用户名: 密码: 验证码:
多氯联苯与苯并芘联合作用对机体损伤修复及遗传稳定的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氯联苯(polychlorinated biphenyls, PCBs)与苯并(a)芘(benzo(a)pyrene,BaP)作为两种重要的污染物,因其在环境中广泛存在并可对人体造成包括致癌、致突变在内的多种有害效应而备受关注。现有的研究证实,PCBs在体内可有效的促进BaP的代谢活化,诱导后者转化生成其终致癌物,从而在联合作用时显著增强BaP的遗传毒性效应。由于上述遗传毒性终点效应发生在机体中往往要经过数十年的时间,且二者在环境中浓度较低,因此目前经毒理学研究发现的PCBs与BaP的有害效应在普通人群中得到证实的报道极为少见。鉴于以上原因,探寻机体接触PCBs与BaP后产生的早期应答事件,对于评价和预测这两种重要环境污染物暴露所导致的健康危害意义重大。
     目的:
     各种环境有害因素经过不同途径作用于人体,在绝大多数情况下都会直接或间接地引起相应基因的表达发生变化。和传统的毒理学指标相比,针对毒性相关的基因表达变化的研究能更敏感的反映环境因素的毒性特征。本研究拟以基因表达谱芯片技术探讨在PCBs与BaP联合作用下重要基因功能通路的表达变化,以期发现对二者联合暴露有重要意义的早期应答基因。并以此为线索,对涉及DNA损伤修复、细胞周期以及凋亡状态的部分重要功能通路进行深入的研究,从分子水平上揭示PCBs与BaP联合作用的毒性作用机制,最终为二者联合暴露所致健康危害的早期评价提供实验依据。
     方法:
     本文以HepG2细胞为靶细胞,选择PCBs的代表性同系物PCB126与PCB153为研究对象,设PCB126剂量为1nmol/L, PCB153剂量为10μmol/L, BaP剂量为50μmol/L,以10ml/L二甲基亚砜(DMSO)为溶剂对照组,进行各物质的单独染毒。同时以PCB126、PCB153预处理HepG2细胞48小时后,再与BaP联合染毒24小时。通过表达谱芯片技术检测染毒后细胞相关功能基因的表达变化;根据芯片结果的提示,选择PCB126为PCBs受试物,设PCB126四个剂量组(0.01、0.1、1、10nmol/L)、BaP一个剂量组(50μmol/L),以DNA损伤修复功能、细胞周期及凋亡状态的变化为研究重点,探讨二者联合作用对重要功能通路的影响。以蛋白质免疫印迹技术检测染毒后细胞核苷酸切除修复通路上关键修复因子XPA、XPB、XPC的蛋白表达变化,同时引入BaP代谢活化抑制剂ANF,在降低PCB126与BaP二者所导致的遗传损伤后,进一步探讨联合作用时DNA损伤程度与修复通路功能状态的联系;以流式细胞术检测染毒后细胞周期及凋亡状态的变化,借此寻找PCB与BaP联合暴露的早期效应。为更深入认识二者联合暴露的毒作用终点和毒作用机制,以RNA干扰技术建立芳烃受体低表达的细胞株,为后期研究芳烃受体在二者联合毒作用中所发挥的关键作用提供技术支撑。
     结果:
     BaP单独作用时主要诱导DNA损伤修复基因、细胞周期以及凋亡调控相关基因的表达发生变化,上述功能通路基因的表达变化总体上将有利于细胞维持自身的遗传稳定。PCB126与PCB153单独作用时可有效的诱导代谢酶相关基因的表达,且PCB126的诱导效应明显强于PCB 153。PCBs与BaP联合作用后对DNA损伤修复基因、周期以及凋亡调控基因的表达可产生复杂的不良影响,其诱导模式与BaP单独作用相比有较大的区别。
     PCB126和BaP单独作用均能有效的诱导修复因子XPA的表达上调,与溶剂对照比较,差异有显著性(P<0.01)。与BaP单独作用相比,除最低剂量以外,PCB126和BaP联合作用可明显抑制修复因子XPA的蛋白表达(P<0.01)。加入抑制剂ANF后,除PCB126最高剂量与BaP联合作用可显著抑制XPA的表达外(P<0.05),其余所有剂量组的XPA表达量均恢复至溶剂对照DMSO所诱导的水平。
     BaP单独作用可有效的抑制修复因子XPB的表达,与溶剂对照比较,差异有显著性(P<0.01);PCB126单独作用可有效诱导修复因子XPB的表达量升高,在浓度为1nmol/l和10nmol/l时差异有统计学意义。与BaP单独作用相比,PCB126和BaP联合作用可有效的诱导修复因子XPB的蛋白表达(P<0.01)。加入抑制剂ANF后,除PCB126单独作用在浓度为1nmol/l和10nmol/l的条件下仍可诱导修复因子XPB表达上调(P<0.01)外,其余所有剂量组的XPB表达量均恢复至溶剂对照DMSO所诱导的水平。
     PCB126和BaP单独作用时对修复因子XPC的表达量均没有明显影响。与BaP单独作用相比,除最低剂量以外,PCB126和BaP联合作用可明显抑制修复因子XPC的蛋白表达(P<0.01)。加入抑制剂ANF后,除PCB126最高剂量与BaP联合作用可显著抑制XPC的表达外(P<0.05),其余所有剂量组的XPC表达量均恢复至溶剂对照DMSO所诱导的水平。BaP单独作用可使细胞G1期比例上升,同时使其S期比例下降,与溶剂对照比较,差异有显著性(P<0.01); PCB126单独作用可使细胞G1期比例下降,而同时使G2期比例上升,与溶剂对照比较,差异有显著性(P<0.01);与BaP单独作用比较,PCB126和BaP联合作用可使细胞G1期比例下降,二者联合作用可使细胞S期比例上升(P<0.01)。
     BaP单独作用能有效的诱导HepG2细胞发生凋亡,与溶剂对照比较,差异有显著性(P<0.01); PCB126单独作用各剂量组均可有效的诱导HepG2细胞发生凋亡,与溶剂对照比较,差异有显著性(0.01 nmol/l时P<0.05,其余各组P<0.01);与BaP单独作用比较,PCB和BaP联合作用可使HepG2细胞凋亡率显著上升(P<0.01)。
     RNA干扰质粒转染成功的细胞(AhR(-))的AhR蛋白的表达明显低于正常细胞以及阴性对照细胞中的表达水平(P<0.05),与正常细胞比较AhR蛋白下降约18.3%。
     结论:
     (1) PCBs的存在干扰了机体针对BaP所致损伤的有序应答,可能涉及的机制包括抑制机体损伤修复能力、干扰细胞周期以及凋亡的调控。
     (2)上述三条机制的功能状态均是影响BaP暴露结局的关键早期因素,可为PCBs与BaP的健康危害监测提供一定的线索。
     (3)作为共面结构的PCBs, PCB126可通过抑制机体DNA损伤修复能力,影响细胞正常周期及凋亡状态的途径,增强BaP的遗传毒性。
Both of polychlorinated biphenyls (PCBs) and benzoapyrene (BaP) are ubiquitous and important environmental pollutants, can lead to various adverse effects to human being which including carcinogenesis and mutagenesis. Previous studies confirmed that PCBs can effectively induce the bioactivation of BaP to its ultimate carinogenic, and finally enhance the genotoxicity of BaP exposure. But, the adverse effects discovered by toxicology research were few confirmed by epidemiology studies in normal population. For reasons that these end point genotoxic effects can only happen in human after a long period of PCBs and BaP exposure. Base on the fact, to evaluate and predict the adverse effects of exposure of these two environmental pollutants on human health, we need to explore the early effects of damage leading by PCBs and BaP.
     Object
     Although, environmental hazards react with human being in different approach, in most case they can directly or indirectly lead express change of related genes. Compared with the traditional toxicological methods, the research of expression changes of toxicity related genes can be a more sensitive indicator to reflect the characteristics of environmental factors. In the present study, to find out the early response genes, we employed expression microarray to investigate the gene expression changes on several important pathways after co-exposure to PCBs and BaP. Then base on the result of microarray, we focus our research on three important pathways:DNA damage repair, cell cycle and apoptosis. By. these studies we try to explain the toxic mechanism of PCBs and BaP co-exposure, and finally provide technological support for early evaluation of the health hazard leading by PCBs and BaP.
     Methods
     In present study, HepG2 was used as the target cells, PCB126 and PCB153 were chosen as the representative congers of PCBs. Cells were treated with PCB126 (lnmol/L), PCB153 (10μmol/L) and BaP (50μmol/L) for 72h alone, or pretreated with PCB126 and PCB153 for 48h then co-treated with BaP and PCBs, DMSO (10ml/L) was used as solvent control. Gene expression changes on important pathways were evaluated by gene expression microarray. Base on the results of microarray, we chose PCB126 (0.01,0.1,1, and 10nmol/L)and BaP (50μmol/L) as research compounds, to evaluate their effect on DNA damage repair, cell cycle and apoptosis. The protein expression levels of nucleotide excision repair (NER) factors XPA, XPB and XPC were detected; this experiments were carried out again with the BaP bioactivation inhibitor ANF, to evaluate the relationship between DNA damage and repair capability. Cell cycle and apoptosis change were detected by flow cytometry. For following studies to explore the role of aryl hydrocarbon receptor (AhR) in PCBs and BaP synergism, we developed stably transfected HepG2 cell line with low expression of AhR.
     Result
     Exposure to BaP mainly lead to expression change of DNA damage repair genes, cell cycle and apoptosis regulation genes, all of these changes will benefit the cells to maintain their genetic integrity. Exposure to PCB126 or PCB153 alone could induce the expression of genes related with metabolism, and meanwhile the inductive capability of PCB126 is higher than PCB153. The expression profiling of PCB126 and BaP co-exposure was quite different with BaP alone, it led a complex adverse expression effect on damage repair genes, cell cycle and apoptosis regulation genes.
     Exposure to BaP or PCB126 alone induced the expression of XPA, compared with solvent control respectively (P<0.01). Compared with BaP alone, co-exposure to PCB126 and BaP inhibited the expression of XPA (P<0.01) except for the co-exposure to 0.01-nM PCB126 and BaP (P>0.05). After add ANF, except for the co-exposure to 10-nM PCB126 and BaP could inhibited the expression of XPA, other groups were recovery to level of solvent control.
     Exposure to BaP alone inhibited the expression of XPB, compare with solvent control (P<0.01). Exposure to PCB126 alone induce the expression of XPB, at the concentration of 1-nM and 10-nM (P<0.01). Compared with BaP alone, co-exposure to PCB126 and BaP induced the expression of XPB (P<0.01). After add ANF, except for the exposure to 1-nM and 10-nM PCB126 alone could induce the expression of XPB, other groups were recovery to level of solvent control.
     No statistically significant change of XPC expression was observed in cells exposed to BaP or PCB126 alone, compared with solvent control respectively (P>0.05). Compared with BaP alone, co-exposure to PCB126 and BaP inhibited the expression of XPC (P<0.05), except for the co-exposure to 0.01-nM PCB126 and BaP (P>0.05). After add ANF, except for the co-exposure to 10-nM PCB126 and BaP could inhibited the expression of XPC, other groups were recovery to level of solvent control.
     Exposure to BaP alone caused a significant increase of the percentage of cells at G1 phase but decrease it at S, compared with DMSO solvent control (P<0.01). Exposure to PCB126 alone caused a significant decrease of the percentage of cells at G1 but increase it at G2, compared with DMSO solvent control (P<0.01). Compared with BaP alone, co-exposure to PCB126 and BaP could effectively decrease the percentage of cells at G0/G1 phase, but increase the percentage of cells at S phase (P<0.01).
     Exposure to BaP or PCB126 alone caused a significant increase of apoptosis, compared with DMSO solvent control (P<0.05). Compared with BaP alone., co-exposure to PCB126 and BaP could effectively increase the apoptosis of HepG2 (P<0.01).
     Compare with the normal cell, the protein expression of AhR in RNA inference cells was decreased by 18.3%.
     Conclusion
     (1) PCBs could affect the ordered response of organism to the damage leading by BaP exposure, which may be caused by inhibit the damage repair capability, interfere the cell cycle and apoptosis process.
     (2) All of mechanisms mentioned above are important factors, which can interfere the outcome of BaP exposure and provide technological support for evaluation of the health hazard leading by PCBs and BaP.
     (3) As the represent of coplanar PCBs, PCB126 can enhance the genotoxicity of BaP, which caused by inhibiting the DNA damage repair capability, interfering the normal cell cycle and apoptosis process.
引文
1. Jordan, S.A. and Feeley, M.M. PCB congener patterns in rats consuming diets containing Great Lakes salmon:analysis of fish, diets, and adipose tissue, Environ Res,1999,80:S207-S212.
    2. Sewart, A. and Jones, K.C. A survey of PCB congeners in U.K. cows'milk, Chemosphere,1996,32:2481-2492.
    3. Lindell, M.J., Bremle, G, Broberg, O. and Larsson, P. Monitoring of persistent organic pollutants (POPs):examples from Lake Vattern, Sweden, Ambio,2001, 30:545-551.
    4. Schwenk, M., Gabrio, T., Papke, O. and Wallenhorst, T. Human biomonitoring of polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofuranes in teachers working in a PCB-contaminated school, Chemosphere,2002,47:229-233.
    5. Borlakoglu, J.T., Scott, A., Wolf, C.R., Pangrekar, J. and Sikka, H.C. Treatment of lactating rats with PCBs induces CYP1A1 and enhances the formation of BP 7,8-dihydrodiol, the proximate carcinogen of benzo(a)pyrene, Int J Biochem, 1993,25:1209-1214.
    6. Boysen, G and Hecht, S.S. Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods, Mutat Res, 2003,543:17-30.
    7. 夏世钧分子毒理学基础,湖北科学技术出版社,2001.
    8. Boles, T.C. and Hogan, M.E. Site-specific carcinogen binding to DNA, Proc Natl AcadSci U S A,1984,81:5623-5627.
    9. Marshall, C.J., Vousden, K.H. and Phillips, D.H. Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide, Nature,1984,310:586-589.
    10. Conney, A.H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons:G. H. A. Clowes Memorial Lecture, Cancer Res,1982,42:4875-4917.
    11. Kim, D. and Guengerich, F.P. Cytochrome P450 activation of arylamines and heterocyclic amines, Annu Rev Pharmacol Toxicol,2005,45:27-49.
    12. Courier, L.A., Musafia-Jeknic, T., Fischer, K., Bildfell, R., Giovanini, J., Pereira, C. and Baird, W.M. Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1, Toxicol Sci,2007,95: 63-73.
    13. Gelboin, H.V. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes, Physiol Rev, 1980,60:1107-1166.
    14. Shimada, T., Martin, M.V., Pruess-Schwartz, D., Marnett, L.J. and Guengerich., F.P. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene,7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, Cancer Res,1989, 49:6304-6312.
    15. Ishaq, R., Naf, C., Zebuhr, Y., Broman, D. and Jarnberg, U. PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples—patterns and variations, Chemosphere,2003,50:1131-1150.
    16. Ghosh, U., Zimmerman, J.R. and Luthy, R.G PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability, Environ Sci Technol,2003,37:2209-2217.
    17. Connor, K., Safe, S., Jefcoate, C.R. and Larsen, M. Structure-dependent induction of CYP2B by polychlorinated biphenyl congeners in female Sprague-Dawley rats, Biochem Pharmacol,1995,50:1913-1920.
    18. Hansen, T., Borlak, J. and Bader, A. Cytochrome P450 enzyme activity and protein expression in primary porcine enterocyte and hepatocyte cultures, Xenobiotica,2000,30:27-46.
    19. Dubois, M., Plaisance, H., Thome, J.P. and Kremers, P. Hierarchical cluster analysis of environmental pollutants through P450 induction in cultured hepatic cells, Ecotoxicol Environ Saf,1996,34:205-215.
    20. Roelandt, L., Todaro, A., Thome, J.P. and Kremers, P. Effects of PCBs (Aroclor 1254) on cytochrome-P450 expression and monooxygenase activities in cultured foetal rat hepatocytes, Toxicology,1995,98:95-103.
    21. Wei, W., Zhang, C, Liu, A.L., Xie, S.H., Chen, X.M. and Lu, W.Q. Effect of PCB153 on BaP-induced genotoxicity in HepG2 cells via modulation of metabolic enzymes, Mutat Res,2009,675:71-76.
    22. Wei, W., Zhang, C., Liu, A.L., Xie, S.H., Chen, X.M. and Lu, W.Q. PCB126 enhanced the genotoxicity of BaP in HepG2 cells by modulating metabolic enzyme and DNA repair activities, Toxicol Lett,2009,189:91-95.
    23.陈学敏现代环境卫生学,人民卫生出版社,2008.
    24. Knasmuller, S., Parzefall, W., Sanyal, R., Ecker, S., Schwab, C., Uhl, M., Mersch-Sundermann, V., Williamson, G, Hietsch, G, Langer, T., Darroudi, F. and Natarajan, A.T. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens, Mutat Res,1998,402:185-202.
    25. Knasmuller, S., Mersch-Sundermann, V., Kevekordes, S., Darroudi, F., Huber, W.W., Hoelzl, C., Bichler, J. and Majer, B.J. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge, Toxicology,2004,198:315-328.
    26. Feretti, D., Zerbini, I., Ceretti, E., Villarini, M., Zani, C., Moretti, M., Fatigoni, C., Orizio, G, Donato, F. and Monarca, S. Evaluation of chlorite and chlorate genotoxicity using plant bioassays and in vitro DNA damage tests, Water Res, 2008.
    27. Hu, C., Jiang, L., Geng, C., Zhang, X., Cao, J. and Zhong, L. Possible involvement of oxidative stress in trichloroethylene-induced genotoxicity in human HepG2 cells, Mutat Res,2008,652:88-94.
    28. McFarland, V.A. and Clarke, J.U. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners:considerations for a congener-specific analysis, Environ Health Perspect,1989,81:225-239.
    29. Safe, S., Bandiera, S., Sawyer, T., Robertson, L., Safe, L., Parkinson, A., Thomas, P.E., Ryan, D.E., Reik, L.M., Levin, W. and et al. PCBs:structure-function relationships and mechanism of action, Environ Health Perspect,1985,60: 47-56.
    30. Wei, Q., Li, L. and Chen, D.J. DNA REPAIR, GENETIC INSTABILITY, AND CANCER, World Scientific Publishing,2007.
    31. Lehmann, A.R. The xeroderma pigmentosum group D (XPD) gene:one gene, two functions, three diseases, Genes Dev,2001,15:15-23.
    32. Costa, R.M., Chigancas, V., Galhardo Rda, S., Carvalho, H. and Menck, C.F. The eukaryotic nucleotide excision repair pathway, Biochimie,2003,85:1083-1099.
    33. Sancar, A. DNA excision repair, Annu Rev Biochem,1996,65:43-81.
    34. Modrich, P. and Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology, Annu Rev Biochem,1996,65:101-133.
    35. Sarasin, A. and Stary, A. Human cancer and DNA repair-deficient diseases, Cancer Detect Prev,1997,21:406-411.
    36. Thompson, L.H. and Schild, D. Recombinational DNA repair and human disease, Mutat Res,2002,509:49-78.
    37. Gunz, D., Hess, M.T. and Naegeli, H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism, J Biol Chem,1996,271:25089-25098.
    38. Braithwaite, E., Wu, X. and Wang, Z. Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts:involvement of two excision repair mechanisms in vitro, Carcinogenesis,1998,19:1239-1246.
    39. Platt, K.L., Aderhold, S., Kulpe, K. and Fickler, M. Unexpected DNA damage caused by polycyclic aromatic hydrocarbons under standard laboratory conditions, Mutat Res,2008,650:96-103.
    40. Friedberg, E.C. How nucleotide excision repair protects against cancer, Nat Rev Cancer,2001,1:22-33.
    41. Wood, R.D. Nucleotide excision repair in mammalian cells, J Biol Chem,1997, 272:23465-23468.
    42. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D. and et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23, Embo J, 1994,13:1831-1843.
    43. van der Spek, P.J., Eker, A., Rademakers, S., Visser, C., Sugasawa, K., Masutani, C., Hanaoka, F., Bootsma, D. and Hoeijmakers, J.H. XPC and human homologs of RAD23:intracellular localization and relationship to other nucleotide excision repair complexes, Nucleic Acids Res,1996,24:2551-2559.
    44. Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S. and Hanaoka, F. A multistep damage recognition mechanism for global genomic nucleotide excision repair, Genes Dev,2001,15:507-521.
    45. de Laat, W.L., Jaspers, N.G. and Hoeijmakers, J.H. Molecular mechanism of nucleotide excision repair, Genes Dev,1999,13:768-785.
    46. Riedl, T., Hanaoka, F. and Egly, J.M. The comings and goings of nucleotide excision repair factors on damaged DNA, Embo J,2003,22:5293-5303.
    47. Reardon, J.T. and Sancar, A. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage, Mol Cell Biol,2002,22:5938-5945.
    48. Miranda, C.L., Henderson, M.C. and Buhler, D.R. Evaluation of chemicals as inhibitors of trout cytochrome P450s, Toxicol Appl Pharmacol,1998,148: 237-244.
    49. Nesnow, S. and Bergman, H. Metabolism of alpha-naphthoflavone by rat liver microsomes, Cancer Res,1981,41:2621-2626.
    50. Moreland, R.J., Tirode, F., Yan, Q., Conaway, J.W., Egly, J.M. and Conaway, R.C.
    A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II, J Biol Chem,1999,274:22127-22130.
    51. Zurita, M. and Merino, C. The transcriptional complexity of the TFIIH complex, Trends Genet,2003,19:578-584.
    52. Leveillard, T., Andera, L., Bissonnette, N., Schaeffer, L., Bracco, L., Egly, J.M. and Wasylyk, B. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations, Embo J,1996,15:1615-1624.
    53. Wang, X.W., Yeh, H., Schaeffer, L., Roy, R., Moncollin, V., Egly, J.M., Wang, Z., Freidberg, E.C., Evans, M.K., Taffe, B.G. and et al. p53 modulation of TFIIH-associated nucleotide excision repair activity, Nat Genet,1995,10: 188-195.
    54. Kim, H.S., Kwack, S.J. and Lee, B.M. Lipid peroxidation, antioxidant enzymes, and benzo[a]pyrene-quinones in the blood of rats treated with benzo[a]pyrene, Chem Biol Interact,2000,127:139-150.
    55. Boyd, J.A. and Barrett, J.C. Genetic and cellular basis of multistep carcinogenesis, Pharmacol Ther,1990,46:469-486.
    56. Harris, C.C. Chemical and physical carcinogenesis:advances and perspectives for the 1990s, Cancer Res,1991,51:5023s-5044s.
    57. Klaassen, C.D. Casarett and Doull's Toxicology:the basic science of poisons, McGraw-Hill,2001.
    58. Hayes, M.A., Safe, S.H., Armstrong, D. and Cameron, R.G. Influence of cell proliferation on initiating activity of pure polychlorinated biphenyls and complex mixtures in resistant hepatocyte in vivo assays for carcinogenicity, J Natl Cancer Inst,1985,74:1037-1041.
    59. Preston, B.D., Van Miller, J.P., Moore, R.W. and Allen, J.R. Promoting effects of polychlorinated biphenyls (Aroclor 1254) and polychlorinated dibenzofuran-free Aroclor 1254 on diethylnitrosamine-induced tumorigenesis in the rat, J Natl Cancer Inst,1981,66:509-515.
    60. Norbury, C.J. The cancer cell cycle, in:M.A. Knowles and P.J. Selby (Eds.), Introduction to the Cellular and Molecular Biology of Cancer, Oxford University Press,2005, pp.156-157.
    61. Pitot, H.C. and Dragan, Y.P. Chemical Carcinogenesis, in:Casarett and Doull's Toxicology The Basic Science of Poisons, McGraw-Hill,2002, pp.267-279.
    62. Schulte-Hermann, R., Bursch, W., Kraupp-Grasl, B., Oberhammer, F., Wagner, A. and Jirtle, R. Cell proliferation and apoptosis in normal liver and preneoplastic foci, Environ Health Perspect,1993,101 Suppl 5:87-90.
    63. Silberhorn, E.M., Glauert, H.P. and Robertson, L.W. Carcinogenicity of polyhalogenated biphenyls:PCBs and PBBs, Crit Rev Toxicol,1990,20: 440-496.
    64. Anderson, L.M., Ward, J.M., Fox, S.D., Isaaq, H.J. and Riggs, C.W. Effects of a single dose of polychlorinated biphenyls to infant mice on N-nitrosodimethylamine-initiated lung and liver tumors, Int J Cancer,1986,38: 109-116.
    65. Hirose, M., Shirai, T., Tsuda, H., Fukushima, S., Ogiso, T. and Ito, N. Effect of phenobarbital, polychlorinated biphenyl and sodium saccharin on hepatic and renal carcinogenesis in unilaterally nephrectomized rats given N-ethyl-N-hydroxyethylnitrosamine orally, Carcinogenesis,1981,2:1299-1302.
    66. Ito, N., Tatematsu, M., Hirose, M., Nakanishi, K. and Murasaki, G. Enhancing effect of chemicals on production of hyperplastic liver nodules induced by n-2-fluorenylacetamide in hepatectomized rats, Gann,1978,69:143-144.
    67. Nishizumi, M. Enhancement of diethylnitrosamine hepatocarcinogenesis in rats by exposure to polychlorinated biphenyls or phenobarbital, Cancer Lett,1976,2: 11-15.
    68. Blagosklonny, M.V. and Pardee, A.B. The restriction point of the cell cycle, Cell Cycle,2002,1:103-110.
    69. Zetterberg, A., Larsson, O. and Wiman, K.G. What is the restriction point?, Curr
    Opin Cell Biol,1995,7:835-842.
    70. D'Agostini, F., Balansky, R.M., Izzotti, A., Lubet, R.A., Kelloff, GJ. and De Flora, S. Modulation of apoptosis by cigarette smoke and cancer chemopreventive agents in the respiratory tract of rats, Carcinogenesis,2001,22: 375-380.
    71. Manning, F.C. and Patierno, S.R. Apoptosis:inhibitor or instigator of carcinogenesis?, Cancer Invest,1996,14:455-465.
    72. Waalkes, M.P., Fox, D.A., States, J.C., Patierno, S.R. and McCabe, M.J., Jr. Metals and disorders of cell accumulation:modulation of apoptosis and cell proliferation, Toxicol Sci,2000,56:255-261.
    73. Domon, O.E., McGarrity, L.J., Bishop, M., Yoshioka, M., Chen, J.J. and Morris, S.M. Evaluation of the genotoxicity of the phytoestrogen, coumestrol, in AHH-1 TK(+/-) human lymphoblastoid cells, Mutat Res,2001,474:129-137.
    74. Nebert, D.W., Roe, A.L., Dieter, M.Z., Solis, W.A., Yang, Y. and Dalton, T.P. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis, Biochem Pharmacol,2000,59: 65-85.
    75. Machala, M., Vondracek, J., Blaha, L., Ciganek, M. and Neca, J.V. Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay, Mutat Res,2001, 497:49-62.
    76. Burbach, K.M., Poland, A. and Bradfield, C.A. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor, Proc Natl Acad Sci US A,1992,89:8185-8189.
    77. Ema, M., Sogawa, K., Watanabe, N., Chujoh, Y, Matsushita, N., Gotoh, O., Funae, Y. and Fujii-Kuriyama, Y. cDNA cloning and structure of mouse putative Ah receptor, Biochem Biophys Res Commun,1992,184:246-253.
    78. Hankinson, O. The aryl hydrocarbon receptor complex, Annu Rev Pharmacol Toxicol,1995,35:307-340.
    79. Fukunaga, B.N., Probst, M.R., Reisz-Porszasz, S. and Hankinson, O. Identification of functional domains of the aryl hydrocarbon receptor, J Biol Chem,1995,270:29270-29278.
    80. Sogawa, K. and Fujii-Kuriyama, Y. Ah receptor, a novel ligand-activated transcription factor, J Biochem,1997,122:1075-1079.
    81. Kolluri, S.K., Weiss, C, Koff, A. and Gottlicher, M. p27(Kipl) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells, Genes Dev,1999,13:1742-1753.
    82. Matikainen, T., Perez, G.I., Zheng, T.S., Kluzak, T.R., Rueda, B.R., Flavell, R.A. and Tilly, J.L. Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary, Endocrinology,2001,142: 2468-2480.
    1. Jordan S.A. and Feeley M.M. PCB congener patterns in rats consuming diets containing Great Lakes salmon:analysis of fish, diets, and adipose tissue, Environ Res,1999,80:207-212.
    2. Sewart A. and Jones K.C. A survey of PCB congeners in U.K. cows'milk, Chemosphere,1996,32:2481-2492.
    3. Lindell M.J., Bremle G, O. Broberg and P. Larsson Monitoring of persistent organic pollutants (POPs):examples from Lake Vattern, Sweden, Ambio,2001, 30:545-551.
    4. Schwenk M., Gabrio T., O. Papke and T. Wallenhorst Human biomonitoring of polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofuranes in teachers working in a PCB-contaminated school, Chemosphere, 2002,47:229-233.
    5. Polychlorinated Biphenyls and Terphenyls (2ndedition), Environmental Health Criteria 140, World Health Organizaton, Geneva,1993,23-24.
    6.杜欣莉.破坏多氯联苯对生态环境的破坏.节能与环保2003,6:39-41.
    7. Bremle G, Larsson P. PCB in the air during landfilling of a contaminated lake sediment. Atmospheric Environment.1998,32(6):1011-1019.
    8. Jordan SA, Feeley MM. PCB congener patterns in rats consuming diets containing Great Lakes salmon:analysis of fish, diets, and adipose tissue. Environ Res.1999,80(2):207-212.
    9. Maervoet J, Covaci A, Schepens P, Sandau CD, Letcher RJ. A reassessment of the nomenclature of polychlorinated biphenyl (PCB) metabolites. Environ Health Perspect.2004,112(3):291-4.
    10. Ross G. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol Environ Saf.2004,59(3):275-291.
    11. Position Paper of the American Council on Science and Health:Public Health Concerns about Environmental Polychlorinated Biphenyls (PCBs). Ecotoxicology
    And Environmental Safety.1997, (38):71-84.
    12. Milosevic-Djordjevic O, Grujicic D, Arsenijevic S, Marinkovic D. Monitoring of lymphocyte micronuclei among newborns from Kragujevac in Central Serbia before and after environmental contamination. Tohoku J. Exp. Med.2005,205(1): 1-9.
    13.陈伟琪,张珞平,徐立等,厦门港湾沉积物中有机氯农药和多氯联苯的垂直分布特征,海洋科学1996,(2):56-60.
    14.储少岗,杨春,徐晓白,利用氧化铝-改性硅胶联柱分离测定水中多氯联苯,环境化学,1994,13(6)::555-560.
    15.方展强,张润兴,黄铭洪,珠江河口区翡翠贻贝中有机氯农药和多氯联苯含量及分布,环境科学学报,2001,21(1):113-116.
    16.麦碧娴,林峥,张干等,珠江三角洲沉积物中毒害有机物的污染现状及评价,环境科学研究,2001,14(1):19-23.
    17.杨永亮,潘静,李悦,殷效彩,石磊,青岛近岸沉积物中持久性有机污染物多氯萘和多溴联苯醚,科学通报,2003,48(12):2244-2251.
    18.邹小兵,陈丽娟,郑泽根,孟刚,彭必先,POPs在湖泊水生动物中的积累及其危害,重庆大学学报(自然科学版),2003,2(1):87-91.
    19. Chen G, Bunce N.J., Polybrominated diphenyl ethers as Ah receptor agonists and antagonists. Toxicol Sci,2003,76:310-320.
    20. Fu J.M., Mai B.X., Sheng G.Y., et al., Persistent organic pollutants in environment of the Pearl River Delta, China:an overview. Chemosphere,2003,52:1411-1422.
    21. Ghosh U., Zimmerman J.R., Luthy R.G, PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environ Sci Technol,2003,37:2209-2217.
    22. Hallgren S., Darnerud P.O., Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone effects. Toxicology,2002,177: 227-243.
    23. Hooper K., Breast Milk Monitoring Programs (BMMPs):world-wide early warning system for polyhalogenated POPs and for targeting studies in children's environmental health. Environ Health Perspect,1999,107:429-430.
    24. Hooper K., McDonald T.A., The PBDEs:an emerging environmental challenge and another reason for breast-milk monitoring programs. Environ Health Perspect, 2000,108:387-392.
    25. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 18: Polychlorinated Biphenyls and Polybrominated Bipenyls. Lyon:International Agency for Research on Cancer 1978:43-106.
    26. Safe S.H. Polychlorinated biphenyls (PCBs):environmental impact, biochemical and toxic responses, and implications for risk assessment, Crit Rev Toxicol,1994, 24:87-149.
    27. Ghosh U., Zimmerman J.R. and R.G. Luthy PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability, Environ Sci Technol,2003,37:2209-2217.
    28. Ishaq R., Naf C., Y. Zebuhr, D. Broman and U. Jarnberg PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples—patterns and variations, Chemosphere,2003,50:1131-1150.
    29. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 69: Polychlorinated Dibenzo-para-dioxins and Polychlorinated Dibenzofurans. Lyon: International Agency for Research on Cancer,1997:333-343.
    30. Ishaq R., Naf C., Zebuhr Y., et al., PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples-patterns and variations. Chemosphere,2003,50: 1131-50.
    31. Jones K.C., Voogt P., Persistent organic pollutants (POPs):state of the science, Environ Pollut,1999,100:209-221.
    32. James M.O., Kleinow K.M., Zhang Y, et al., Increased toxicity of benzo(a) pyrene-7,8-dihydrodiol in the presence of polychlorobiphenylols. Mar Environ
    Res,2004,58:343-346.
    33. Kozack R., Seo K.Y., Jelinsky S.A., et al., Toward an understanding of the role of DNA adduct conformation in defining mutagenic mechanism based on studies of the major adduct (formed at N(2)-dG) of the potent environmental carcinogen, benzo[a] pyrene. Mutat Res,2000,450:41-59.
    34. Kuiper R.V., Bergman A., Vos J.G., et al., Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes. Aquat Toxicol,2004,68:129-139.
    35. Lee B.M., Jang J.J., Kim HS., Benzo[a]pyrene diol-epoxide-I-DNA and oxidative DNA adducts associated with gastric adenocarcinoma. Cancer Lett,1998,125: 61-68.
    36. Li D., Wang M., Cheng L., et al., In vitro induction of benzo(a)pyrene diol epoxide-DNA adducts in peripheral lymphocytes as a susceptibility marker for human lung cancer. Cancer Res,1996,56:3638-3641.
    37. Mai B.X., Fu J.M., Sheng G.Y., et al., Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut,2002,117:457-474.
    38. McDonald TA. A perspective on the potential health risks of PBDEs. Chemosphere,2002,46:745-755.
    39. McElroy J.A., Kanarek M.S., Trentham-Dietz A., et al., Potential exposure to PCBs, DDT, and PBDEs from sport-caught fish consumption in relation to breast cancer risk in Wisconsin. Environ Health Perspect,2004,112:156-162.
    40. Nesnow S., Ross J.A., Stoner GD., et al., Mechanistic linkage between DNA adducts, mutations in oncogenes and tumorigenesis of carcinogenic environmental polycyclic aromatic hydrocarbons in strain A/J mice. Toxicology, 1995,105:403-413.
    41. Noren K., Meironyte D., Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere,2000,40:1111-23.
    42. Shimada T., Inoue K., Suzuki Y., et al., Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P4501A1,1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice. Carcinogenesis,2002,23:1199-1207.
    43. Van Schanke A., Boon J.P., Aardoom Y, et al., effect of a dioxin-like PCB (CB 126) on the biotransformation and genotoxicity of benzo[a]pyrene in the marine flatfish dab (Limanda limanda). Aqut Toxicol,2000,50:403-415.
    44. Gelboin H.V. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes, Physiol Rev, 1980,60:1107-1166.
    45. Boles T.C. and Hogan M.E. Site-specific carcinogen binding to DNA, Proc Natl Acad Sci USA,1984,81:5623-5627.
    46. Marshall C.J., Vousden K.H. and Phillips D.H. Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide, Nature,1984,310:586-589.
    47. Broccardo C.J., Billings R.E., Chubb L.S., Andersen M.E. and Hanneman W.H. Single cell analysis of switch-like induction of CYP1A1 in liver cell lines, Toxicol Sci,2004,78,287-294.
    48. Fisher J.W., Campbell J., Muralidhara S., Bruckner J.V., Ferguson D., Mumtaz M., Harmon B., Hedge J.M., Crofton K.M., Kim H. and T.L. Almekinder Effect of PCB 126 on hepatic metabolism of thyroxine and perturbations in the hypothalamic-pituitary-thyroid axis in the rat, Toxicol Sci,2006,90:87-95.
    49. Wakui S., Yokoo K., Takahashi H., Muto T., Suzuki Y, Y Kanai, H. Hano, M. Furusato and H. Endou Prenatal 3,3',4,4',5-pentachlorobiphenyl exposure modulates induction of rat hepatic CYP 1A1,1B1, and AhR by 7,12-dimethylbenz[a]anthracene, Toxicol Appl Pharmacol,2006,210:200-211.
    50. Wei Q., Li L. and Chen D.J. DNA REPAIR, GENETIC INSTABILITY, AND CANCER, World Scientific Publishing,2007.
    51. Knasmuller S., Mersch-Sundermann V., Kevekordes S., Darroudi F., Huber W.W., Hoelzl C., Bichler J. and Majer B.J. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge, Toxicology,2004,198:315-328.
    52. Knasmuller S., Parzefall W., Sanyal R., Ecker S., Schwab C., Uhl M., Mersch-Sundermann V., Williamson G, Hietsch G, Langer T., F. Darroudi and A.T. Natarajan Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens, Mutat Res,1998,402:185-202.
    53. Donato M.T., Gomez-Lechon M.J. and Castell J.V. A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates, Anal Biochem,1993,213:29-33.
    54. Natarajan A.T. and Darroudi F. Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens, Mutagenesis,1991,6: 399-403.
    55. Towbin H., Staehelin T. and Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications, Proc Natl Acad Sci USA,1979,76:4350-4354.
    56. Elia G and Santoro M.G Regulation of heat shock protein synthesis by quercetin in human erythroleukaemia cells, Biochem J,1994,300:201-209.
    57. Courter L.A., Musafia-Jeknic T., Fischer K., Bildfell R., Giovanini,J. Pereira C. and Baird W.M. Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1, Toxicol Sci 95 (2007) 63-73.
    58. Shimada T., Martin M.V., Pruess-Schwartz D., Marnett L.J. and Guengerich F.P. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene,7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, Cancer Res,1989,49: 6304-6312.
    59. Conney A.H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons:G H. A. Clowes Memorial Lecture, Cancer Res,1982,42:4875-4917.
    60. Kim D. and Guengerich F.P. Cytochrome P450 activation of arylamines and heterocyclic amines, Annu Rev Pharmacol Toxicol,2005,45:27-49.
    61. Craft E.S., DeVito M.J. and Crofton K.M. Comparative responsiveness of hypothyroxinemia and hepatic enzyme induction in Long-Evans rats versus C57BL/6J mice exposed to TCDD-like and phenobarbital-like polychlorinated biphenyl congeners, Toxicol Sci,2002,68:372-380.
    62. Van den Berg M., Birnbaum L., Bosveld A.T., Brunstrom B., Cook P., Feeley M., Giesy J.P., Hanberg A., Hasegawa R., S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. van Leeuwen, A.K. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern and T. Zacharewski Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environ Health Perspect,1998,106:775-792.
    63. Sanderson J.T., Aarts J.M., Brouwer A., Froese K.L., Denison M.S. and Giesy J.P. Comparison of Ah receptor-mediated luciferase and ethoxyresorufin-O-deethylase induction in H4IIE cells:implications for their use as bioanalytical tools for the detection of polyhalogenated aromatic hydrocarbons, Toxicol Appl Pharmacol,1996,137:316-325.
    64. Nesnow S. and Bergman H. Metabolism of alpha-naphthoflavone by rat liver microsomes, Cancer Res,1981,41:2621-2626.
    65. Miranda C.L., Henderson M.C. and Buhler D.R. Evaluation of chemicals as inhibitors of trout cytochrome P450s, Toxicol Appl Pharmacol,1998,148: 237-244.
    66. Sarasin A. and Human Stary A. cancer and DNA repair-deficient diseases, Cancer Detect Prev,1997,21:406-411.
    67. Modrich P. and Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology, Annu Rev Biochem,1996,65:101-133.
    68. Thompson L.H. and Schild D. Recombinational DNA repair and human disease, Mutat Res,2002,509:49-78.
    69. Costa R.M., Chigancas V., Galhardo Rda S., Carvalho H. and C.F. Menck The eukaryotic nucleotide excision repair pathway, Biochimie,2003,85:1083-1099.
    70. A. Sancar DNA excision repair, Annu Rev Biochem,1996,65:43-81.
    71. Lehmann A.R. The xeroderma pigmentosum group D (XPD) gene:one gene, two functions, three diseases, Genes Dev,2001,15:15-23.
    72. Braithwaite E., Wu X. and Wang Z. Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts:involvement of two excision repair mechanisms in vitro, Carcinogenesis,1998,19:1239-1246.
    73. Gunz D., Hess M.T. and Naegeli H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism, J Biol Chem,1996,271:25089-25098.
    74. Platt K.L., Aderhold S., Kulpe K. and Fickler M. Unexpected DNA damage caused by polycyclic aromatic hydrocarbons under standard laboratory conditions, Mutat Res,2008,650:96-103.
    75. Benhamou S. and Sarasin A. Variability in nucleotide excision repair and cancer risk:a review, Mutat Res,2000,462:149-158.
    76. Yang J., Liu X., Niu P., Zou Y., Gong Z., Yuan J. and Wu T. Dynamic changes of XPA, XPC, XPF, XPG and ERCC1 protein expression and their correlations with levels of DNA damage in human bronchial epithelia cells exposed to benzo[a]pyrene, Toxicol Lett,2007,174:10-17.
    77. Wei W, Zhang C, Liu AL, Xie SH, Chen XM, Lu WQ, Effect of PCB153 on BaP-induced genotoxicity in HepG2 cells by modulation of metabolic enzymes. Mutat Res,2009,675:71-76.
    78. Wei W, Zhang C, Liu AL, Xie SH, Chen XM, Lu WQ, PCB126 enhanced the genotoxicity of BaP in HepG2 cells by modulating metabolic enzyme and DNA repair activities. Toxicol Lett,2009,189:91-95.
    79. Yuan J, Lu WQ, Zou YL, Wei W, Zhang C, Xie H, Chen XM, Influence of Aroclor 1254 on benzo(a)-pyrene induced DNA breakage, oxidative DNA damage and cytochrome P4501A activity in human hepatoma cell line. Environ Toxicol,2009,24,327-333.
    80. Gao P, He P, Wang AG, Xia Tao, Xu BY, Xu ZX, Niu Q, Guo LJ, Chen XM. Influence of PCB153 on oxidative DNA damage and DNA repair-related gene expression induced by PBDE-47 in human neuroblastoma cells in vitro. Toxicol Sci,2009,107:165-170.
    81. He P, Wang AG, Tao X, Gao P, Niu Q, Guo LJ, Xu BY, Chen XM. Mechanism of the neurotoxic effect of PBDE-47 and interaction of PBDE-47 and PCB153 in enhancing toxicity in SH-SY5Y cells. Neurotoxicology,2009,30:10-15.
    82. He P, Wang AG, Xia T, Gao P, Niu Q, Guo LJ, Chen XM. Mechanisms underlying the developmental neurotoxic effect of PBDE-47 and theenhanced toxicity associated with its combination with PCB 153 in rats. Neurotoxicology,200930: 1088-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700