用户名: 密码: 验证码:
IL-12单克隆抗体阻断DC上清诱导FBL-3细胞分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立体外培养扩增C57BL/6小鼠树突状细胞(dendritic cell ,DC )的方法;应用反复冻融法制备小鼠红白血病FBL-3肿瘤细胞抗原并致敏DC;观察致敏DC培养上清对小鼠红白血病细胞FBL-3的诱导分化作用;观察IL-12单克隆抗体阻断致敏DC培养上清对小鼠红白血病细胞FBL-3的诱导分化作用;进而探讨DC培养上清诱导白血病细胞分化作用的机制,为白血病的诱导分化治疗提供一条新的途径。
     方法:①应用1ng/ml白介素-4(interleukin , IL-4)和10ng/ml粒细胞—巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor ,GM-CSF)联合诱导培养C57BL/6小鼠骨髓细胞,光镜和电镜观察DC发育过程中形态学变化;流式细胞术检测DC表面分子CD80、CD86、H-2Kb及I-Ab的表达情况;②常规培养并收集C57BL/6小鼠诱导的红白血病FBL-3细胞,反复冻融FBL-3细胞制备肿瘤抗原,收集备用;③制备的FBL-3肿瘤抗原与培养的C57BL/6小鼠DC共孵育,致敏DC;④用ELISA法检测致敏DC第8天培养上清中IL-12的浓度(细胞浓度2.0×106/ml);⑤分四组:标准IL-12组(阳性对照组,A组),致敏DC第8天的培养上清组(致敏DC组,B组),加入IL-12单克隆抗体的致敏DC第8天的培养上清组(阻断实验组,C组),RPMI-1640组(阴性对照组,D组)。四组分别与FBL-3细胞共孵育72小时后,用瑞氏染色计数成熟单核细胞、透射电镜观察成熟细胞的超微结构、流式细胞仪检测细胞表面CD14分子的阳性表达率,观察四组有何不同。
     结果:①用IL-4和GM-CSF联合培养C57BL/6小鼠骨髓细胞,可得到符合DC特征的典型细胞;②ELISA法检测致敏DC培养第8天DC(细胞浓度2.0×106/ml)上清中IL-12的浓度为:(699.77±16.67)pg/ml;③瑞氏染色计数成熟单核细胞的比率:阴性对照组转化率为(3.06±1.41)%,阻断实验组单核细胞比率为(17.11±1.25)%,两者比较P<0.05;致敏DC组单核细胞比率为(46.03±2.41)%,与阴性对照组和阻断实验组比较P均<0.05;阳性对照组单核细胞比率(48.07±1.96)%,与阴性对照组和阻断实验组比较P均<0.05,与致敏DC组比较P>0.05;④透射电镜计数成熟单核细胞的比率与瑞氏染色计数成熟单核细胞的比率基本相同;⑤流式细胞仪分析显示:阴性对照组细胞基本无CD14表达,表达率为(3.24±1.39)%;阳性对照组、致敏DC组、阻断试验组作用后均有部分细胞表达CD14分子,CD14阳性率分别为(49.39±1.88) %、(48.28±1.10) %、(18.02±0.92) %。致敏DC组和阳性对照组比较P>0.05;致敏DC组、阳性对照组分别与阴性对照组、阻断试验组比较P<0.05;阻断试验组与阴性对照组比较P<0.05。
     结论:①应用IL-4联合GM-CSF培养小鼠骨髓细胞,可大量扩增成熟DC,培养的DC符合其自身的特性;②致敏DC可分泌大量的IL-12;③致敏DC培养上清能诱导FBL-3细胞部分转化为单核细胞,转化后的单核细胞符合其自身的特性;④IL-12单克隆抗体能够阻断致敏DC培养上清对FBL-3细胞的诱导转化作用;⑤致敏DC培养上清中可能还存在其它物质对FBL-3有诱导分化作用。
Objective: We establish the method of culturing dendritic cells from C57BL/6 mouse bone marrow in vitro. We make use of repeated freeze-thaw method to prepare FBL-3 leukemic cell tumor antigen and utilize the antigen to sensitize DC. We investigate that the interleukin-12 in sensitized DC supernatant can induce differentiation of mouse erythroleukemia cell FBL-3,and observe that the IL-12 monoclonal antibody block the induction of differentiation. Further we explore the mechanism involved in the differentiation of FBL-3 cells induced by DC supernatant. At the same time, this research will offer a new method of immunotherapy for leucocythemia.
     Methods:①With interleukin-4 and GM-CSF, the cells from mouse bone marrow were cultured. The morphological changes of DCs were observed under light microscope and electron microscope after culture. The expressions of CD80、CD86、H-2Kd and I-Ad were tested by flow-cytometric analysis;②Conventional culture and to collect FBL-3 cells, to make use of repeated freeze-thaw methed to prepare FBL-3 leukemic cell tumor antigen and to collect and reserve it for future use;③To cultural the FBL-3 cells tumor antigen together with DCs for five days, so we can sensitize the DC cells;④To detect the concentration of interleukin-12 in the sensitized DCs supernatant with the enzyme-linked immunospecific assay (cell density 2.0×106/ml);⑤Divide into four groups: standard IL-12 group (positive control group, A group); The prepared sensitized DC supernatant of the 8th day (sensitized DC group, B group); The prepared sensitized DC supernatant of the 8th day with the added IL-12 monoclonal antibody (Blocked experimental group, C group); RPMI-1640 group(negative control group, D group). FBL-3 cells were incubated separately with the four groups for 72 hours.Then we use the Wright's staining methed to record the mature monocyte cell population, to use the transmission electron microscope to observe the ultramicrostructure , to use the flow cytometry to detect the positive expression rate of the surface molecular CD14. Then we observe the differences of the four groups.
     Result:①After culturing mouse bone marrow cells with interleukin -4 combined GM-CSF, we can get the cells with typical DC characteristics.②The density of interleukin-12 in sensitize DC (cell density 2.0×106/ml)cultivate supernatant at the eighth day is (699.77±16.67)pg/ml.③Count the ratio of transformed to mature monocytes by Wright’s stain: the ratio of negative control group is (3.06±1.41)% ,the ratio of blocked experimental group is (17.11±1.25)%, and the result of comparison between the two groups is P<0.05; The ratio of sensitized DC group is (46.03±2.41)%, comparison with the negative control group and the blocked experimental group the results are P<0.05; The ratio of positive control group is(48.07±1.96)%, Comparison with the negative control group and the blocked experimental group the results are P<0.05.④The ratio of transformed to mature monocytes between transmission electron microscope and Wright’s stain is basically consistent.⑤Flow cytometry analysis showed: In the negative control group, there is rare the CD14 molecule expressing ,and the CD14 positive rate is (3.24±1.39)%; At the same time , the CD14 positive rate of the positive control group, the sensitized DC group and the blocked experimental group is respectively(49.39±1.88) %,(48.28±1.10) %,and (18.02±0.92)%. According to the results of ANOVA statistical analysis: there is no differences (P>0.05) between the sensitized DC group and the positive control group, but there are significant differences (P<0.05= in the sensitized DC group and the positive control group separately comparison with the negative control group and the blocked experimental group; At the same time, there are significant differences (P<0.05) between the negative control group and the blocked experimental group.
     Conclusion:①Cultivation of mouse bone marrow cells by interleukin-4 associated with GM-CSF could produce many mature DCs in keeping with its character.②Sensitized DCs can secrete a lot of IL-12.③After being induced by the supernatant of the sensitized DC, the FBL-3 cells can partly differentiate into mature monocytes, and the mature monocytes differentiated are consistent with the personal characteristics.④IL-12 monoclonal antibody can block the differentiation of the sensitization DC culture supernatant.⑤There are some other substances which can make FBL-3 differentiation,in sensitized DC culture supernatant.
引文
[1] Steinman RM,Cohn ZA. Identification of a novel cell type in periph-eral lymphoid organs of mice.Ⅰ.morphology ,quantitation ,tissuer distribution [J].Exp Med, 1973, 137(5):1 142~1 162.
    [2] Stift A,Friedl J,Dubsdy P,et al. Dendritic cell-based vaccination in soled cancer.J Clin Oncol, 2003,21(1):135-42.
    [3]Weigel BJ,Nath N,Taylor PA,et al.Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia response.Blood,2002,100(12):4169-76.
    [4] Del Vecchio M, Bajetta E, Canova S,et al.Interleukin-12:Biological Properties and Clinical Application. Clin Cancer Res. 2007 Aug 15;13 (16): 4677-85.
    [5] Sangro B, Melero I, Qian C, Prieto J. Gene therapy of cancer based on interleukin 12[J]. Curr Gene Ther 2005;5:573–581.
    [6] Hung K, Hayashi R, Lafond-Walker A, et al. The central role of CD4(+) T cells in the antitumor immune response[J]. J Exp Med 1998;188:2357–68.
    [7] Portielje JE, Gratama JW, van Ojik HH, et al. IL-12: a promising adjuvant for cancer vaccination[J].Cancer Immunol Immunother. 2003 Mar; 52 (3):133-44.
    [8]杨惠祥,徐勇.负载膀胱癌冻融抗原对树突状细胞分泌IL-12的影响.中国现代医学杂志[J]. 2006,16(16):2433-03.
    [9] Inaba K,Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte macrophage colony stimulating factor[ J]. J Exp Med,1992,176:1693-1720.
    [10]叶欣,刘爱华,宋文刚等.人脐血清代替胎牛血清体外培养脐血树突状细[J].中国输血杂志,2004,17(5):317.
    [11]刘爱华,康莉,叶欣等.人脐血树突状细胞体外扩增方法的建立[J].泰山医学院学报,2003,24(4):310-312.
    [12]宋文刚,于益芝,曲迅等.肿瘤细胞培养上清对小鼠骨髓来源的树突状细胞分化发育的影响[J].中国肿瘤生物治疗杂志,2001,8(2):134-137.
    [13] Morel PA,Feili-Hariri M,Coates PT,etal.Dendritic cells,T cell tolerance and therapy of adverse immune reactions [J].Clin Exp Immunol, 2003, 133 (1): 1-10.
    [14] Fridenshteǐn AIa.Stromal bone marrow cells and the hematopoieticmicroenvironment[J].Arkh Patol,1982,44(10):3-11.
    [15] Reid CD.The dendritic cell lineage in haemopoiesis[J].Br J Haematol, 1997, 96(2): 217-223.
    [16] Lutz MB,Schnare M,Menges M,et al.Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12produc tion and their dependency on GM-CSF[J]. J Immunol,2002,169(7):3574-3580.
    [17] Santini SM,Di Pucchio T,Lapenta C,etal.A new type I IFN-mediated pathway for the rapid differentiation of monocytes into highly active dendritic cells[J].Stem Cells,2003,21(3):357-362.
    [18] Szabolcs P, Moore MA, Young JW. Expansion of immunostinulatory dendritic cells among the myeloid progeny of human CD34+bone marrow precursors cultured with c-kit lig-and, granulocyte-macrophage colony- stimulating factor,and TNF-a [J]. J Immunol,1995,154: 5851-5861.
    [19] Pierre G,Jenny V,Laurence Z,et al.Antigen presentation and T cell stimulation by dendritic cells[J].Annu Rev Immunol,2002,20 (1): 6241 -6267.
    [20] Massimo DN, RobertoML. Dendritic cells: specialized antigen presenting cells [J].J Haematol,2000,85 (2):292-307.
    [21] Luke H,DennisM, Iain G,et al.Dendritic cells:immunological sentine with a central role in health and disease[J].Immunol Cell Biol,2000,78(1):91-102.
    [22]赵勇,曹雪涛.GM-CSF诱导红白血病细胞向树突状细胞分化及其抗原提呈功能的研究[J]. Natl Med J China, 1997, 77:732-736.
    [23] Charbonnier A, Gaugler B, Sainty D,et al. Human Acute Myeloblastic Leukemia Cells Differentiate in Vitro into Mature Dendritic Cells and Induce the Differentiation of Cytotoxic T Cells Against Autologous Leukemias[J]. Eur J Immunology, 1999, 29: 2567-2578.
    [24]张媛媛,赵莉.抗肿瘤药物经济学方法学研究浅析[J].实用医技杂志,2008,10(15):4068-70.
    [25] Douer D, Yampolsky H,Cohen LJ,et al. Pharmacodynamics and safety of intravenous pegaspargase during remission induction in adults aged 55 years or younger with newly diagnosed acute lymphoblastic leukemia [J]. Blood, 2007;109 (7):2744-50.
    [26] Herpen CM, Voort R, Laak JA, et al. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation[J]. Int J Cancer. 2008 Nov 15;123(10):2354-61.
    [27]刘晓平,李宝金,张超.逆转录病毒携带白细胞介素12转染树突状细胞体外诱导特异免疫杀伤肝癌细胞[J].中华实验外科杂志,2005,22(10):1211-1213.
    [28]罗道升,戴宇平,张珑涓等.抗原致敏IL-12基因修饰的树突状细胞诱导抗肾癌免疫的体外研究[J].中山大学学报,2007,28(4):397-401.
    [29]李宝金,殷晓煌,吕明德等. IL-12基因修饰树突状细胞体外诱导免疫杀伤肝癌细胞[J].中华肝胆外科杂志,2005,11(12):824-827.
    [30] Mazzolini G, Alfaro C, Sangro B,et al. Intratumoral in-jection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas[J].J Clin Oncol, 2005, 23(5):999.
    [31] Euw EM, Barrio MM, Furman D,et al. A phase I clinical study of vaccina -tion of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression. Transl Med. 2008 Jan 25;6:6.
    [32] Palmer DH, Midgley RS, Mirza N, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma[J]. Hepatology. 2009 Jan;49(1):124-32.
    [33]Motohashi S, Nagato K,Kunii N,et al. A phase I-II study of alpha -galactosy lceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer[J]. Immunol. 2009 Feb 15;182(4):2492-501.
    [34] Alatrash G,Hutson TE, Molto L, et al.Clinical and Immunologic Effects of Subcutaneously Administered Interleukin-12 and Interferon Alfa-2b: Phase I Trial of Patients With Metastatic Renal Cell Carcinoma or Malignant Melanoma[J]. Clin Oncol. 2004 Jul 15;22(14):2891-900.
    [35] Charbonnier A, Gaugler B, Sainty D,et al. Human Acute Myeloblastic Leukemia Cells Differentiate in Vitro into Mature Dendritic Cells and Induce the Differentiation of Cytotoxic T Cells Against Autologous Leukemias[J]. Eur J Immunology,1999,29:2567-2578.
    [36] Paquette RL,Hsu N,Said J ,e1 al. Interferon-alpha induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia. 2003;17(5):983-4.
    [37] Magdalena Leszczyniecka,Terry Roberts,Paul Dent,et al.Differentiation therapy of human cancer:basic science and clinical applications [J]. Phamacology Therapeutics,2001,90:105-156.
    [38] Lea MA, Ibeh C, Shah N, et al. Induction of differentiation of colon cancer cells by combined inhibition of kinases and histone deacetylase.Antica -ncer Res, 2007,27(2):741-748.
    [39] Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med,1989,170(3):827-845.
    [40] Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133–46.
    [41] Carla ML, Jeroen A, I. Jolanda M,et al. Intratumoral Recombinant Human Interleukin-12 Administration in Head and Neck Squamous Cell Carcinoma Patients Modifies Locoregional Lymph Node Architecture and Induces Natural Killer Cell Infiltration in the Primary Tumor. Clin Cancer Res. March 1, 2005; 11(5): 1899– 1909.
    [42] Portielje JE, Lamers CH, Kruit WH, et al. Repeated admini- strations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN- , tumor necrosis factor- , IL-6, and IL-8 responses. Clin Cancer Res 2003;9:76–83.
    [43] van Herpen CM, van der Laak JA, de Vries IJ, et al. Intratumoral recombinant human interleukin-12 administration in head and neck squamous cell carcinoma patients modifies locoregional lymph node architecture and induces natural killer cell infiltration in the primary tumor. Clin Cancer Res 2005;11:1899–909.
    [44] Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003;19:641–644.
    [45] Lee YS, Kim JH, Choi KJ, et al. Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin Cancer Res. Oct1, 2006; 12 (19):5859-5868.
    [46] Michele DV, Emilio B, Stefania C,et al.Interleukin-12: Biological Properties and Clinical Application. Clinical Cancer Research August 15, 2007;13:4677-4685.
    [47] Herpen CM, Bussink J, Koqel AJ, et al.Interleukin-12 has no effect on vascular density,perfusion,hypoxia and proliferation of an implanted human squamous cell carcinoma xenograft tumour despite up-regulation of ICAM-1.Anticancer Res. Mar-Apr,2005;25(2A):1015-1021.
    [48] Matsumoto M. Inability of IL-12 to down regulatelg E synthsis due to defective production of IFN-gamma in atopic NC/N gamice [J].Jimmunol,2001, 167(10): 5955-62.
    [49] Jon M. Wiggintion, Eilene Gruys, et al. IFN-y and Fas/ FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-12 therapy[J].Clin.Invest, 2001;108(1):51.
    [50] Elizabeth A, Laffeur, Shu-Fang Jia, et al. Interleukin(IL-12) and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells[J]. Cancer Res, 2001; 61(10):4066.
    [51] Su W, Ito T, Oyama T, et al. The direct effect of IL-12 on tumor cells: IL-12 acts directly on tumor cells to activate NF-Kb and enhance IFN-gamma -mediated STAT-1 phosphory-lation[J]. Biochem Biophys Res Commun, 2001;280(2):503.
    [52] Vieira PL,Jong EC,Wierenga EA,et al. Development of Thl-inducing capacityin myeloid dendritic cells requires environmental instruction[J]. Immunol,2000,164:4507-4512.
    [53] Axel P,Nigg,Sabine Zahn,Dominik Ruckerl,et al. Dendritic Cell-Derived IL-12p40 Homodimer Contributes toSusceptibility in Cutaneous Leishma -niasis in BALB/c Mice[J]. The Journal of Immunology. 2007, 178: 7251–7258.
    [54]王俊祥,王金铠,孟建波.慢性粒细胞白血病树突状细胞诱导及其抗肿瘤功能的体外研究[J].上海医学,2005,28(1):40-42.
    [55]叶欣,邹玉红,刘丽霞等.高强度聚焦超声制备肿瘤抗原致敏DC及其体外诱导T细胞产生IFN-γ的研究[J].中华医学超声杂志,2006,3(1):5-9.
    [56] Mason KD,Juneja SK,Szer J.The immunophenotype of acute myeloid leukemia: is there a relationship with prognosis?[J] Blood Rev. 2006 Mar;20(2):71-82.
    [57] Mattner F,Fischer S,Guekes S,et al. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer[J]. Eur J Ilnmunol. 1993;23(9): 2202-2208.
    [58] Gately MK, Carvajal DM, Connaughton SE, et al. Interleukin-12 antagonist activity of mouse interleukin-12 p40 homodimer in vitro and in vivo. Ann N Y Acad Sci. 1996 Oct 31;795:1-12.
    [59] Gillesen S,Carvajal D,Ling P,et al. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Lnznunol.1995:25(l):200-206.
    [1] Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133–46.
    [2] Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines:new players in the regulation of T cell responses[J]. Immunity ,2003;19:641–644.
    [3] Michele DV, Emilio B, Stefania C,et al.Interleukin-12: Biological Properties and Clinical Application[J]. Clinical Cancer Research August 15, 2007; 13: 4677-4685.
    [4] Del Vecchio M, Bajetta E, Canova S,et al.Interleukin-12:Biological Properties and Clinical Application. Clin Cancer Res. 2007 Aug 15; 13 (16): 4677-85.
    [5] Jon M. Wiggintion, Eilene Gruys, et al. IFN-y and Fas/ FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-12 therapy[J]. J Clin.Invest, 2001;108(1):51.
    [6] Su W, Ito T, Oyama T, et al. The direct effect of IL-12 on tumor cells: IL-12 acts directly on tumor cells to activate NF-Kb and enhance IFN-gamma -mediated STAT1 phosphory-lation[J]. Biochem Biophys Res Commun, 2001;280(2):503.
    [7] Sangro B, Melero I, Qian C, Prieto J. Gene therapy of cancer based on interleukin 12[J]. Curr Gene Ther 2005;5:573–581.
    [8] Herpen CM, Voort R, Laak JA, et al. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation[J]. Int J Cancer. 2008 Nov 15;123(10):2354-61.
    [9] Daud AI, DeConti RC, Andrews S, et al. Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma[J].American Society of Clinical Oncology. 2008 Dec 20;26(36):5896-903 .
    [10] Jia SF,Worth LL,Densmore CL,et al.Aerosol Gene Therapy with PEI:IL-12Eradicates Osteosarcoma Lung Metastases[J].Clin Cancer Res. 2003 Aug 15;9(9):3462-8.
    [11] Zhu S,Waguespack M,Barker SA,et al.Doxorubicin Directs the Accumulation of Interleukin-12 Induced IFN;into Tumors for Enhancing STAT1 Dependent Antitumor Effect[J]. Clin Cancer Res. 2007 Jul 15;13 (14):4252-60.
    [12] Ansell SM,.Witzig TE,.Kurtin PJ,et al.Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma[J]. Blood. 2002 Jan 1;99(1):67-74.
    [13] Ansell SM, Geyer SM, Maurer MJ,et al.Randomized Phase II Study of Interleukin-12 in Combination with Rituximab in Previously Treated Non-Hodgkin’s Lymphoma Patients[J]. Clin Cancer Res. 2006 Oct 15; 12 (20 Pt 1):6056-63.
    [14] Parihar R, Nadella P, Lewis A, et al. A Phase I Study of Interleukin 12 with Trastuzumab in Patients with Human Epidermal Growth Factor Receptor -2-Overexpressing Malignancies:Analysis of Sustained Interferon Production in a Subset of Patients[J]. Clin Cancer Res. 2004 Aug 1;10 (15): 5027-37.
    [15] Alatrash G,Hutson TE, Molto L, et al.Clinical and Immunologic Effects of Subcutaneously Administered Interleukin-12 and Interferon Alfa-2b: Phase I Trial of Patients With Metastatic Renal Cell Carcinoma or Malignant Melanoma[J]. Clin Oncol. 2004 Jul 15;22(14):2891-900.
    [16] Eisenbeis CF, Lesinski GB, Anghelina M, et al.Phase I Study of the Sequential Combination of Interleukin-12 and Interferon Alfa-2b in Advanced Cancer:Evidence for Modulation of Interferon Signaling Pathways by Interleukin-12[J]. Clin Oncol. 2005 Dec 1;23(34):8835-44.
    [17] Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions[J]. Nat Rev Immunol 2005;5:521–531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700