循环载荷下接触安定问题的数值方法及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触体表面强化(喷丸、涂层)层的疲劳裂纹萌生寿命的研究,是当前齿轮、轴承等接触件失效分析中的前沿课题。它具有重要而广泛的工程背景。在国家“航空基金”、“总装预研基金”等课题的资助下,本文以接触体安定分析与接触表面层疲劳裂纹萌生寿命预测一般算法研究为手段,深入、系统研究了接触体安定分析的数值理论和计算方法,全面研究了影响航空齿轮表面强化层失效的原因并提出了齿轮表面强化层裂纹萌生寿命的预测方法。
     本文针对接触表面层的强化与疲劳失效问题,提出通过研究接触表面层在循环载荷作用下的安定特性,来建立强化设计与疲劳评估准则。研究中,围绕强化后接触表面疲劳问题,从强化模型选择、接触表层安定性存在的条件及其失效规律,进行了详细的概念定义、定理证明及推论演算等理论工作,为接触表面层安定性的数值模拟和疲劳分析奠定了理论基础。
     提出了接触体安定性下限分析的线性规划法和直接叠代法。这些方法各有创新,其特点是计算速度快、收敛性好及精度可靠,计算规模避免了弹塑性随动强化分析的非线性的影响,并使弹塑性问题转化为残余问题和线弹性问题,适用于滚动、滚滑及滑动接触失效分析,从而有效地解决了接触体安定性分析与裂纹萌生寿命预测的实际问题,也是本文对表面强化接触失效的安定分析成为可能。
     对二维滚滑弹塑性接触的安定状态,建立循环载荷下接触安定状态分析的计算机应用程序,并进行了残余应变和残余应力的分析计算。研究表明安定状态随载荷的大小而变化,其残余应力和应变累积的大小与外加载荷成正比,并对计算中的一些问题进行了分析探讨。
     利用Chaboche的材料模型,研究了航空齿轮韧性材料在弹、塑性安定下的轮齿接触疲劳裂纹萌生准则,该研究结果与相关的齿轮实验结果比较分析表明:塑性安定下的疲劳裂纹萌生预测方法预测航空齿轮的萌生寿命是较安全的。
     本文所提出的理论分析方法具有科学、经济和实用等优点,对于各种接触元件的设计、预测及失效评估具有指导作用。
At present an important subject is researched on prediction methods of the initiation life of rolling/sliding contact fatigue of surface hardening layer based on shakedown theories under cycle contact loading for the strategies of applications of contact element, such as gears, bearings, and railroad rails. In this thesis, the strain-hardening model of contact surface layer, the numerical theories and computational methods for shakedown analyses of contact body are systematically studied and applied to the aero-gear. The mentality is that the effects of the surface hardening and contact fatigue on contact surface layer under cycle contact loading are investigated by using shakedown analysis methods considering in a quantitative way the details of stress-inelastic strain responses, residual stress and residual strain computations. The experiment on the conclusion of shakedown analysis with the direct analysis method was conducted for proving residual stress of contact surface layer of the rolled specimen.The
    paper concerns itself on the following specific aspects:
    1. Studying on the shakedown theories and plastic deformation of contact surface layer
    The shakedown of contact surface layer is related to the strain-hardening models of materials, such as isotropic hardening, kinematic-hardening, and mixed-hardening. The existing results based on experiments and theory show that the shearing strain behavior of contact surface layer caused by friction can be comparatively described with kinematic-hardening. The shakedown conditions of contact surface layer based on kinematic-hardening model was given. In this thesis, the research result was shown, kinematic-hardening contact surface layer could not involve incremental collapse, but could only cause alternating plasticity. And it also have been shown that the back stresses have effect on the shakedown limit of contact surface layer, however, there are some difficulties on the definition of back stress as the "center" of the yield surface in the Cauchy space. So, the back stress tensor is taked usually in the Lagrangian stress space.
    2. Studying on the shakedown analysis methods of contact surface layer
    A series of efficient computational approaches, for example, a direct analysis method and a line programming, for the shakedown analysis and limit is proposed, which is used to investigate the effect of strain hardening and residual stress on the shakedown limit of contact element. The direct analysis method has more efficient
    
    
    than the line programming for the shakedown analysis of contact surface layer, therefore, the mentality of shakedown analysis of contact surface layer was introduced based on the direct analysis method as follows:
    First, the direct method for shakedown analysis was presented and its application to a two-dimensional rolling/sliding contact problem was demonstrated. The direct method consists of operator split technique, which transforms the elastic-plastic problem into a purely elastic problem and a residual problem with prescribed eigenstrains, and an incremental projection method to determine the eigenstrain. Second, the direct analysis method was applied to determine the residual stress of rolling/sliding contact between cylinder and plane. More over the limit of shakedown load of contact surface layer was computed with different friction affection. Finals, rolling and sliding contact between cylinder and plane was analyzed with ANSYS? Four contact state depending on rate of rolling/sliding between the couple of contact element were studied based on Hertz contact model, and the results was shown that the rate of slide would affect the distribution of pressure in contact area and stress in the half plane.
    3. Studying on prediction methods of the initiation life of aero-gear using shakedown analysis methods
    In order to directly consider in a quantitative way the details of stress-inelastic strain responses, residual stress and residual strain computations, fatigue crack initiation life was evaluated in aero-gear by using th
引文
[1] Maier, G.. On some issues in shakedown analysis. ASME Jour. of Appl.Mech., 2001(68): 799-807
    [2] Johnson KL. The strength of surfaces in rolling contact. IMechE,J Mech Engng Sci, 1989(203): 63-151
    [3] Kapoor A. A re-evaluation of the life to rupture of ductile metals by cyclic plastic strain. Fat Fract Engng Mater Struct, 1994(17): 19-201
    [4] Maier, G.. Shakedown Theory in Perfect Elastoplastictiy with Associated and Nonassociated Flow-laws: a Finite Element Linear Programming Approch, Meccanica 1969,4(3):250-260
    [5] Corradi, L. and Zavelani, Linear A., A. Programming Approach to Shakedown Analysis of Structures, Comp. Meth. App. Mech. Eng, 1974 (3):37-53
    [6] Melan,E. Theorie Statisch Unbestimmter Tragwerke aus Idealplastisahem Baustoff, Sitzungsbericht der Akademie der Wissenscha ften(Wien)Abt. Ⅱ A195, (1938):145-195
    [7] Belytschko,T. Plane Stress Shakedown Analysis by Finite elements, Int. J. Mech. Sci. 1972(14):619-625
    [8] Weichert,D.,Gross-Weege,j.The Numerical Assessment of Elastic-plastic Sheets Under Varable Mechanical and Thermal Loads Using a Simplified Two-surface Yield Condition, Int. J. Mech. Sci. 1988(30):757-767
    [9] Morrelle,R, Hung, N.D. Numerical Plastic Shakedown Analysis of Plates and Shells of Revolution by Equilibrium Finite Element, J. Theor.Appl. Mech., 1983,2(4):567-599
    [10] Lu, M. W and Chen, S.Z.,Stress Function Method in Shakedown Analysis of Axisymmetric Shells, Acta Mechanica Solida Sinica, 1992,5(1):99-110
    [11] 钱令希,王志必,板、壳极限分析和安定分析——温度参数法,力学学报,1985(17):118-124
    [12] Johnson.K.L. A Shakedown Limit in Rolling Contact, Proceedings, 4th US
    
    National Congress of Applied Mechanics, ASME,pp.288(1962b)
    [13] Ham G., Rubin C.A., Hahn G.T. and Bhargava V., Elasto-plastic Element Analysis of Repeated Two-dimensional Rolling Sliding Contacts, ASME Jour. of Tribology, 1988(110):44-49
    [14] Kulkarni S., Hahn G.T. Elasto-plastic Finite Element Analysis of Three-dimensional Pure Rolling Contact above the Shakedown Limit, ASME Jour. of Appl.Mech., 1991(58):349-353
    [15] Yu M., Moren B.M., and Keer L.M. A Direct Analysis to Two-dimensional Elastic-plastic Rolling Contact, ASME Jour. of Tribology, 1993(115):227-236
    [16] Yu M.M.-H., Moren B., and Keer L.M. A Direct Analysis of 3-D Elastic-plastic Rolling Contact, ASME Jour. of Tribology, 1995(117):234-243
    [17] Koiter, W.T. General Theorems for Elastic-plastic Bodies,inSneddon,I.N. and Hill,R.(eds),ProgressinSolidMechanics,Vol. 1,North-Holland,Amsterdam, 1960:165-221
    [18] Ponter A.R.S., Hearle A.D. and Johnson K.L. Application of Kinematic Shakedown Theorem to Rolling and Sliding Point Contact, J.Mech,Phys.Solids, 1985(33):339-362
    [19] Kapoor A. and Johnson K.L., Effect of Change in Contact Geometry on Shakedown of Surfaces in Rolling and Sliding Contact, Int.J.Mech.Sci., 1992(34):223-239
    [20] 刘启跃,金雪岩,王夏秋,轮轨塑性变形与安定状态的关系研究,西南交通大学学报,1999(34):508-511
    [21] Sakae C. and Keer L.M., Application of Direct Method for a Nonlinear-kinematic-hardening Material under Rolling/sliding Line Contact: Constant Ratchetting Rate, J.Mech.Phys.Solids, 1997(45): 1577-1594
    [22] Ekh M., Johansson A., Thorberntsson H. and Josefson B.L., Models for Cyclic Ratchetting Plasticity-integration and Calibration, ASME Journal of Engineering Materials and Technology, 2000 (122):49-55
    [23] Ponter A.R.S., Karadeniz S and Carter K.F. Extended upper bound Shakedown Theory and Finite Element Method for Axisymmetric Thin Shell, in
    
    Inelastic Solids and Structures (Eds.M.Kleiber and J.A.Konig), Pineridge press, Swansea, 1990
    [24] 宋兆泓主编,航空发动机典型故障分析,北京航空航天大学出版社 1993.3,北京
    [25] 陶春虎,钟培道,王仁智,聂景旭编著,航空发动机转动部件的失效与预防,国防工业出版社,2000.2,北京
    [26] 王仁、黄克智、朱兆祥,塑性力学进展,中国铁道出版社,1988
    [27] Gugliano. M., Riva.E.,Guidetti.M. Contact fatigue failure analysis of shot-peened gears,Engineering Failure Analysis,2002(9): 147-158
    [28] Gugliano. M.,Vergani.L., An approach for prediction of fatigue strength of shot peened components. Engineering Fracture Mechanics,2003(xxx): 1-12
    [29] Smith D.J.,Farrahi G.J.,Zhu W.X.,Mcmahon C.A. Experimental measurement and finite element simulation of the interaction between residual stresses and mechanical loading. Intel.Joural.Fatigue,2001(23):293-302
    [30] Zhuang W.Z.,Halford G. R.,Investigation of residual stress relaxation under cyclic load. Intel.Joural.Fatigue,2001 (23):s31-s37
    [31] Berger M.-C.,Gregory J.K. Residual stress relaxation in shot peened timetal 21s. Materals Science & Engineering A, 1999(263):200-204
    [32] Glodez S., Abersek B.,Flasker J., Ren Z. Evaluation of the service life of gears regard to surface pitting. Engineering Fracture Mechanics, 2003(xxx): 1-10
    [33] 胡荣才,徐秉业,一个新的接触疲劳寿命预测模型的研究,工程力学,1994(11):47-54
    [34] 肖宏滨,邵尔玉,表面复合强化对疲劳性能的影响,中国表面工程,1999(2):11-15
    [35] 金学松,沈志云,轮滚动接触疲劳问题研究的最新进展,铁道学报,2001(23):92-108
    [36] T.E. Tallian, Simplified contact fatigue life prediction model: Part Ⅰ, Review of published models. ASME Journal of Tribology, 1992(114): 207-213
    [37] T.E. Tallian. Rolling bearing life prediction, Corrections for material and
    
    operating conditions: Part Ⅰ, General model and basic life. Part Ⅱ, The correction factors. ASME Journal of Tribology, 1988 (110): 2-12
    [38] T.E. Yallian. Simplified contact fatigue life prediction model: Part Ⅱ.New model ASME Journal of Tribology, 1992(114): 214-220
    [39] E. Ioannides, T.A. Harris, A new fatigue life model for rolling, bearings. ASME Journal of Tribology, 1985(107):367-378
    [40] H. Schlicht, E. Schreiber, O. Zwirlein. Fatigue and failure mechanism of bearings, Proceedings, Institution of Mechanical Engineers, London C 285 1986:85-90
    [41] G. Lundberg, A. Palmgren. ACTA Polytechnica. Mechanical Engineering Series, Vol. 1, No. 3, 1947:326-332
    [42] Vo Bhargava, G.T. Hahn, C.A. Rubin. An elastic-plastic finite element model of rolling contact: Part Ⅰ. Single contacts. Part Ⅱ. Repeated contacts, ASME Journal of Applied Mechanics, 1983(52): 66-82
    [43] G.T. Hahn, V. Bhargava, C.A. Rubin, Q. Chen, K. Kim, Analysis of the rolling contact residual stresses and cyclic plastic deformation of SAE52100 steel ball bearings. ASME Journal of Tribology, 1987(109): 618-626
    [44] A.M. Kumar, G.T. Hahn, V. Bhargava, C. Rubin. Elasto-plastic finite element analyses of two-dimensional rolling and sliding contact deformation of bearing steel. ASME Journal of Tribology, 1989(111): 309-314
    [45] A.D. Hearle, K.L. Johnson, Cumulative plastic flow in rolling and sliding line contact, ASME Journal of Applied Mechanics, 1987(54) 1-7
    [46] J.E. Merwin, K.L. Johnson, An analysis of plastic deformation in rolling contact. Proceedings, Institution of Mechanical Engineers, London, 1963(177)676-685
    [47] A.F. Bower, K.L. Johnson, The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. Journal of Mechanics and Physics of Solids, 1989(37): 471-493
    [48] Y. Jiang, H. Sehitoglu, An analytical approach to elastic-plastic stress analysis of rolling contact, ASME Journal of Tribology, 1994(116): 577-587
    [49] Y. Jiang, H. Sehitoglu, Multiaxial cyclic ratchetting under multiple step loading,
    
    International Journal of Plasticity, 1994(10): 849-870
    [50] D.L. McDowell, G.J. Moyar, Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact, Wear 1991(144) 19-37
    [51] C. Sakae and. L.M. Keer, Application of direct method for a nonlinear-kinematic-hardening material under rolling/sliding line contact: constant ratchetting rate, J.Mech.Phys.Solids, 1997(45):1577-1594
    [52] Martin J B. Plasticity: fundamental and general results. Cambridge,MA:MIT Press,1975
    [53] Knig J A.Sakedown analysis of elastic-plastic structures: a review of recent development. Nucl. Engng. Design, 1981(66):81-95
    [54] 冯西桥、刘信声,影响结构安定性的各种因素,力学进展,1993(23):214-222
    [55] 刘越、刘信声,各项同性强化条件下的安定定理,力学学报增刊,1989:131-135
    [56] Bhargva,V.,Hahn,G.T.,and Rubin,C.A., Analysis of rolling contact with kinematic hardening for rail steel properties,Wear, 1988(122): 267-283
    [57] A. Kapoor, J.A. Williams and K.L. Johnson, The steady state sliding of rough surfaces, Wear, 1994(175):81-92
    [58] S.K. Wong, A. Kapoor and J.A. Williams, Shakedown limits on coated and engineering surfaces, Wear, 1997(203-204): 162-170
    [59] Yoshida, A., Ohue. Y., Surface failure and durability of induction-hardened sintered powder metal rollers and gears with various hardened depths, ASME Journal of Mechanical Design. 1994 (116): 730-737
    [60] A. Kapoor and J.A. Williams, Shakedown limits in sliding contacts on a surface-hardened half-space, Wear, 1994 (172): 197-206
    [61] Agah-Tehrani A, Lee E H, Mallett R L, et al. The theory of elastic-plastic deformation at finite strain with induced anisotropy modeled as combined isotropic-kinematical hardening [J].J Mech Phys Solids,1987, 35(5): 519~539
    [62] Casey J, Naghdi P M. On the relationship between the Eulerian and Lagrangian
    
    description of finite rigid plasticity [J].Arch Rational Mech Anal, 1988,102(4): 351~375
    [63] Casey J, Naghdi P M. A prescription for the identification of finite plastic strain. Int J Engng Sci,1992,30(10), 1257~1278
    [64] Lucchesi M. Podio-Guidugli E Materials with elastic range: a theory with view to applications, Part Ⅰ[J].Arch Rational Mech Anal,1988, 102(1): 23~43.
    [65] Zheng Q S. On the generalization of constitutive laws from their arotational forms [J].Acta Mech,1992,91(1-2): 97~105
    [66] Nemat-Nasser S. On finite plastic flow of crystalline solids and geomaterials. J. Appl. Mech,1983,50(4): 1114~1126
    [67] Dafalias Y F. Issues on the constitutive formulation at large elsatic-plastic deformations,Part Ⅰ: Kinematics [J].Acta Mech,1987,69(1-4): 119~138
    [68] Noll W. A mathematical theory of the mechanical behavior of continuous media. Arch.Rational.Mech.Anal,1958, 2(3): 197~226
    [69] Tin Loi F and Grundy P. Deflection stability of workhardening structures. J Struct Mech, 1978(6):331-347
    [70] Maier.G.,Sakedown matrix theory allowing for work hardening and second order geometric effects. In: Proceeding of the international conference on foundations of plasticity, Warsaw, 1972,417-433
    [71] Johnson K L. Contact mechanics, Cambridge University Press, London, 1985
    [72] 徐利治,周五时,高微数值积分,科学出版社,1980
    [73] J.Zarka, J.Casier, EC.Arnaudeau and G.Baylac, 'A practical method to determine elastic or plastic shakedown of structures, in simplified Method in Pressure Vessel Analysis (Ed.R.S.Barsoum).PVB-PB-029, 1978
    [74] Jiang Y, Sehitoglu H. rolling contact stress analysis with the application of a new plasticity model. Wear, 1996(191):35-44
    [75] Francaville A, Zienkiewicz O C. Int. J. Num. Meth. Engng. 1975(9):913-924
    [76] Peric, D. and Owen, D.R.J., Computational Model for 3-D Contact Problems with Friction Based on the Penalty Method, International Journal for Numercial Method in Engineering, 1992(35): 1289-1309
    
    
    [77] Laursen, T.A. and Simo, J.C., Algorithmic Symmetrization of Coulomb Frictional Problems Using Augmented Lagrangians, Computers Methods in Applied Mechanics and Engineering, 1993 (108): 133-146
    [78] Jiang and Rodgers, Combined Lagrangian Multiplier and Penalty Function Finite Element Technique for Elastic Impact Analysis, Computers and Structures, 1988(30): 1219-1229
    [79] ANSYS Element Reference, ANSYS Inc.U.S.A
    [80] Fuchs H O, Stephens R I. Metal Fatigue in Engineering.London:A Wiley-Inter Science Publication. 1999
    [81] 徐颖强等,航空齿轮复合应力的计算机模拟,机械科学与技术,1998,No.4,589-590
    [82] Dang Van et al, Criterion for high cycle fatigue failure under multiaxial loading, In:Brown MW Miller KJ,editors.Biaxial and Multiaxial Fatigue.EGF 3.London,UK: Mechanical Engineering Publications. 1989:459-478
    [83] Bannantine JA, Comer JJ,Handrock JL.Fundermentals of metal fatigue analysis. EngleWood Cliffs(NJ,USA):Prentice Hall, 1990.
    [84] Suresh.S, Fatigue of materials.2nd ed. Cambridge,UK: Cambridge University Press.1998
    [85] Beste.A.Elastisch plastisches Spannung-, Dehnungs- und Anrriverhalten in statisch und zyklisch belasteten Kerbscheiben-ein Vergleich zwischen experimentellen. ergebnissen and Nherungisrechnungen. Heft 34, Werffendichung des institus fǜr Stahlbau und Werkstoffmechanik der Technischen Universitt Darmstadt, Darmstadt, Germany,1981 [in German]
    [86] Socie D. Discriminating experiments for multiaxial fatigue damage models. In: Solin J.Marquis G.Siljander A, Sipila S, editors. Fatigue Design, ESIS 16.London. UK: Mechanical Engineering Publications, 1993(224): 38-49
    [87] Jiang Y., Sechitogue H.A model for rolling contact failure. Wear 1999(224): 38-49
    [88] Tyfour WR et al, The steady state wear behavior of pearlitic rail steel under dry rolling-sliding contact conditions, Wear 1995(180):79-89
    
    
    [89]Tyfour WR et al,Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling -sliding line contact, Wear 1996(197):255-65
    [90]Kapoor A. A re-evaluation of the life to rupture of ductile metals by cyclic plastic strain. Fatigue Fracture Eng Mater Struct 1994(17): 201-19
    [91]Johnson KI. Contact mechanics and the wear of metals. Wear 1995(190): 162-70
    [92]Morrissey.R,Goh.C-H,McDowell.David L. Microstructure-scale modeling of HCF deformation. Mechanics of Materials,2003(35):295-311
    [93]Naboulsi S, Mall S. Invertigation of high cycle and low cycle fatigue interaction on fretting behavior. Interal.Joural of Mechanical Sciences,2002(44): 1625-1645
    [94]Kapoor A., Franklin.F.J., Wong.S.K., Ishida.M. Surface roughness and plastic flow in rail wheel contact. Wear,2002(253):257-264
    [95]Bari S, Hassan T. Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation. Interal. Joural.of Plasticity,2001 (170:885-905
    [96]Lang.H,Wirtz.K,Heitzer.M, Staat.M, Oettel.R. Cyclic plastic de formation test to verify FEM-based shakedown analyses. Nuclear Engineering and Design,2001(206):235-247
    [97]Yang S H,Kong H,Yoon E-S,Kim D E. An experimental study on the rolling resistance of bearings coated by pure silver. Wear, 1999(225-229): 119-126
    [98]Korsunsky.A.M, Withers.P.J. Plastic beading of a residually stressed beam. Int.J.Solids Structures, 1997(34): 185-2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700