. 2007, 19(8):1754-1757.
    [191] Vaddi V. V. S. S. Modelling and Control of Satellite Formations[D]. the Offce of Graduate Studies of Texas A&M University[Doctor of Philosophy]. 2003.
    [192]朱毅麟.中国空间技术研究院的标准化卫星平台[J].航天器工程. 2007, 16(1):10-17.
    [193]王华,李海阳,唐国金.视场约束的交会对接V-bar撤离控制研究[J].宇航学报. 2007, 28(1):28-32.
    [194]王华,唐国金,李海阳.视场约束下V-bar撤离控制的解析计算方法[J].国防科技大学学报. 2007, 29(2):39-42.
    [195]孙东,周凤岐,周军.卫星进入和离开编队机动轨迹规划及控制[J].航天控制. 2003, (4):11-17.
    [196]王华,唐国金.非线性相对运动的飞行器碰撞概率研究[J].宇航学报. 2006.12, Vol.27 Sup.:160-165.
    [197] Alfano S. A Numerical Implementation of Spherical Object Collision Probability[J]. Journal of the Astronautical Sciences. 2005, 53(1):103-109.
    [198]薛毅.最优化原理与方法[M].第一版.北京:北京工业大学出版社, 2001.
    [199] Shi Z.-J. Convergence of line search methods for unconstrained optimization[J]. Applied Mathematics and Computation (New York). 2004, 157(2):393-405.
    [200] Vrahatis M. N., Androulakis G. S., Lambrinos J. N. , etc. A class of gradient unconstrained minimization algorithms with adaptive stepsize[J]. Journal of Computational and Applied Mathematics. 2000, 114(2):367-386.
    [201]李庆扬,关治,白峰杉.数值计算原理[M].第一版.北京:清华大学出版社, 2000.
    [202]张柯.联邦全过程全系统管理方法及技术研究[D].长沙:国防科技大学研究生院[博士]. 2005.
    [203]郭晓刚,黄先祥,高钦和,等.基于分布式视景仿真的导弹武器训练系统研究[C].中国仿真科学与技术高层论坛论文集. 2007.
    [204]李海,吴嗣亮.基于HLA和反射内存网的半实物卫星对抗仿真系统[J].系统仿真学报. 2006, 18(6):1520-1523.
    [205] (美) Erich Gamma R. H., Ralph Johnson, John Vlissides著.李英军等译.设计模式:可复用面向对象软件的基础[M].北京:机械工业出版社, 2006.
    [206]廖守亿,戴金海.基于Agent的建模与仿真设计模式及软件框架[J].系统仿真学报. 2005, 17(4):863-866.
    [207]袁泉,石昭祥.运用设计模式解决仿真对象间的通信[J].计算机仿真. 2005, 22(10):15-19.
    [208]王聪,周胜军,江光杰.设计模式在通信系统仿真软件中的应用[J].系统仿真学报. 2004, 16(4):677-680.
    [209] Holmes V. P., Johnson W. R., Miller D. J. Integrating Metadata Tools with the Data Services Archive to Provide Web-based Management of Large-Scale Scientific Simulation Data[C]. Proc. of the 37th Annual Simulation Symposium. IEEE COMPUTER SOCIETY, 2004.
    [210] Jones M. D., Patra A. K., Paley K. Adaptive Simulation: Dynamic Data Driven Application in Geophysical Mass Flows[C]. Proc. of the 19th IEEE International Parallel and Distributed Processing Symposium, IEEE COMPUTER SOCIETY. 2005.
    [211] Abadi D. J., Carney D., Cetintemel U. , etc. Aurora:a new model and architecture for data stream management[J]. The VLDB Journal, Springer-Verlag. 2003, (DEC):120-139.
    [212]杨雪榕,廖瑛,冯向军.建模与仿真及VVA管理系统设计[J].计算机仿真. 2006, 23(10):284-288.
    [213]廖瑛,邓方林,梁加红,等编著.系统建模与仿真的校核、验证与确认(VV&A)技术[M].长沙:国防科技大学出版社, 2006.
    [214] Yang Xue-rong, Liang Jia-hong Liao Ying, Liu Feng, Feng Xiang-jun, Wen Yuan-lan ,Study of universal simulation data management system[C]. Proc. of 2009 International Conference on Information Technology and Computer Science, ITCS 2009, July 25, 2009 - July 26, 2009. Kiev, Ukraine, 2009, 1:333-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700