用户名: 密码: 验证码:
两种抗病毒策略介导的转基因研究和烟草脉带花叶病毒蛋白的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯Y病毒(Potato virus Y,PVY)、黄瓜花叶病毒(Cucumber mosaic virus,CMV)和马铃薯X病毒(Potato virus X,PVX)是烟草上的三大主要病毒病。病毒间的复合侵染非常普遍,往往给烟草生产造成严重损失。本研究利用适体和小干扰RNA 2种不同的策略获得了同时抗2种或3种病毒的转基因烟草。烟草脉带花叶病毒(Tobacco vein banding mosaic virus,TVBMV)属于马铃薯Y病毒属(Potyvirus)病毒,近几年在我国烟草上的发生有上升和蔓延的趋势。本研究获得了TVBMV YND分离物的全基因组序列,利用原核表达方法成功表达了TVBMV 10个蛋白中除了P3蛋白之外的9个,并利用镍柱对部分蛋白进行了纯化,同时制备了TVBMV CP的抗血清。主要结果如下:
     将编码一个九肽(与CMV CP互作)和PVY HC-Pro N端83个氨基酸(与HC-Pro蛋白自身互作)的基因片段(C-P)与GFP基因(GFP)同时连接到pMD18-T载体,通过定点突变获得了3个突变体。将C-P-GFP及其3个突变体分别连接到植物表达载体pROKⅡ上,农杆菌共浸润后接种实验筛选到最有效的抗性诱导载体。将此载体通过农杆菌介导法成功转化烟草K326,分子检测获得了15棵转基因烟草。抗病性实验表明获得抗PVY的转基因烟草1棵,抗CMV的植株3棵,同时抗PVY和CMV的植株1棵。首次利用适体策略获得了同时抗PVY和CMV的转基因烟草。
     利用软件筛选到能够有效切割PVX和CMV CP基因的siRNA以及PVY HC-Pro基因中能够有效形成siRNA的区域,将筛选片段连接构建反向重复的植物表达载体。农杆菌介导法转化烟草K326,分子检测证明成功获得了22棵转基因烟草。抗病性分析表明获得了2棵抗PVY、8棵抗CMV和6棵抗PVX的转基因烟草,同时抗3种病毒的转基因烟草1棵。ELISA和实时荧光RT-PCR检测结果表明抗病的转基因植株中病毒含量均明显低于感病对照,说明筛选的siRNA能够特异性地降解病毒的mRNA,有效抑制病毒的复制。
     利用针对马铃薯Y病毒属病毒的简并或特异引物,通过RT-PCR方法扩增得到TVBMV云南分离物YND的全基因组序列。除了3′-端poly(A)外,YND基因组全序列包括9 570个核苷酸,含有一个大的开放阅读框,编码一个由3 079个氨基酸组成的多聚蛋白,分子量约为348.6 kDa。该分离物的NIb/CP切割位点为Q/N,这在马铃薯Y病毒属病毒中非常少见。另外,HC-Pro中含有比较罕见的参与蚜传的RITC基序。
     将TVBMV CP基因克隆到表达载体pET-22b(+)上,在大肠杆菌BL21 (DE3)中诱导表达出分子量为35.0 kDa的融合蛋白。利用该融合蛋白制备了TVBMV的多克隆抗体,ELISA测定抗血清效价为1/4 096。Western blotting和DIBA分析结果表明,获得的抗血清和原核表达的病毒蛋白及植物病汁液中的病毒均有特异性反应,可用于TVBMV的快速检测。同时在大肠杆菌中成功表达了TVBMV 10个蛋白中除了P3蛋白之外的9个,并利用镍柱对部分蛋白进行了纯化。可溶性分析结果表明HC-Pro、NIa-VPg和CP蛋白中可溶性蛋白较多,完全能够满足纯化要求,而其它蛋白破碎后可溶性蛋白占总蛋白的比例均低于10%,需要先变性后复性进行纯化。利用生物信息学软件对TVBMV编码蛋白的结构进行了预测,结果表明6K2和P3蛋白为跨膜蛋白。以上研究结果为研究蛋白晶体结构和功能奠定了基础。
Potato virus Y (PVY), Cucumber mosaic virus (CMV) and Potato virus X (PVX) are the most important viruses in the tobacco plants. The mixed infection of viruses is very common, and it caused more severe losses in tobacco production. In this paper, we obtained multiple virus resistant transgenic plants using two different strategies: aptamer and siRNA. Tobacco vein banding mosaic virus (TVBMV) is one species of the genus Potyvirus. The losses caused by TVBMV had been increasing during the recent years. In this paper, we obtained the complete genomic sequence of TVBMV from Yunnan China and have nine proteins of TVBMV expressed in the E. coli BL21 (DE3), and then prepared the antiserum against TVBMV CP. The detailed results read as follows:
     The random nonapeptides specifically binding to the CP of CMV, the N-terminal 83 amino acids of the HC-Pro interacted with PVY HC-Pro and GFP genes were simultaneously cloned to the pMD18-T vector, resulting in the plasmid pMD18 C-P-GFP. Three mutants were obtained by site-directed mutagenesis. We cloned C-P-GFP and these three mutants to the plant expression vector pROKⅡand screened by agroinfiltration the most efficient resistance inducing vector, which was introduced into tobacco plants (K326) via agrobacterium tumefaciens-mediated transformation. After tissue culture, we obtained 15 regeneration plants that were PCR-positive. After inoculation, one regeneration plant showed resistance to PVY, three to CMV, and one to both PVY and CMV. We first obtained multiple virus resistance transgenic tobacco plants using aptamer strategy.
     The most effective siRNA and region degraded PVX CP gene, CMV CP gene and PVY HC-Pro gene were screened using software and then constructed the reverse repeat plant expression vector. The vector was introduced into tobacco plants (K326) via agrobacterium tumefaciens-mediated transformation. Among the 22 regeneration plants, two were resistant to PVY, eight resistant to CMV, six resistant to PVX, and one resistant to PVY, CMV and PVX together. ELISA and real-time RT-PCR showed that virus accumulation in transgenic plants was lower than that in the susceptible control. This indicated that screened effective siRNA could degrade virus mRNA specifically and restrain virus replication.
     The complete genomic sequence of TVBMV-YND, an isolate from Yunnan, was determined by sequencing overlapping cDNA fragments obtained by RT-PCR with degenerate and/or specific primers. The genome is composed of 9,570 nucleotides (nt) excluding the 3′-terminal poly(A) tail and contains one single open reading frame of 9,240 nt encoding a large polyprotein of 3,079 amino acids with predicted Mr of 348.6 kDa. TVBMV-YND had a rare Q/N cleavage site for NIb/CP and uncommon RITC motif in HC-Pro that is crucial for aphid transmission of potyviruses.
     The CP gene of TVBMV YND was cloned into expression vector pET22b(+) and transferred into E.coli BL21(DE3). SDS-PAGE showed TVBMV CP gene was expressed as a 35.0 kDa fusion protein to high level when induced with IPTG. Antiserum against TVBMV CP obtained with the fusion protein, and resulting titer was 1:4 096 by ELISA. Western blotting and dot-immunobinding assay (DIBA) results showed that the acquired antiserum could specifically react with both TVBMV CP expressed in E.coli and extracts from diseased plants. Nine, except P3, of 10 TVBMV proteins were successfully expressed in E.coli. Solubility analysis showed that the soluble protein in the HC-Pro, NIa-VPg and CP proteins were suitable for purification, while others weren’t because the soluble parts were lower than 10%. Structures prediction of TVBMV proteins using bioinformatics software showed that 6K2 and P3 were transmembrane proteins while others were not. All the results are useful to the crystalization and structure/function researches of TVBMV proteins.
引文
1.白庆荣,朱俊华,刘晓玲,朱常香,宋云枝,温孚江.利用RNA介导的抗病性获得抗2种病毒的转基因烟草.植物病理学报, 2005, 35(2): 148-154
    2.陈炯,陈剑平. Potyvirus属成员基因组全序列的简并引物PCR和RACE扩增方法.病毒学报, 2002, 18(4): 371-374
    3.陈瑞泰.台湾省烟草病毒病害简要综述.中国烟草科学, 1997 (1): 29-33
    4.邓丛良,韩丽娟,燕照玲,程玉琴,周涛,李怀方.白草花叶病毒CP基因在大肠杆菌中的表达及抗血清的制备.植物病理学报, 2005, 35(5): 442-445
    5.邓丛良.白草花叶病毒原的分子变异与鉴定.中国农业大学博士学位论文,北京, 2004, 6
    6.高瑞,刘金亮,兰玉菲,王洁,李向东.黄瓜花叶病毒外壳蛋白基因的克隆、原核表达及抗血清制备.植物保护学报, 2007, 34 (3): 335-336
    7.郭兴启,吕士恩,朱常香,宋云枝,孟祥兵,郑成超,温孚江.利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草.植物病理学报, 2001, 31(4): 350-356
    8.兰玉菲,刘金亮,高瑞,王红艳,朱天生,竺晓平,李向东.烟草脉带花叶病毒CP基因的原核表达及抗血清制备.植物病理学报, 2007, 37 (5): 461-466
    9.李鹏,宋云枝,刘晓玲,朱常香,温孚江.马铃薯Y病毒CP基因5′端和3′端反向重复结构介导的抗病性研究.植物病理学报, 2007, 37(1): 69-76
    10.李向东.玉米矮花叶病毒HC-Pro的提纯及其在蚜虫穿度过程中的作用机制.中国农业大学博士论文, 1999
    11.刘金亮,于晓庆,田延平,都杰,竺晓平,李向东,严敦余.潍坊萝卜中芜菁花叶病毒分离物的分子特性及CP基因的原核表达.园艺学报, 2006, 33(1): 83-88
    12.刘金亮.四种马铃薯Y病毒属病毒的分子变异及HC-Pro结构对抑制RNA沉默的影响.山东农业大学博士学位论文, 2007.7
    13.刘玉乐,田波.植物双生病毒研究进展.中国病毒学, 1998, 13(1): 6-16
    14.田延平.三种马铃薯Y病毒属病毒的分子特性.山东农业大学硕士学位论文, 2007.6
    15.王红艳.芜菁花叶病毒与烟草脉带花叶病毒全基因组序列测定及分析.山东农业大学硕士学位论文, 2008.6
    16.于晓庆.马铃薯X病毒和烟草脉带花叶病毒的分子变异与协生作用.山东农业大学博士学位论文, 2008.6
    17.张仲凯,方琦,吴自强,何云昆,李云海,黄兴奇.云南主要茄科作物病毒种类及其分布.云南大学学报(自然科学版) , 1998, 20(2): 128-131
    18.张仲凯,李毅.云南植物病毒.北京:科学出版社, 2001
    19.朱常香,宋云枝,温孚江.多抗PVY、TMV和CMV转基因烟草的培育.中国农业科学,2008, 41(4): 1040-1047
    20.朱贤朝,王彦亭,王智发.中国烟草病害.北京:中国农业出版社, 2002
    21. Aaziz R, Tepfer M. Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol , 1999, 80: 1339-1346
    22. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232: 738-743
    23. Adams MJ, Antoniw JF, Beaudoin F. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol, 2005, 6: 471-487
    24. Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins FJ, Hohn T, Pooggin MM. Molecular characterization of geminivirusderived small RNAs in different plant species. Nucleic Acids Res, 2006, 34: 462-471
    25. Alvarez JP, Pekker, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell, 2006, 18: 1134-1151
    26. Anderson EJ, Stark DM, Nelson RS, Tumer NE, Beachy RN. Transgenic plants that express the coat protein genes of Tobacco mosaic virus or Alfalfa mosaic virus interfere with disease development of some nonrelated viruses. Phytopathology, 1989, 79: 1284-1290
    27. Anindya R, Joseph J, Gowri TDS, Savithri HS. Complete genomic sequence of. Pepper vein banding virus (PVBV): a distinct member of the genus Potyvirus. Arch Virol, 2004, 149: 625-632
    28. Anjos JR, Jarflors U, Ghabrial SA. Soybean mosaic potyvirus enhances the titer of two comoviruses in dually infected soybean plants. Phytopathology, 1992, 82: 1022-1027
    29. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195-201
    30. Atreya CD, Raccah B, Pirone TP. A point mutation in the coat protein abolishes aphidtransmissibility of a potyvirus. Virology, 1990, 178: 161-165
    31. Bancroft JB. Plant virus structure. Adv Virus Res, 1970, 16: 99-134
    32. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297
    33. Baulcombe DC. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell, 1996, 8: 1833-1844
    34. Baulcombe DC. RNA silencing in plants. Nature, 2004, 431: 356-363
    35. Bazzini AA, Asurmendi S, Hopp HE, Beachy RN. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J Gen Virol, 2006, 87: 1005-1012
    36. Beachy RN. Coat-protein-mediated resistance to Tobacco mosaic virus: discovery mechanisms and exploitation. Philos Trans R Soc Lond B Biol Sci, 1999, 354: 659-664
    37. Bendahmane M, Fitchen JH, Zhang G, Beachy RN. Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance. J Virol, 1997, 71: 7942-7950
    38. Bian XY, Rasheed MS, Seemanpillai MJ, Ali Rezaian M. Analysis of silencing escape of Tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe Interact, 2006, 19: 614-624
    39. Bonnet E, Van de Peer Y, Rouze P. The small RNA world of plants. New Phytol, 2006, 171: 451-468
    40. Boonrod K, Galetzka D, Nagy PD, Conrad U, Krczal G. Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol, 2004, 22: 856-862
    41. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J , 2006, 25: 3347-3356
    42. Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M. Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol, 2006, 87: 3697-3701
    43. Butz K, Denk C, Fitscher B, Crnkovic-Mertens I, Ullmann A, Schroder C, Hoppe-Seyler F. Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene, 2001, 20: 6579-6586
    44. Cabantous S, Pedelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS. Recent advances in GFP folding reporter and split-GFP solubility reporter technologies.Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis, J Struct Funct Genomics, 2005, 6: 113-119
    45. Calvert LA, Ghabrial SA. Enhancement by Soybean mosaic virus of bean pod mottle virus titer in doubly infected soybean. Phytopathol, 1983, 73: 992-997
    46. Carrington JC, Haldeman R, Dolja VV, Restrepo-Hartwig MA. Internal cleavage and transproteolytic activities of VPg-Proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol, 1993, 70: 2556-2561
    47. Caspar DLD. Assembly and stability of the Tobacco mosaic tobamovirus particle. Adv Protein Chem, 1963, 18: 37-121
    48. Cattaneo A, Biocca S. The selection of intracellular antibodies. Trends Biotechnol, 1999, 17: 115-121
    49. Chang BY, Huang CR, Yeh SD, Chiang JK, Hung LM, Hu HY. Nucleotide sequence of the coat protein coding region of the potyvirus Tobacco vein-banding mosaic virus. Archives of Virology, 1994, 138: 17-25
    50. Chen Y, Lohuis D, Goldbach R, Prins M. High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol Breed, 2004, 14: 215-226
    51. Chiang CH, Lee CY, Wang CH, Jan FJ, Lin SS, Chen TC, Raja JAJ, Yeh SD. Genetic analysis of an attenuated papaya ringspot virus strain applied for cross protection. Eur J Plant Pathol , 2007, 118: 333-348
    52. Chin WT. A survey of Tobacco mosaic viruses in central Taiwan. Agric Ass China, 1966, 55: 85-88
    53. Chin. WT. Relation of aphid populations on field spread of Tobacco vein-banding mosaic virus in Taichung. Bull Taiwan Tob Res Inst, 1980, 12: 57-63
    54. Chin. WT. Symptomatological study of Tobacco vein-banding mosaic virus on tobacco plant. Bull Taiwan Tob Res Inst, 1975, 3: 65-70
    55. Chin. WT. Tobacco vein-banding mosaic virus. Taiwan Plant Prot Bull, 1972, 14: 116-124
    56. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 1996, 380: 548-550
    57. Coleman MA, Lao VH, Segelke BW, Beernink PT. High-throughput, fluorescence-based screening for soluble protein expression. J Proteome Res, 2004, 3: 1024-1032
    58. Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology, 1995, 206: 307-313
    59. Covey SN, Al-Kaff NS, Langara A, Turner DS. Plants combat infection by gene silencing. Nature, 1997, 385: 781-782
    60. Crawford M, Woodman R, Ferrigno PK. Peptide aptamers: tools for biology and drug discovery. Brief Funct. Genomic Proteomic, 2003, 2: 72-79
    61. Culver JN. Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol, 2002, 40: 287-308
    62. Culver JN. Tobamovirus cross protection using a potexvirus vector. Virology, 1996, 226: 228-235
    63. Dallot S, Quiot-Douine L, Saenz P, Cervera MT, Garc?a JA, Quiot JB. Identification of Plum pox virus determinants implicated in specific interactions with different Prunus spp. Phytopath, 2001, 91: 159-164
    64. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 2000, 101: 543-553
    65. de Zoeten GA, Gaard G. The presence of viral antigen in the apoplast of systemically virus-infected plants. Virus Res, 1984, 1: 713-725
    66. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science, 2006, 313: 68-71
    67. Dietrich C, Maiss E. Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol, 2003, 84: 2871-2876
    68. Domier LL, Shaw JG, Rhoads RE. Potyviral proteins share amino acid sequence homology with picorn-, como-, and caulimo- viral proteins. Virology, 1987, 158(11): 20-27
    69. Duan CG, Wang CH, Fang RX, Guo HS. Atificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol, 2008, 11: 11084-11095
    70. Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26: 199-213
    71. Elmer JS, Brand L, Sunter G, Gardiner WE, Bisaro DM and Rogers SG. Genetic analysis of tomato golden mosaic virus II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Research, 1988, 16: 7043-7060
    72. Falk BW, Bruening G. Will transgenic crops generate new viruses and new diseases? Science, 1994, 263: 13959-11396
    73. Fortier E, Belote JM. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis, 2000, 26: 240-244
    74. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C and Feldman MW. Evolutionary rate in the protein interaction network. Science, 2002, 296: 750-752
    75. Fritsch C, Stussi C, Witz J, Hirth L. Specificity of TMV RNA encapsidation: in vitro coating of heterologous RNA by TMV protein. Virology, 1973, 56: 33-45
    76. Fulton RW. Superinfection by strains of Tobacco mosaic virus. Phytopathology, 1951, 41: 579-592
    77. Goodman RM, Ross AF. Enhancement of potato virus X synthesis in doubly infected tobacco occurs in doubly infected cells. Virology, 1974, 58: 16-24
    78. Gough KC, Coekburn W, Whitelam GC. Selection of phage-display peptides that bind to Cucumber mosaic virus coat protein. J Virol Methods, 1999, 79:169-180
    79. Griffiths-Jones S. The microRNA registry. Nucleic Acids Reseach, 2004, 32(Database issue): D109-D111
    80. Grzela R, Szolajska E, Ebel C, Madern D, Favier A, Wojtal I, Zagorski W, Chroboczek J. Virulence factor of potato virus Y, genome-attached terminal protein VPg, is a highly disorded protein. J Biol Chem, 2008, 283(1): 213-221
    81. Guex N and Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis, 1997, 18: 2714-2723
    82. Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, 17: 1376-1386
    83. Habera LF, Berger PH, Reddick BB. Molecular evidence from 3'-terminus sequence analysis that Tobacco vein-banding mosaic virus is a distinct member of the potyvirus group. Archives of Virology, 1994, 138 (1-2): 27-38
    84. Haldeman-Cahill R, Daros JA, Carrington JC. Secondary structures in the capsid protein coding sequence and 3' non-translated region involved in amplification of the tobacco etch virus genome. J Virol, 1998, 72: 4072-4079
    85. Hammond J, Lecoq H, Raccah B. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Adv Virus Res, 1999, 54: 189-314
    86. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125: 887-901
    87. Han MH, Goud S, Song L, Fedoroff N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA, 2004, 101: 1093-1098
    88. Herbers K, Tacke E, Hazirezaei M, Krause KP, Melzer M, Rohde W, Sonnewald U. Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant J, 1997, 12: 1045-1056
    89. Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K. Peptide aptamers: specific inhibitors of protein function. Curr Mol Med, 2004, 4: 529-538
    90. Jan FJ, Fagoaga C, Pang SZ, Gonsalves D. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol, 2000, 81: 2103-2109
    91. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19-53
    92. Kalantidis K, Psaradakis S, Tabler M, Tsagris M. The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virusderived double-stranded RNA is indicative of resistance to the virus. Mol Plant-Microbe Interact, 2002, 15: 826-833
    93. Kameda T, Ikegami K, Liu Y, Terada K, Sugiyama T. A hypothermic-temperature-sensitive gene silencing by the mammalian RNAi. Biochem Biophys Res Commun, 2004, 315: 599-602
    94. Klein PG, Klein RR, Rodriguez-Cerezo E, Hunt A, Shaw JG. Mutational analysis of the Tobacco vein mottling virus genome. Virology, 1994, 204: 759-769
    95. Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C. Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol, 2006, 151: 2111-2122
    96. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294: 853-858
    97. Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, Sanders P, Tumer NE. Engineering resistance to mixed virus infection in a commercial potato cultivar:resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Biotechnology, 1990, 8 (2): 127-134
    98. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425: 415-419
    99. Li XH, Valdez P, Olvera RE and Carrington JC. Functions of the tobacco etch virus RNA polymerase (NIb): Subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol, 1997, 71: 1598-1607
    100.Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J, Cai S, Ma J. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun, 2006, 348: 229-237
    101.Lomonossoff GP. Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol, 1995, 33: 323-343
    102.Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L. Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol, 2006, 80: 5841-5853
    103.Lu B, Stubbs G, Culver JN. Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology, 1998, 248: 188-198
    104.Luthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356: 83-85
    105.Makeyev EV, Bamford DH. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell, 2002, 10: 1417-1427
    106.McKinney HH. Mosaic diseases in Canary Islands, West Africa, and Gibraltar. J Agric Res, 1929, 39: 557-578
    107.Merits A, Guo DY, Saarma. VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. Journal of general virology, 1998, 79: 3123-3127
    108.Merits A, Rajam?ki ML, Lindholm P, Runeberg-Roos P, Kekarainen T, Puustinen P, M?kel?inen K, Valkonen JPT, Saarma M. Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol, 2002, 83: 1211-1221
    109.Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing.Mol Breed, 2004, 14: 185-197
    110.Mlotshwa S, Verer J, Sithole-Niang I, Van Kampen T, Van Kampen A, wellink J. The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses. Arch Virol, 2002, 147: 1043-1052
    111.Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA , 2006, 103: 19593-19598
    112.Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H . Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 2000, 101: 533-542
    113.Nicola-Negri D, Brunetti EA, Tavazza M, Ilardi V. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res, 2005, 14: 989-994
    114.Niepel M, Gallie D R. Identification and characterization of the functional elements within the tobacco etch viral 5'-leader required for cap-independent translation. J Virol, 1999, 73: 9080-9088
    115.Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotech, 2006, 24: 1420-1428
    116.Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M. Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J Gen Virol, 2004, 85: 1745-1749
    117.Pedelacq JD, Piltch E, Liong EC, Berendzen J, Kim CY, Rho BS, Park MS, Terwilliger TC, Waldo GS. Engineering soluble proteins for structural genomics. Nat Biotechnol, 2002, 20: 927-932
    118.Prins M, Lohuis D, Schots A, Goldbach R. Phage display selected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. J Gen Virol, 2005, 86: 2107-2113
    119.Prins M, Storms MMH, Kormelink R, De Haan P, Goldbach R. Transgenic tobacco plants expressing the putative movement protein of tomato spotted wilt tospovirus exhibit aberrations in growth and appearance. Transgenic Res, 1997, 6: 245-251
    120.Prins M. Broad virus resistance in transgenic plants. Trends Biotechnol, 2003, 21: 373-375
    121.Qu J, Ye J, Fang R. Artificial miRNA-mediated virus resistance in plants. J Virol, 2007, 81: 6690-6699
    122.Ratcliff F, Harrison BD, Baulcombe DC. A similarity between viral defense and gene silencing in plants. Science, 1997, 276: 1558-1560
    123.Ratcliff FG, MacFarlane SA, Baulcombe DC. Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell, 1999, 11: 1207-1216
    124.Ravi K, Joseph J, Nagaraju N, Krishnaprasad S, Reddy H, Savithri HS. Characterization of a pepper vein banding virus from chilli pepper in India. Plant Dis, 1997, 81: 673-677
    125.Real E, Rain JC, Battaglia V, Jallet C, Perrin P, Tordo N, Chrisment P, D’Alayer J, Legrain P, Jacob Y. Antiviral drug discovery strategy using combinatorial libraries of structurally constrained peptides. J Virol, 2004, 78: 7410-7417
    126.Reddick BB, Collins-Shepard MH, Christie RG, Gooding GV. A new virus-disease in North-America caused by Tobacco vein-banding mosaic virus. Plant Dis, 1992, 76: 856-859
    127.Register JCr, Beachy RN. Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology, 1988, 166: 524-532
    128.Restrepo-Hartwig MA and Carrington JC. The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved inviral replication. J Virol, 1994, 68: 2388-2397
    129.Ribeiro SG, Lohuis H, Goldbach R, Prins M. Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol, 2007, 81: 1563-1537
    130.Rochow WF, Ross AF. Virus multiplication in plants doubly infected by potato viruses X and Y. Virology, 1955, 1: 10-27
    131.Rodríguez-Cerezo E, Shaw JG. Two newly detected nonstructural proteins in potyvirus-infected cells. Virology, 1991, 185: 572-579
    132.Roggero P, Accotto GP, Ciuffo M, et al. First report of Tobacco vein banding mosaic virus in China (Xian, Shaanxi Province) in Datura stramonium and Tobacco. Plant Disease, 2000, 84 (10): 1151-1156
    133.Rubio T, Borja M, Scholthof HB, Jackson AO. Recombination with host transgenes and effects on virus evolution: an overview and opinion. Mol Plant Microbe Interact, 1999, 12: 87-92
    134.Rucker E, Schneider G, Steinhauser K, Lower R, Hauber J, Stauber RH. Rapidevaluation and optimization of recombinant protein production using GFP tagging. Protein Expr Purif, 2001, 21: 220-223
    135.Rudolph C, Schreier PH, Uhrig JF. Peptide-mediated broadspectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA, 2003, 100: 4429-4434
    136.Sanford JC, Johnston SA. The concept of pathogen derived resistance: deriving resistance genes from the parasite’s own genome. J Theor Biol, 1985, 113: 395-405
    137.Sarkar S, Smitamana P. A proteinless mutant of Tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Mol Gen Genet, 1981, 184: 158-159
    138.Schaad MC, Jensen PE, Carrington JC. Formation of plant RNA virus replication complexes on membranes: Role of an endoplasmic reticulum-targeted viral protein. EMBO, 1997, 16: 4049-4059
    139.Schiebel W, Haas B, Marinkovic S, Klanner A, Sanger HL. RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. J Biol, Chem 1993, 268: 11858-11867
    140.Schuster TM, Scheele RB, Adams ML, Shire SJ, Steckert JJ, Potschka M. Studies on the mechanism of assembly of Tobacco mosaic virus. Biophys J, 1980, 32: 313-329
    141.Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18: 1121–1133
    142.Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 2003, 31:3381-3385
    143.Shaw JG, Plaskitt KA, Wilson TM. Evidence that tobacco mosaic virus particles disassemble contranslationally in vivo. Virology, 1986, 148: 326-336
    144.Sherwood JL, Fulton RW. The specific involvment of coat protein in Tobacco mosaic virus cross protection. Virology, 1982, 119: 150-158
    145.Shew HD, Lucas GB. Compendium of tobacco diseases. Minnesota: APS Press, 1991
    146.Shukla DD, Frenkel MJ, Ward CW. Structure and function of the potyvirus genome with special reference to the coat protein coding region. Canadian. Journal of Plant Pathology, 1991, 13(2): 178-191
    147.Sijen T, Wellink J, Hiriart JB and van Kammen A. RNA mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell, 1996, 8: 2277-2294
    148.Sleat DE, Gallie DR, Watts JW, Deom CM, Turner PC, Beachy RN, Wilson TM. Selective recovery of foreign gene transcripts as virus-like particles in TMV-infected transgenic tobaccos. Nucleic Acids Res, 1988, 16: 3127-3140
    149.Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG and Waterhouse PM. Totalsilencing by intron-spliced hairpin RNAs. Nature 2000, 407: 319-320
    150.Sonoda S, Koiwa H, Kanda K, Kato H, Shimono M, Nishiguchi M. The helper component-proteinase of Sweet potato feathery mottle virus facilitates systemic spread of Potato virus X in Ipomoea nil. Phytopathology, 2000, 90: 944-950
    151.Spetz C, Valkonen JP. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Molecular Plant-Microbe Interactions, 2004, 17: 502-510
    152.Suehiro N, Natsuaki T, Watanabe T, Okuda S. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 2004, 85: 2087-2098
    153.Sunkar R and Zhu JK. Novel and stress-regulated miRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001-2019
    154.Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J, 2003, 22: 633-640
    155.Tang G., Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes Dev, 2002, 17: 49-63
    156.Tavladoraki P, Benvenuto E, Trinca S, Martinis DD, Cattaneo A, Galeffi P. Transgenic plants expressing a functional single chain Fv antibody are specifically protected from virus attack. Nature, 1993, 365: 469-472
    157.Tepfer M. Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol, 2002, 40: 467-491
    158.Thomas CL, Jones L, Baulcombe DC, Maule AJ. Size constraints for targeting posttranscriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector, Plant Journal, 2001, 25 (4): 417-425
    159.Tian YP, Liu JL, Yu XQ, Lei LP, Zhu XP, Valkonen JPT, Li XD. Molecular diversity of Tobacco vein banding mosaic virus. Archives of Virology, 2007, 152: 1911-1915
    160.Turpen T. Molecular cloning of a potato virus Y genome: nucleotide sequence homology in non-coding regions of potyviruses. J Gen Virol, 1989, 70: 1951-1960
    161.Uhrig JF. Response to Prins: broad virus resistance in transgenic plants. Trends Biotechnol, 2003, 21: 376-377
    162.Urcuqui-Inchima S, Walter J, Drugeon G, German-Retana S, Haenni AL, Candresse T, Bernardi F, Le-Gall O. Potyvirus helper component-proteinase self-interaction in theyeast two-hybrid system and delineation of the interaction domain involved.Viology, 1999, 258: 95-99
    163.Vance VB. Replication of potato virus X is altered in coinfections with potato virus Y. Virology, 1991, 182: 486-494
    164.Vaucheret H, Vazquez F, Crete P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18: 1187-1197
    165.Vazquez F, Gasciolli V, Crete P, Vaucheret H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol, 2004, 14: 346-351
    166.Voloudakis AE, Aleman-Verdaguer ME, Padgett HS, Beachy RN. Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion and assembly mutants of the Tobacco etch potyvirus coat protein. Arch Virol, 2005, 150: 2567-2582
    167.Waldo GS, Standish BM, Berendzen J, Terwilliger TC. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol, 1999, 17: 691-695
    168.Wang MB, Abbott DC, Waterhouse PM. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol, 2000, 1: 347-356
    169.Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA-induced gene silencing. Nat Genet Rev, 2003, 4(1): 29-38
    170.Wintermantel WM. Co-infection of Beet mosaic virus with beet yellowing viruse leads to increased symptom expression on sugar beet. Plant Dis, 2005, 89: 325-331
    171.Wu XJ, Beachy RN, Wilson TM, Shaw JG. Inhibition of uncoating of Tobacco mosaic virus particles in protoplasts from transgenic tobacco plants that express the viral coat protein gene. Virology, 1990, 179: 893-895
    172.Xie Z, Fan B, Chen C, Chen Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci USA , 2001, 98: 6516-6521
    173.Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol, 2004, 2: 642-652
    174.Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA , 2005, 11: 220-226
    175.Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003, 17: 3011–3016
    176.Yoon JY, Ahn HI, Kim M, Tsuda S, Ryu KH. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Res, 2006, 118: 23-30
    177.Yu XQ, Lan YF, Wang HY, Liu LJ, Zhu XP, Valkonen JPT, Li XD. The complete genomic sequence of Tobacco vein banding mosaic virus and its similarities with other potyviruses. Virus Genes, 2007, 35: 801-806
    178.Zaitlin M. Viral cross-protection: more understanding is need. Phytopathology, 1976, 66: 382-383
    179.Zeng Y, Wagner EJ, Cullen BR. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 2002, 9: 1327-1333
    180.Zimmermann S, Schillberg S, Liao YC, Fischer R. Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol Breed, 1998, 4: 369-379
    181.Zuckerkandl E. Evolutionary processes and evolutionary noise at the molecular level. I. Functional density in proteins. J Mol Evol, 1976, 7: 167-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700