用户名: 密码: 验证码:
铝诱导油菜有机酸分泌和代谢的调控及铝毒特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al胁迫下植物根系大量分泌有机酸的可能调节因素主要包括两个方面,一是有机酸代谢:Al诱导根系细胞内有机酸合成量的增加而使其大量积累而最终向外分泌;二是有机酸运输:Al选择性地诱导开启细胞膜上特定有机酸阴离子通道使有机酸的大量分泌,线粒体膜上的载体也可能是调节有机酸向外分泌的关键因素。在前人的研究基础上,本文以有机酸分泌类型属于模式Ⅱ植物的油菜作为研究对象,通过在AlCl_3胁迫下添加外源阴离子通道抑制剂A9C和柠檬酸载体抑制剂Mersal,比较两者不同的抑制剂对于铝毒诱导油菜根系分泌有机酸的调控,以及油菜体内的有机酸代谢对添加有抑制剂的铝毒胁迫的响应,进一步探讨有机酸分泌与有机酸代谢之间的关系;此外,还从生长生理和营养吸收等方面阐述外源抑制剂对油菜Al毒毒害特征的影响。结果表明:
     1.在200μmol/L AlCl_3胁迫下,油菜根系分泌的柠檬酸比对照增加3.4倍,苹果酸比对照增加4.4倍,柠檬酸和苹果酸占据有机酸分泌总量的70%以上。A9C和Mersal对Al诱导的油菜根系有机酸分泌具有抑制作用。A9C对苹果酸分泌的抑制较大,5μmol/L和20μmol/L浓度下苹果酸分泌比单Al处理下分别下降15%和35%;Mersal对柠檬酸分泌的抑制较大,5μmol/L和20μmol/L浓度下柠檬酸分泌分别下降13%和28%。由此说明,油菜根系中的阴离子通道和柠檬酸载体均对有机酸分泌具有调节作用,并且两者具有联动效应。
     2.在200μmol/L AlCl_3胁迫下,油菜根系和叶片中的柠檬酸和苹果酸合成也比对照显著增加,柠檬酸分别增加了111%和103%,苹果酸分别增加了223%和147%。A9C和Mersal同样对铝毒胁迫下油菜体内有机酸的合成具有抑制作用,但仍然显著高于对照。实验还发现,柠檬酸和苹果酸在根中的合成要大于在叶中的合成。相关性分析表明,柠檬酸和苹果酸的分泌与根系和叶片内柠檬酸和苹果酸的合成均达到显著相关,且根系中的有机酸和叶片中的有机酸也达到极显著相关。说明调控有机酸分泌的阴离子通道和柠檬酸载体也影响油菜体内有机酸的合成。
     3.油菜在受到AlCl_3胁迫后,根系和叶片中的CS、MDH、PEPC、ACO活性显著高于对照,前三者增加率均大于100%,而ACO活性增加较小,这样的变化趋势有利于柠檬酸和苹果酸在根系和叶片中的积累。进行抑制剂-Al复合处理之后,与单Al处理比较,油菜根系和叶片中的CS、MDH和PEPC活性均有不同程度的下降,而ACO活性相反却有所升高。结果说明,抑制剂-Al毒胁迫导致了油菜组织中柠檬酸和苹果酸的合成能力减弱,促进了柠檬酸向乌头酸的转变,进一步降低了组织中的柠檬酸含量,并最终减少了油菜有机酸的分泌。
     4.Al胁迫使油菜根系分泌氨基酸和可溶性糖含量增加,但与对照差异不显著;抑制剂-Al复合处理后,氨基酸和可溶性糖的渗透增强,20μmol/L的A9C使氨基酸和可溶性糖的渗透明显增多,与对照和单Al处理差异显著(P<0.05)。根质膜透性在单Al胁迫下比对照有所升高,A9C和Mersal加剧了铝对细胞质膜的损伤,使根质膜透性上升到与对照差异显著。研究认为,A9C和Mersal导致Al胁迫下氨基酸和可溶性糖渗透增加是细胞质膜严重损伤的结果。单Al处理下根系分泌物的pH值比对照增加,认为是油菜对铝毒的适应性反应;A9C和Mersal加入导致了pH值比对照有所下降,可能是两种抑制剂加剧油菜Al毒害引起。
     5.在铝液中添加A9C和Mersal后,油菜根系、地上部干重及根/冠比进一步下降,主根长、株高、叶片数增长率明显受到抑制,根系各形态指标(总根长、总表面积、平均直径、总体积、根尖数)下降增加,根系和地上部含水率下降。此外,油菜根、茎、叶中的N、P、K、Ca、Mg含量均比单Al处理下有不同程度的下降,Na含量却有所上升,从而提高了油菜根、茎、叶中的Na~+/K~+;并且,A9C和Mersal均促进了铝毒胁迫下油菜根、茎、叶对Al的吸收。结果说明添加A9C和Mersal可能减少了油菜体内合成和根际分泌的有机酸,从而降低了有机酸与Al的络合作用而使铝毒伤害加深。
The efflux of organic acid anions from plant roots under aluminum (Al) were likely related to two aspects, one was metabolism of organic acids, which Al increased the synthesis of organic acid in root-cells to increase accumulation of organic acid in plant, finally induced organic acid excreted; the other was transport of organic acids, which Al induced the opening of organic acid anion channel to induced organic acid excreted, and the carrier on the mitochondrial membrane was also may be the key regulation factor of organic acid excreted. Bases of the previously research, oilseed rape which belonged to patternⅡof exudation of organic acid was taken as object for the study, by the way of supplying A9C (a inhibitor of anion channel) and Mersal (a inhibitor of citrate carrier) in the Al~(3+) solution, the purpose of the study was to compare the difference of two inhibitor on the regulation of organic acid excreted, and the response of metabolism of organic acid to Al stress which contained inhibitor, thus explored the relation between metabolism and excretion of organic acid. Besides, the physiological characteristics and mineral nutrient absorb of oilseed rape under Al stress were investigated in the study. The main results were summarized as follows:
     Under 200μmol/L AlCl_3 stress, the secretion of citric acid and malic acid increased respectively 3.4 times and 4.4 times compared to CK, at the time both of the two organic acids took up more than 70% in total organic acids secretion. A9C and Mersal could inhibit the secretion of organic acid which was induced by Al, compared to single Al-treatment, A9C inhibited significantly the malic acid by 15% and 35% under 5μmol/L and 20μmol/L of concentration, the corresponding inhibition for Mersal to citric acid were 13% and 28%. These results indicated that both of anion channel and citrate carrier could regulated the secretion of organic acid, and it had association between the two.
     Under 200μmol/L AlCl_3 stress, the synthesis of citric acid and malic acid in roots and leaves increased too compared to CK, which citric acid increased by 111% and 103%, malic acid increased by 223% and 147%, respectively. As same as excretion of organic acid, A9C and Mersal could inhibit the synthesis of organic acid which was induced by Al, but that higher markedly than CK. It was found that the synthesis of organic acid in roots was intensive that of in leaves. The excretion of organic acid and the synthesis of citric acid and malic acid in roots or leaves was a significant positive correlation. These indicated that anion channel and citrate carrier not only regulated excretion of organic acid, but also affected synthesis of organic acid.
     The activities of CS, MDH, PEPC and ACO of roots and leaves increased significantly in oilseed rape under single Al stress, the increasing ratios of CS, MDH, PEPC were over 100%, whereas ACO increased less than the three. The trend of change made for accumulation of citric acid and malic acid in roots and leaves. With adding inhibitors into AlCl_3 culture solution, the activities of CS, MDH, PEPC decreased with different degree, ACO was reverse, compared to single Al treatment. These indicated that inhibitor-Al treatments depressed the ability of synthesis of organic acid in plant, and may to citric acid transformed into aconitic acid, thus reduced the contents of citric acid in organization of plant, finally decreased the excretion of organic acid.
     The contents of amino acid and soluble sugar increased under Al stress, but it was not significantly difference compared to CK. Complex treatments more increased the osmosis of amino acid and soluble sugar in the root exudation, especially 20μmol/L of A9C that reached markedly level (P<0.05) compared to single Al treatment and CK. The permeability of plasma membrane was increased under Al stress, especially added the A9C and Mersal in the Al solution. It was considered that the osmosis increasing of amino acid and soluble sugar was result of the damage of plasma membrane damage by Al stress. The increasing of pH in excretion under single Al stress was considered an adaptive response on Al stress, and the pH declining after subjoining A9C and Mersal in Al solutions was result in more toxicity of Al to oilseed rape seedlings.
     When addition of A9C or Mersal under the Al stress, the dry weights of root and shoot and the ratio of root/shoot decreased rapidly, the growth ratios of main root, plant height and leaf amount inhibited significantly, the root morphology (root length, surface area, average diameter of root, root volume and number of root tips) and moisture contents of root and shoot descended too. In addition, the contents of N, P, K, Ca and Mg in root, stem and leaf of plant declined while Na increased in different extent compared to single Al treatment, which consequently enhanced the ratio of Na~+/ K~+ of root, stem and leaf. Moreover, the accumulation of Al in root, stem and leaf increased obviously with adding A9C and Mersal. It was suggested that A9C and Mersal might decrease the synthesis or excretion of organic acid in oilseed rape, therefore reduced the combine to organic acid with Al, finally the Al toxicity was fierce in plant.
引文
曹洪法,高吉喜,舒俭民.铝对马尾松幼苗影响的研究.生态学报,1992,12(3):239-246
    陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展.果树学报,2005,22(5):526-531
    陈美华,余章机,蒋德书,等.大豆幼苗铝中毒研究初报.西南农业学报,1992,5(4):112-115
    陈梅,陈亚华,沈振国,等.猪粪对红壤铝毒的缓解效应.植物营养与肥料学报,2002,8(2):173-176
    陈宗权,张维经.C3-C4中间植物.植物生理学通讯,1987,6:35-45
    董钻.盆栽条件下大豆冠根比研究初报.吉林农业科学,1982,4:22-26
    高吉喜,曹洪法,孙德玲,等.铝对马尾松生长状况影响的研究.中国环境科学,1992,12(2):118-121
    高辉远,李卫军,等.Na_2SO_4胁迫对苇状羊茅和鸭茅Na-~+、K~~+吸收与分配的影响.中国草地,1995,5:43-48
    顾明华,Tetsuo Hara,陆申年,等.铝毒在不同作物上的差异及温度的影响.热带亚热带土壤科学,1994,3(2):59-65
    郝鲁宁,刘厚田.铝对水稻幼苗的生理影响.植物学报,1989,31(11):847-853
    何龙飞,刘友良,沈振国,等.铝对小麦根营养元素吸收和分布的影响.电子显微学报,2000,19(5):685-694
    何龙飞,王爱勤.外源有机酸对小麦铝毒害的缓解效应.华北农学报,2002,17(增刊):75-79
    胡红青,黄巧云,李学垣.不同铝浓度对小麦根系分泌氨基酸和糖类的影响.土壤通报,1995,26(1):15-17
    黄巧云,李学垣,徐凤琳.铝对小麦幼苗生长和根的某些生理特性的影响.植物生理学通讯,1994,30(2):97-100
    金婷婷,刘鹏,徐根娣,等.外源有机酸对铝毒胁迫下大豆根系形态的影响.中国油料作物学报.2006,28(3):302-308
    金剑,刘晓冰,王光华,等.大豆生殖生长期根系形态性状与产量关系研究.大豆科学,2004,23(4):253-257
    李德华,贺立源,刘武定.耐铝和对铝敏感的玉米自交系根系有机酸分泌.植物生理与分子生物学学报,2003,29(2):114-120
    李德华,黄升谋,贺立源,等.植物根系有机酸的分泌和解铝毒作用.植物生理学通讯,2004,40:505-510
    李德华.不同耐铝性玉米自交系根系特性的研究:[学位论文].中国优秀博硕士论文库:华中农业大学,2003
    李庆逵.中国红壤.北京:科学出版社,1983:74-93
    林咸永,王建林.植物对Al毒胁迫的适应机制.张福锁.植物营养的生态生理学和遗传学.北京:中国科学技术出版社,1993:248-258
    凌桂芝,黎晓峰,左方华,等.在铝胁迫下离子通道抑制剂和钙螯合剂对黑麦根系分泌有机酸的影响.广西农业生物科学,2006,25(3):248-251
    刘厚田.Al对水稻叶绿体活性的影响及其与钙调素的关系,植物学报,1990,32(7):528-532
    刘鹏,Yang YS,徐根娣,等.铝胁迫对大豆幼苗根系形态和生理特性的影响.中国油料作物学报,2004,26(4):49-53
    罗安才.柑桔果实有机酸代谢生理和奉节脐橙芽变株系的AFLP分析研究:[学位论文].中国优秀博硕士论文库:西南农业大学,2003
    明凤,梁斌,娄玉霞.铝诱导普通野生稻(Oryza rufipogon L.)光合系统相关基因表达.复旦学报,2002,41:679-683
    年海,黄鹤,严小龙,等.大豆对酸铝土壤的适应.Ⅰ大豆耐酸铝毒材料的鉴定研究.大豆科学,1999,16(3):191-197
    彭嘉桂,陈成榕,卢和顶.玉米铝(Al)胁迫研究初报.热带亚热带土壤科学,1995,4(2):97-101
    秦瑞君,陈福兴.湘南红壤作物苗期铝中毒的研究.植物营养与肥料学报,1999,5(1):50-55
    邱光葵,庞叔薇.羊毛铬青分光光度法测定土壤中的活性铝.分析测试通报,1989,8(4):68-71
    沈金雄,徐巧珍.大豆耐铝酸毒害研究概况.中国油料作物学报,1998,20(2):91-96
    申建波,张福锁.根分泌物的生态效应.中国农业科技导报,1999.1(4):21-27
    宋福南,杨国亭,孟繁荣,等.丛枝菌根化大青杨苗木根际微域环境的研究.生态环境,2004,13(2):211-216
    宋福南,杨传平,刘雪梅,等.盐胁迫对柽柳超氧化物歧化酶活性的影响,东北林业大学学报,2006,34(3):54-56
    田仁生,刘厚田.酸化土壤中铝及其植物毒性.环境科学,1990,11(6):41-46
    王芳,黄朝表,刘鹏,等.铝对大豆根系分泌物的影响.浙江师范大学学报(自然科学版).2005a,28(3):304-308
    王芳,黄朝表,刘鹏,等.铝对荞麦和金荞麦根系分泌物的影响.水土保持学报,2005b,19(2):106-109
    汪建飞,沈其荣.有机酸代谢在植物适应养分和铝毒胁迫中的作用.应用生态学报,2006,17(11):2210-2216
    王建林.土壤中铝的胁迫与水稻生长.土壤,1991,23(6):302-3136
    文树基.基础生物化学实验指导.北京:陕西科学技术出版社,1994:53-190
    武际,郭熙盛,王文军,等.施用白云石粉对黄红壤酸度和油菜产量的影响.中国油料作物学报,2006,28(1):55-58
    杨振德,方小荣,牟继平.铝对桉树幼苗生长及某些生理特性的影响.广西科学,1996,3(4):30-33
    杨志敏,汪瑾.植物耐铝的生物化学与分子机理.植物生理与分子生物学学报,2003,29(5):361-366
    杨水平,黄阳辉,饶新华,等.蜜桔叶片中八种元素的对比分析及其对果实品质的影响.华南理工学院学报,2005,28(3):263-265
    叶燕萍.植物生理实验技术(内部资料).南宁:广西大学,2002:121-123
    应小芳,刘鹏,徐根娣.土壤中的铝及其植物效应的研究进展.生态环境2003,12(2):237-239
    余国泰,秦遂初.有机肥缓解小麦铝毒效果的研究.植物营养与肥料学报,1998,4(1):57-62
    余礼明,伍冬生,文友先,等.油菜籽脱壳与分离设备研究.中国粮油学报,2002,17(5):40-43
    尤江峰,杨振明.铝胁迫下植物根系的有机酸分泌及其解毒机理.植物生理与分子生物学学报,2005,31(2):111-118
    赵和涛.铝元素与茶树生育和品种的关系.热带作物科技,1996,(3):33-35
    张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003:127-128
    张志良.植物生理学实验指导(第2版).北京:高等教育出版社,1993,36-39
    张宪政,谭桂茹,黄元极.植物生理学实验技术.辽宁:辽宁科学技术出版社,1989:56-57
    张宪政,陈凤玉,王荣富.植物生理学实验技术.辽宁:辽宁科学技术出版社,1994,174-176
    张子龙,李加纳,唐章林,等.环境条件对油菜品质的调控研究.中国农学通报,2006,22(2):124-129
    周蓉.花生耐铝性及遗传改良研究进展.花生学报,2003,32(增刊):144-148
    宗良纲,马建锋,徐晓炎,等.红壤施用不同有机酸解铝毒效果的比较.农业环境保护,2002,21(4):306-308
    Akeson M A,Munns D N.Uptake of aluminum into root cytoplasm:predicted rates for important solution complexes.Journal of Plant Nutrition, 1991, 13: 467-471
    Basu U, Godbold D, Taylor G J. Aluminum resistance in Triticum aestivum associated with enhanced exudation of malate. J Plant Physiol., 1994, 144: 747-753
    Buchanan B, Gruissem W, Jones R I. Biochem istry and Molecular Biology of Plants. Chichester John Wiley and Sons, 2002, 817-819
    Brune A, Gonzalez P C, Goren R, et al. Citrate uptake into tonop last vesicles from acid lime (Citrus aumntifolia) juice cells. J Membr Biol., 1998, 166: 197-203
    Calba H, Cazevieille P, Poss R, et al. The dynamics of protons, aluminium and calcium in the rhizosphere of maize cultivated in tropical acid soils, experimental study and modelling. Plant Soil 2004, 260:33-46
    Cakmak I, Hengeler C, Marschner H. Partition of shoot and root dry matter and carbohydrates in bean plants suffering from phosphrus, potassium and magnesium deficiency. Journal of Experimental Botany, 1994,45: 1245-1250
    Cambraia J, Galvani F R, Estevao M M, et al. Effects of aluminum on organic acid, augar and amino acid composition of the root system of sogghum. J. Plant Nutr., 1983,6: 313-322
    Canel C, Bailey-Serres J N, Roose M L. In vitro [~(14)C] citrate uptake by tonoplast vesicles of acidless citrus juice cells. I Am Soc Hortic Sci. 1995, 120(3): 510-514
    Cenchi G, Spagnoletta A, Palmieri F. Purification and characterization of the reconstitutively active citrate carrier from maize mitochondria. Plant Physiol., 1999, 120: 841-847
    Chaignon V, Quesnoit M, Hinsinger P. Rhizosphere pH, bioavailability and extractability of copper in a copper-contaminated acidic soil as affected by liming. Rhizosphere 2004 Conference, Perspectives and Challenges-A Tribute to Lorenz Hiltner, 12-17 September 2004, Munich, Germany (poster).
    Chibiliti, G. et al. Interaction of aluminum and calcium on 'Nemaguard' peach seedling nutrient contents and growth in sand culture. Scientia Horticulturae, 1990,43(2): 29-36
    Costa C, Dwyer L M, Hamilton R I, et al. A sampling method for measurement of large root ayatems with scanner-based image analysis. Agron. J., 2000, 92: 621-627
    Clarkson, D T. Effect of aluminum on the uptake and metabolism of phosphorus by barley seeding. Plant Physiology, 1996,41: 165-172
    Delhaize E, Craig S, Beaton C D, et al. Aluminium tolerance in wheat. (Triticum aestivum L.). I. Uptake and distribution in root apices. Plant Physiol, 1993a, 103: 685 - 693
    Delhaize E, Peter R, Randall P J. Aluminum Tolerance in Wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 1993b, 103: 695-702
    Delhaize E, Peter R. Aluminum toxicity and tolerance in plants. Plant Physiology, 1995, 107: 315-312
    Delhaize, E. et al. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 2001, 125: 2059-2067
    Deborah A, Tesfaye M. Plant improvement for tolerance to aluminum in acid soils-a review. Plant Cell, Tissue and Organ Culture, 2003, 75:189-207
    de la Fuente, J M. et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997,276: 1566-1568
    Degenhardt J, Larsen P B, Howell S H, et al. Aluminum resistance in the arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. PI. Physiol., 1998, 117: 19-27
    Dovale G R, Novais R F, Barros N F, et al. Absorption on nitrate and ammonium by intact roots of pretreated with aluminum. Rev. Bras. Cienc. Solo, 1984,8(2): 215-218
    Ernst W. Physiological and Biochemical Aspect of Heavy Metal Tolerance [C] // MANSFIELD T A. Effect of Air Pollutants on Plant. London: Cambridge University Press, 1987:115-133
    Foy C D. The Physiology of metal toxicity in plants. Annv Rev Plant Physiol, 1978, 29: 511-566
    Godbold D L, Jentschke G Aluminum accumulation in root cell walls coincide with inhibition of root growth but not with inhibition of magnesium uptake in norwa spruce. Physiol Plant, 1998, 102(4): 553-560
    Hanning I. Baumganen K, Schott K, et al. Oxaloacetate transport into plant mitochondria. Plant Physiol, 1999,119:1025-1031
    Hinsinger P, Plassard C, Tang C, et al. Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints, a review. Plant Soil, 2003,248:43-59
    Hinsinger P, Plassard C, Jaillard B. Rhizosphere: a new frontier for soil biogeochemistry. Journal of Geochemical Exploration, 2005, 88: 210-213
    Huang J W, Grunes D L, Kochian L V. Aluminum effects on the dinetics of calcium uptake into cells of the wheat root apex. Planta, 1992,188: 414-421
    Jone D L, Kochian L V. Aluminum inhibition of the inositol 1, 4, 5-triHos Hate signal transudation pathway in wheat roots, a role in aluminum toxicity. Plant Cell, 1995, (7): 1913-1922
    Jones D L.Organic acid in the rhizosphere-critical review.Plant Soil,1998,205:25-44
    Jorge R A,Arruda P.Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize.Phytochem,1997,45:675-681
    Kitagawa T,Morishita T,Tachibana Y,Namai H,Ohta Y.Differential aluminum resistance of wheat varieties and secretion of organic acids.Jpn J Soil Sci Plant Nutr,1986,57:352-358
    Kochian L V.Cellular mechanisms of aluminum toxicity and resistance in plants.Ann.Rev.Plant Physiol.Plant Mol.Biol.1995,46:237-260
    Kochian L V,Hoekenga O A,Pineros M A.How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency.Annu Rev Plant Biol.,2004,55:459-493
    Kollmeier M,Dietrich P,Bauer C S,et al.Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex.A comparison betweenan aluminum-sensitive and aluminum-resistant cultivar.Plant Physiol,2001,126:397-410
    Koyama H,Takita E,Kawamura A,et al.Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium.Plant Cell Physiol,1999,40(5):482-488
    Koyama,H.et al.Over expression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus limited soil.Plant Cell Physiol.2000,41,1030-1037
    Li X F,Ma J F,Matsumoto H.Pattern of Al-induced secretion of organic acids differ between rye and wheat.Plant Physiol.,2000,123:1537-1544
    Ligaba A,Shen H,Shibata K,et al.The role of phosphorous in aluminium-induced citrate and malate exudation from rape(Brassica napus).Physiol Plant.,2004,120:575-584
    Lopez-Bucio,J.et al.Organic acid metabolism in plants:from adaptive physiology to transgenic varieties for cultivation in extreme soils.Plant Sci.,2000,160:1-13
    Loosemore N,Straczek A,Hinsinger P,et al.Zinc mobilization from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH.Plant Soil,2004,260:19-32
    Ma,J F,Hiradate S,Nomoto K,Washita T,Matsumoto H,Internal detoxification mechanism of Al in Hydrangea.I dentification of Al form in the leaves.Plant Physiol.1997a,113:1033-1039
    Ma J F,et al.Specific secretion of citric acid induced by Al stress in Cassia tora L.Plant Cell Physiol.1997b,38:1019-1025
    Ma,J F,et al.High aluminum resistance in buckwheat.Ⅱ.Oxalic acid detoxifies aluminum internally. Plant Physiol. 1998, 117: 753-759
    Ma J F, Hiradate S. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta, 2000a, 211: 355-360
    Ma J F. Role of organic acids in detoxification of Al in higher plants. Plant and Cell Physiology, 2000b, 44: 383-390
    Ma J F, et al. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol. 2000c, 122: 687-694
    Marin B, Smith J, Luuge U. The electrochemical proton gradient and its influence on citrate uptake in tonoplast vesicles of Hevea bmsiliensis. Planta, 1981, 153: 486-493
    Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology, 2000, 200: 1-46
    Massonneau A, Langlade N, Leon S, et al. Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta, 2001, 213: 534-542
    Miyasaka S C, Kochian LV, Shaff J E, et al. Mechanisms of aluminum tolerance in wheat. Plant Physiology, 1989,91: 1188-1196
    Miyasaka S C, Buta J G, Howell R K, et al. Mechanisms of aluminum tolerance in snapbeans root exudation of citric acid. Plant Physiol., 1991, 96: 737-743
    Morishita T. Sulphur accumulation by tomato and rice root in relation to transport of heavy metals. Soil Science and Plant Nutrition, 1983, 29(2): 219-225
    Nagata T, Hayatsu M, Kosuge N. Identification of aluminum form in tea leaves by ~(27)Al-NMR. Phytochem, 1992, 31: 1215-1218
    
    Nye P H. Changes of pH across the rhizosphere induced by roots. Plant Soil, 1981, 61: 7-26
    Ownby J D, Popharm H R. Citrate reverses the inhibition of wheat root growth caused by aluminium. J Plant Physiol, 1990, 135:588-591
    Ossaki M, Nursyamsi D, Begum H H, et al. Study on aluminum resistance in relation to organic-acid anion exudation from roots of PEPC transgenic rice plants. In: Horst W J, Schenk M K, Bürkert A, et al. Plant nutrition —food security and sustainability of agro-ecosystems. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001: 514-515
    
    Papernik L A, Kochian L V. Possible involvement of Al-induced electrical signals in Al tolerance in wheat. Plant Physiol, 1997, 115:657-667
    Pellet D M, et al. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 1995, 196:788-795
    Pinros M A, Kochian L V. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize: identification and characterization of Al~(3+)- induced anion channels. Plant Physiol, 2001, 125:292-305
    Pineros M A, Magalhaes J V, Carvalho A, et al. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol., 2002, 129: 1194-1206
    Polak T B, Milacic R, Pihlar B, et al. The uptake and speciation of various Al species in the Brassica rapa pekinensis. Phytochemistry, 2001, 57: 189-198
    Pteffer P E. In Vivo 32~P NMR studies of corn root tissue and its uptake of toxicmetal. Plant Physiol., 1986,80:77-84
    Ryan P R, Delhaize E, Randal P J. Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol, 1995a, 22: 531-536
    Ryan P R, Delhaize E R, Randall P J. Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 1995b, 196: 103-110
    Ryan P R, Skerrett M, Findlay G P, et al. Aluminum activates an anion channel in the apical cell of wheat roots. Proc Natl Acad Sci USA, 1997, 94: 6547-6552
    Ryan PR, Dong B, Watt M, Kataoka T, Delhaize E. Strategies to isolate transporters that facilitate organic anion efflux from plant roots. Plant Soil, 2003, 248: 61-69
    Samuels T D, Kucukakyuz K, Magaly R Z. Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat. Plant Physiol, 1997, 113: 527-534
    Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding an aluminum-activated malate tranporter, Plant J, 2004, 37: 645-653
    Shen H, Ligaba A, Yamaguchi M, et al. Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots. J Exp Bot, 2004, 55(397): 663-671
    Shuman L M, Wang J. Effect of rice variety on zinc, cadmium, iron, and manganese content in rhizosphere and non-rhizosphere soil fractions. Commun Soil Sci. Plant Anal, 1997, 28: 23-36
    Startaion J B, Kamprath E J. Aluminum tolerance of soybean cultivars based on root elongation in solution culture compared with growth in acid soil.Agronomy Journal,1978,70(1):17-20
    Suhayda C G,Haug A.Organic acids reduce aluminum toxicity in maize root membranes.Physiol.Plant.,1986,68:189-195
    Talor G J.The physiology of aluminum phytotoxicity.In H Sigel,A Sigel,eds,Metal Ions in Biological Systems,Marcel Dekker,New York,1988,24:123-163
    Taylor G J,Mcdonald-Stephens J L,Hunter D B.Direct measurement of aluminum uptake and distribution in single cell of Chara corallina.Plant physiology,2000,123:987-996
    Tesfaye M,Temple S J,Allan D L,et al.Over expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.Plant Physiol.,2001,127:1836-1844
    Tester M.Plant ion channel:whole-cell and single-channel studies.New Phytol,1990,114:305-340
    yon Uexkull H R,Mutert E.Global extent,development and economic impact of acid soils.In Plant-Soil Interactions at Low pH:Principles and Management.Eds.Date RA,Grundon N J,Raymet G E,Probert M E.Kluwer Academic Publishers,Dordrecht,the Neterlands.1995,5-19
    Watanabe T,et al.Distribution and chemical speciation of aluminum in the Al accumulator plant,Melastoma malabathricum L.Plant Soil,1998,201:165-173
    Xian X F.Effect of chemical forms of cadmium,zinc,and lead in polluted soils on their uptake by cabbage plants.Plant and Soil,1989,113:257-264
    Yamamoto Y,Kobayashi Y,Matsumoto H.Lipid peroxidation is an early symptom triggered by aluminum,but not the primary cause of elongation inhibition in pea roots.Plant Physiology,2001,125:199-208
    Yang Z M,et al.Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max).Physiol Plant.2001a,110:72-74
    Yang Z M,Nian H,Sivaguru M,et al.Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean(Glycine max L.)plants.Physiol Plant,2001b,113:64-71
    Yang Z M,Wang J,Wang S H,et al.Salicylic acid- induced aluminum tolerance by modulation of citrate effiux from roots of Cassia tora L.Planta,2003,217:168-174
    Yang Z M,Yang H,Wang J,et al.Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L.Plant and Soil.2004,166:1589-1594
    Zhao X J,et al.Al~(3+)and Ca~(2+)alteration of membrane permeability of Quereusrubra root cortex cells. Plant Physiol.1987,83:159-162
    Zhang G,Taylor G J.Kinetics of aluminum up take by excised roots of aluminum tolerant and aluminum sensitive cultivars of Triticum aestivum L.Plant Physiol,1989,91:1094-1099
    Zhang G C,Slaski J J,Alchambault D J,et al.Alternation of plasmamembrane lipidsin aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress.Physiol.Plant.,1997,99(2):302-308
    Zhang W H,Ryan P R,Tyeman S D.Malate-permeable channels and cation channels acticated by aluminum in the apical cells of wheat roots.Plant Physiol,2001,125:1459-1472
    Zheng S J,et al.Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress.Physiol Plant.1998a,103:209-214
    Zheng S J,Ma J F,Matsumoto H.High aluminum resistance in buckwheat.I.Al-induced specific secretion of oxalic acid from root tips.Plant Physiol.,1998b,117:745-751

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700