用户名: 密码: 验证码:
WISP-2基因在人脑星形细胞瘤中的表达、作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究Wnt-1诱导分泌蛋白2(WISP-2)基因在人脑星形细胞瘤中的表达情况及其与人脑星形细胞瘤发生、发展的关系。
     方法:采用逆转录聚合酶链反应(RT-PCR)检测47例人脑星形细胞肿瘤、10例正常脑组织中WISP-2的mRNA表达水平,并结合临床资料分析WISP-2表达水平与星形细胞瘤临床指标的相关性关系。
     结果:RT-PCR检测结果显示正常脑组织中无WISP-2 mRNA表达,在星形细胞瘤中相对表达量为0.677±0.445,与正常组比较差异有显著性(t=4.783,P<0.01)。高级别组(Ⅲ,Ⅳ)与低级别组(Ⅰ,Ⅱ)WISP-2 mRNA相对表达量分别为0.924±0.438、0.478±0.344,两者比较差异有显著性(t=3.909,P<0.01),Spearman相关性分析显示WISP-2 mRNA表达水平和肿瘤病理级别具有显著性正相关关系(r=0.448,P=0.002)。WISP-2 mRNA的表达与年龄、性别、肿瘤部位无显著性相关关系(均P>0.05),与肿瘤大小有显著性关系(P<0.05)。
     结论:WISP-2 mRNA在人脑星形细胞瘤中有表达,其表达水平与人脑星形细胞瘤的恶性程度密切相关;提示WISP-2在人脑星形细胞瘤的发生发展过程中发挥重要的调控作用。WISP-2基因有可能作为评价人脑星形细胞瘤恶性程度的指标之一。
     目的:研究WSIP-2蛋白在人脑星形细胞瘤中的表达情况及其与各临床病理指标的关系。
     方法:采用免疫组织化学SP法检测54例人脑星形细胞瘤和10例正常脑组织中的WSIP-2蛋白表达,分析其表达水平与患者各临床病理指标之间的关系。
     结果:免疫组化检测结果显示正常脑组织细胞中无WISP-2蛋白阳性表达(0/10)。WISP-2蛋白在星形细胞瘤组织内呈阳性表达,阳性率为64.8%(35/54),与正常脑组织中表达比较有显著性意义(P<0.05)。高级别组(Ⅲ,Ⅳ)与低级别组(Ⅰ,Ⅱ>中WISP-2蛋白表达阳性率分别为80.8%(21/26)、50.0%(14/28),两者比较差异有显著性(P<0.05)。WISP-2蛋白的表达与年龄、性别、肿瘤部位无显著性关系(均P>0.05),与肿瘤大小有显著关系(P<0.05)。通过Spearman相关分析表明,WISP-2蛋白表达水平随着肿瘤的级别升高而增高(r=0.370,P=0.006),两者呈正相关性关系。
     结论:WSIP-2蛋白在人脑星形细胞瘤中高表达,与人脑星形细胞瘤的病理分级有正相关性,有可能作为星形细胞瘤恶性程度的指标。
     目的:构建沉默人WISP-2基因表达的siRNA序列并筛选出有效siRNA序列,为体外研究WISP-2的生物学功能提供材料。
     方法:通过RT-PCR检测WISP-2 mRNA在U251细胞株的表达,设计5个靶向WISP-2的RNA干扰序列的小干扰RNA,通过脂质体转染U251细胞,RT-PCR及Western blot筛选有效干扰序列,荧光倒置显微镜观察转染效果,最终得到人WISP-2基因沉默的U251细胞株。
     结果:WISP-2 mRNA在U251细胞株中表达,组5(WISP-2-289 siRNA)沉默WISP-2表达后,RT-PCR及Western blot方法检测到WISP-2 mRNA和蛋白表达水平分别为0.113±0.111, (19.03±1.44)%,与其组1(空白对照组)、组2(阴性对照组)、组3(WISP-2-639 siRNA)、组4(WISP-2-307 siRNA)比较,差异有显著性意义(P<0.05)。荧光倒置显微镜观察转染效率为(87.03±11.56)%。
     结论:筛选出合适的WISP-2 siRNA干扰序列,为进一步体外研究WISP-2基因在U251细胞株中的作用提供基础.。
     目的:探讨siRNA沉默WISP-2基因表达对U251细胞生物学特性的影响,以明确其在星形细胞瘤肿瘤形成过程中可能的作用及机制。
     方法:实验分3组:空白对照组(未作任何干扰的U251细胞株);阴性对照组(加入非特异性siRNA/Lipofectamine复合物的U251细胞株);siRNA干扰组(为WISP-2-siRNA-289-脂质体转染的U251细胞株)。通过MTT法、ranswell法、流式细胞仪PI染色法检测人WISP-2基因表达对U251细胞的增殖、迁移、凋亡能力的影响,并检测Bcl-2、Bax蛋白在细胞凋亡过程中的表达。
     结果:MTT检测发现在相同的时间点,siRNA干扰组组的OD值明显高于空白对照组和阴性对照组(P<0.05);检测迁移能力实验中siRNA干扰组肿瘤细胞的运动迁移能力明显下降,穿过聚碳酸酯膜的细胞数量较对照组明显下降,与对照组相比有明显区别(P<0.05);培养48h进行流式细胞仪检测可见,siRNA干扰组平均凋亡率为(16.59±1.40)%,空白组平均凋亡率为(3.13±0.34)%,阴性组平均凋亡率为(3.42±0.48)%,siRNA干扰组与阴性对照组、空白对照组比较差异有统计学意义(P<0.01)。在检测增殖、迁移、凋亡实验中,阴性对照组和空白对照组无明显差异(P>0.05)。siRNA干扰组WISP-2蛋白表达水平为(18.67±1.40)%明显低于空白对照组(70.18±1.82)%和阴性对照组(69.41±1.77)%,且差异有统计学意义(P<0.01),两对照组WISP-2蛋白表达水平比较差异无显著意义(P>0.05),siRNA干扰组Bcl-2蛋白表达水平为(29.67±1.47)%,明显低于空白对照组(49.51±1.71)%和阴性对照组(49.07±1.35)%,且差异有统计学意义(P<0.01),两对照组Bcl-2蛋白表达水平比较差异无显著意义(P>0.05)。siRNA干扰组Bax蛋白表达水平为(31.62±1.32)%,明显低于空白对照组(23.98±1.47)%和阴性对照组(24.06±1.55)%,且差异有统计学意义(P<0.01),两对照组Bax蛋白水平比较差异无显著意义(P>0.05)。Spearman相关性分析显示,siRNA沉默WISP-2表达后,WISP-2蛋白的表达与Bcl-2蛋白的表达具有正相关性(r=0.995,P<0.05),即前者表达越低,后者表达也越低;siRNA沉默WISP-2表达后,WISP-2蛋白的表达与Bax蛋白的表达具有负相关性(r=-0.944,P<0.05),即前者表达越低,后者表达越高。
     结论:在U251细胞中,siRNA沉默WISP-2基因表达后,可抑制U251细胞的增殖、侵袭能力,增加U251细胞凋亡。并提示通过抑制WISP-2蛋白表达后,下调Bcl-2/Bax蛋白表达的比值来诱导U251细胞凋亡。
     目的:探讨联合应用WISP-2 siRNA和足叶乙甙(VP16)对U251细胞药物敏感性的影响并探讨其作用机制。
     方法:应用转染试齐LipofectaminTM2000将WISP-2 siRNA转入U251细胞,同时加入VP16联合培养,48h后予MTT法检测U251细胞增殖、流式细胞仪检测U251细胞凋亡变化。
     结果:足叶乙甙(VP16)在浓度为1μg/mL就可以表现出对U251细胞的抑制作用,U251细胞随着药物作用时间的延长和药物浓度的增加而明显抑制,具有明显的量效和时效依赖性。MTT法显示空白对照组、阴性对照组、siRNA干扰组、VP16组和siRNA干扰+VP16组OD值分别为0.257±0.011、0.252±0.015、0.166±0.011、0.155±0.012、0.076±0.014,siRNA干扰组和VP16组细胞生长速度较空白对照组和阴性对照组显著降低(P<0.05),siRNA干扰+VP16组生长速度较siRNA干扰组和VP16组显著降低(P<0.05),空白对照组与阴性对照组比较无统计学差异(P>0.05)。联合应用WISP-2 siRNA和足叶乙甙(VP16)能明显降低U251细胞增殖能力,WISP-2基因沉默能增加U251细胞对VP16增殖抑制的敏感性。流式细胞仪检测细胞凋亡结果显示空白组平均凋亡率为(3.06±0.39)%,阴性组平均凋亡率为(3.28±0.57)%,siRNA干扰组平均凋亡率为(15.72±1.55)%,VP16干预组平均凋亡率为(14.76±1.41)%,siRNA干扰+VP16组平均凋亡率为(33.09±2.13)%,统计分析结果显示siRNA干扰组和VP16组与阴性对照组、空白对照组比较凋亡增加,差异有统计学意义(P<0.01),siRNA干扰+VP16组细胞凋亡率较siRNA干扰组和VP16组显著升高,差异有统计学意义(P<0.01),阴性对照组与空白对照组比较差异无统计学意义(P=0.848)。
     结论:联合WISP-2 siRNA和足叶乙甙(VP16)通过抑制U251细胞增殖、促进凋亡,增加U251细胞对VP16敏感性。
Objective:To investigate the expression and significance of Wnt-1 induced secreted protein 2 (WISP-2) gene in human brain astrocytomas and its relationship with the genesis and development of human brain astrocytomas.
     Methods:The expression of WISP-2 mRNA were determined by reverse transcription-polymerase chain reaction (RT-PCR) in 47 samples of human brain astrocytomas tissues, as well as 10 normal brain tissues.The correlation between WISP-2 expression levels of astrocytomas and its clinical indicators was analysed.
     Results:RT-PCR results showed that normal brain tissues had no WISP-2 mRNA expression.The relative expression level in astrocytomas was 0.677±0.445. Compared with the normal group there were statistically significant differences (t= 4.783, P<0.05). The relative expression levels of WISP-2 mRNA in high grade group (gradeⅢ-Ⅳ) and low grade group (gradeⅠ-Ⅱ) were 0.924±0.438,0.478±0.344, respectively.The difference was significant (t=3.909, P<0.05).The increase of WISP-2 correlated positively with tumor grade (r=0.448, P=0.002). The WISP-2 mRNA expression had no significant relationship with age, sex, tumor location (all P>0.05), but had a significant relationship with tumor size (P<0.05).
     Conclusion:WISP-2 mRNA could expresse in human brain astrocytomas and the expression was correlated with the malignant degree of human astrocytomas. WISP-2 mRNA may play an important regulatory role in the occurrence and development of human astrocytomas, which contributes to human brain astrocytomas malignant progression.
     Objective To investigate the expression and significance of WISP-2 protein in human brain astrocytomas and and its clinicopathologic significance.
     Methods The expression of WISP-2 protein of 54 human astrocytomas and 10 human normal brain tissues that were as control group was respectively examined. The expression of WISP-2 protein in these samples was detected using immunohistochemical staining. Statistical analysis was performed to investigate the ralation between WISP-2 protein expression and the clinicopathologic features.
     Results Immunohistochemical staining showed that the protein expression was undetected in normal brain tissues (0/10),but the positive rate of WISP-2 protein expression was 64.8%(35/54) in astrocytomas. There was significant difference between the positive rate of WISP-2 expression in astrocytomas and that of normal tissues(P<0.05). The positive rates of WISP-2 protein in high-grade group(gradeⅢ-Ⅳ) and low-grade group (gradeⅠ-Ⅱ) were 80.8%(21/26) and 50.0%(14/28), respectively.The significant difference was seen between high-grade (gradeⅢ-Ⅳ) and low-grade (gradeⅠ-Ⅱ) (P<0.05). With the combination of histopathological data, we found that the expression level of WISP-2 protein was closely correlated the differentiation degrees and tumor diameters of astrocytomas, but not with patients' age, gender, and tumor location(all P>0.05).
     Conclusion The expression of WISP-2 is closely related to the malignant degree of human brain astrocytoms., and WISP-2 may be one of the malignant biomarkers in the pathogenesis and progression of human brain astrocytoms.
     Objective:To construct siRNA silencing human WISP-2 gene expression and filter out effective siRNA sequence.
     Methods:The expression of WISP-2 in the U251 was checked by RT-PCR first. The sequences targeting WISP-2 gene were designed and synthesized, then cloned into siRNA expression vectors. There combinant plasmids were transiently transfected into U251 cells via LipofectamineTM2000. The RT-PCR was used to examine mRNA expression of WISP-2 gene.Western Blot was used to detect expression of WISP-2 protein.And inverted fluorescence microscope was used to observe the effect of transfection.
     Results:WISP-2 mRNA expressed in U251 cell lines. RT-PCR and Western blot used to detect that WISP-2-siRNA-289 sequence inhibiting WISP-2 expression and had the best silencing effect. Observed by Inverted fluorescence microscope the transfection efficiency reached (87.03±11.56)%.
     Conclusion:The siRNA targeting WISP-2 gene can inhibit the expression of
     KEYWORDS:siRNA, WISP-2, transfection
     Objective:The present study was carried out to investigate the effect on the bionomics of U251 by the silence of WISP-2. Then we could figure out the function of WISP-2 during the proliferation and apoptosis of human astrocytomas.
     Methods:There were three groups in the experiment:blank control group(used the normal U251), negative control group(the inclusion of non-specific siRNA/ Lipofectamine complexes in U251 cell lines) and siRNA interference group (WISP-2-siRNA-289-liposome-transfected U251 cell line, which was contracted in the Part 3). Human astrocytic glioma cell line U251 was cultured in vitro, then MTT method, Transwell assay, and flow cytometer (FCM) analysis and Western Blot were applied to measure cell growth,cell invasiveness,apoptosis,expression of WISP-2,Bcl-2,and Bax protein.
     Results:Detected at the same time by MTT, the siRNA interference group OD was significantly higher than that of blank control group and negative control group (P<0.05). The result of Transwell assay exhibited that cell number through the artificial polycarbonate basal membrane became decreased compared with the control group after 48 hours(P<0.05). By the flow cytometry's test, we found that the mean apoptotic rate of siRNA interference group was (16.59±1.40)%. Compared with the apoptotic rate of blank control group (3.13±0.34)% and the apoptotic rate of negative control group (3.42±0.48)%, the difference was statistically significant (P<0.01). The expression of WISP-2 protein in siRNA interference group(18.67±1.40) % was significantly lower than blank control group (70.18±1.82)% and negative control group (49.51±1.71)%(P<0.01). The expression of Bcl-2 protein in siRNA interference group(29.67±1.47)% was significantly lower than blank control group (49.51±1.71)% and negative control group (49.07±1.35)%(P<0.01). The expression of Bax protein in siRNA interference group(31.62±1.32)%was significantly higher than blank control group (23.98±1.47)% and negative control group (24.06±1.55)% (P<0.01).Correlation analysis showed that the expression of WISP-2 had a positive correlation with the expression of Bcl-2 protein. after siRNA silencing (r=0.995, P<0.05), and it had a negative correlation with the expression of Bax protein. after siRNA silencing (r=-0.944, P<0.05).
     Conclusion:The siRNA silencing expression of WISP-2 gene inhibits the proliferation and migration of U251 cells. and it increases the apoptosis of U251 cells. And it may by inhibiting expression of WISP-2 protein downregulate the ratio of Bcl-2/Bax to induce cell apoptosis.
     Objective:To evaluate the effect of combined therapy of Etoposide and WISP-2 siRNA on growth inhibition of human glioma U251 cells.
     Methods:U251 cells were transfected with WISP-2 siRNA via LipofectaminTM2000,and at the same time etoposide (VP16) was added into U251 cells medium. The proliferation and apoptosis of U251 cells were evaluated after 48 hours by MTT assay and flow cytometry.
     Results:Inhibitory effects of VP16 on proliferation of U251 cells were observed by MTT colorimetric survival assay. was which were in a time-and dose-dependent manner and the IC50 was 13.43μg/mL for 48 hours.Combined therapy of WISP-2 siRNA with VP16 inhibited proliferation of U251 cells.MTT assay showed that the the OD value of blank control group, negative control group, siRNA interference group, VP16 group and siRNA interference+VP16 group was 0.257±0.011、0.252±0.015、0.166±0.011、0.155±0.012、0.076±0.014, respectively. We find that the OD value of siRNA interference group and VP16 group was significantly lower comparing with that of blank control group and negative control group (P<0.05).The OD value of siRNA interference+VP16 group was significantly lower compared with that of siRNA interference group and the VP16 group (P<0.05), There were no significant difference between the blank control group and the negative control group (P>0.05).Combining therapy of WISP-2 siRNA and etoposide (VP16) significantly reduced the U251 cell proliferation. By the flow cytometry's test, we found that the apoptotic rate of blank control group, negative control group,siRNA interference group, VP16 group and siRNA interference+VP16 group was (3.06±0.39)%, (3.28±0.57)%, (15.72±1.55)%, (14.76±1.41)%, (33.09±2.13)%, respectively. Statistical analysis showed the apoptotic rate of siRNA interference group and VP16 group was statistically significant higher than that of blank control group and negative control group.(P<0.01), and the apoptotic rate of siRNA interference+ VP16 group was statistically significant higher than that of siRNA interference group and VP16 group (P<0.05).There were no significant difference between the negative control group and the blank control group (P=0.848).
     Conclusion:The combination therapy of WISP-2 siRNA and etoposide could effectively improve thesensitivity of U251 cells to etoposide by inhibiting U251 cells' proliferation and promoting U251' apoptosis.
引文
[1]周良辅.现代神经外科学,第一版。上海:复旦大学出版社,2001,376.
    [2]Segal G. Re:Brain and other central nervous system cancers:recent trends in incidence and mortality. J Natl Cancer Inst.2000.92(1): 77-8.
    [3]Shrieve DC,3rd AE, Black PM, et al. Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost:prognostic factors and long-term outcome. J Neurosurg.1999.90(1):72-7.
    [4]Daneyemez M, Gezen F, Canakci Z, Kahraman S. Radical surgery and reoperation in supratentorial malignant glial tumors. Minim Invasive Neurosurg.1998.41(4):209-13.
    [5]Karim AB, Afra D, Cornu P, et al. Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult: European Organization for Research and Treatment of Cancer Study 22845 with the Medical Research Council study BRO4:an interim analysis. Int J Radiat Oncol Biol Phys.2002.52(2):316-24.
    [6]Gonzalez-Gomez P, Bello MJ, Arjona D, et al. Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol.2003.22(3):601-8.
    [7]Brat DJ, Cas-tellano-Sanchez A, Kaur B, Van Meir EG. Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol.2002.9(1):24-36.
    [8]Kraus JA, Lamszus. K, Glesmann N, et al. Molecular genetic alterations in-glioblastomas with oligodendroglial component. Acta Neuropathol.2001.101(4):311-20.
    [9]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer.1972.26(4):239-57.
    [10]Lockshin RA, Zakeri Z. Cell death in health and disease. J Cell Mol Med.2007.11(6):1214-24.
    [11]Fulda S, Debatin KM. Targeting apoptosis pathways in cancer therapy. Curr Cancer Drug Targets.2004.4(7):569-76.
    [12]Fueyo J, Gomez-Manzano C. [Molecular control of the cellular cycle and apoptosis:new treatments for gliomas]. Neurologia.1998.13(7): 349-55.
    [13]Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer.2004.4(8):592-603.
    [14]Katsube K, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ. 2009.51(1):55-67.
    [15]Brigstock DR. The CCN family:a new stimulus package. J Endocrinol. 2003.178(2):169-75.
    [16]Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci.2008.33(10): 461-73.
    [17]Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci.2008.33(10): 461-73.
    [18]Brigstock DR. The CCN family:a new stimulus package. J Endocrinol. 2003.178(2):169-75.
    [19]Zoubine MN, Baner jee S, Saxena NK, Campbell DR, Baner jee SK. WISP-2: a serum-inducible gene differentially expressed in human normal breast epithelial cells and in MCF-7 breast tumor cells. Biochem Biophys Res Commun.2001.282(2):421-5.
    [20]Colston JT, de la Rosa SD, Koehler M, et al. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol.2007.293(3):H1839-46.
    [21]Dhar G, Mehta S, Banerjee S, et al. Loss of WISP-2/CCN5 signaling in human pancreatic cancer:a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett.2007.254(1):
    63-70.
    [22]Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol.2002.14(1):86-91.
    [23]Hoh J, Jin S, Parrado T, Edington J, Levine AJ, Ott J. The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci U S A.2002.99(13):8467-72.
    [24]Pennica D, Swanson TA, Welsh JW, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A.1998.95(25):14717-22.
    [25]Saxena N, Banerjee S, Sengupta K, Zoubine MN, Banerjee SK. Differential expression of WISP-1 and WISP-2 genes in normal and transformed human breast cell lines. Mol Cell Biochem.2001. 228(1-2):99-104.
    [26]Banerjee S, Saxena N, Sengupta K, Tawfik 0, Mayo MS, Banerjee SK. WISP-2 gene in human breast cancer:estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia.2003.5(1):63-73.
    [27]Yonehara S, Brenner AV, Kishikawa M, et al. Clinical and epidemiologic characteristics of first primary tumors of the central nervous system and related organs among atomic bomb survivors in Hiroshima and Nagasaki,1958-1995. Cancer.2004. 101(7):1644-54.
    [28]Karim AB, Afra D, Cornu P, et al. Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult: European Organization for Research and Treatment of Cancer Study 22845 with the Medical Research Council study BRO4:an interim analysis. Int J Radiat Oncol Biol Phys.2002.52(2):316-24.
    [29]Inadera H, Dong HY, Matsushima K. WISP-2 is a secreted protein and can be a marker of estrogen exposure in MCF-7 cells. Biochem Biophys Res Commun.2002.294(3):602-8.
    [30]Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol.2002. 61(3):215-25; discussion 226-9.
    [31]Black PM. Brain tumors. Part 1. N Engl J Med.1991.324(21):1471-6.
    [32]Paz-y-Mino C, Lopez-Cortes A, Munoz MJ, Cabrera A, Castro B, Sanchez ME. Incidence of the L858R and G719S mutations of the epidermal growth factor receptor oncogene in an Ecuadorian population with lung cancer. Cancer Genet Cytogenet.2010.196(2):201-3.
    [33]Visvanathan M, Netzer M, Seger M, et al. Oncogenes and pathway identification using filter-based approaches between various carcinoma types in lung. Int J Comput Biol Drug Des.2009.2(3): 236-51.
    [34]Hoff K, Jorgensen JT, Muller S, Rongaard E, Rasmussen 0, Schonau A. Visualization of FISH Probes by dual-color chromogenic in situ hybridization. Am J Clin Pathol.2010.133(2):205-11.
    [35]Park SY, Gonen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest.2010.120(2):636-44.
    [36]Jin Y, Shima Y, Furu M, et al. Absence of oncogenic mutations of RAS family genes in soft tissue sarcomas of 100 Japanese patients. Anticancer Res.2010.30(1):245-51.
    [37]Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol Ther. 2008.7(9):1321-5.
    [38]Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev.2007.21(21): 2683-710.
    [39]Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G, Vecht C. Glioblastoma in adults. Crit Rev Oncol Hematol.2008.67(2): 139-52.
    [40]Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol.2002. 61(3):215-25; discussion 226-9.
    [41]Remmele W, Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe. 1987.8(3):138-40.
    [42]Cervello M, Giannitrapani L, Labbozzetta M, et al. Expression of WISPs and of their novel alternative variants in human hepatocellular carcinoma cells. Ann N Y Acad Sci.2004.1028:432-9.
    [43]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998.391(6669):806-11.
    [44]Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev.1999. 13(24):3191-7.
    [45]Xia CF, Zhang Y, Zhang Y, Boado RJ, Pardridge WM. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res.2007.24(12):2309-16.
    [46]Kang CS, Pu PY, Li YH, et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J Neurooncol.2005.74(3):267-73.
    [47]Kim VN. Small RNAs:classification, biogenesis, and function. Mol Cells.2005.19(1):1-15.
    [48]Tomari Y, Zamore PD. Perspective:machines for RNAi. Genes Dev.2005. 19(5):517-29.
    [49]Sledz CA, Williams BR. RNA interference in biology and disease. Blood.2005.106(3}:787-94.
    [50]Rao M, Sockanathan S. Molecular mechanisms of RNAi:implications for development and disease. Birth Defects Res C Embryo Today.2005. 75(1):28-42.
    [51]Macrae IJ, Li F, Zhou K, Cande WZ, Doudna JA. Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol.2006.71:73-80.
    [52]MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A.2008.105(2):512-7.
    [53]宋尔卫.RNA干扰技术治疗恶性肿瘤的靶点选择和靶向导入.现代临床医学生物工程学杂志.2007.13(2):126-封3.
    [54]Sui G, Soohoo C, Affar eB, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A.2002.99(8):5515-20.
    [55]Vlassov AV, Korba B, Farrar K, et al. shRNAs targeting hepatitis C:effects of sequence and structural features, and comparision with siRNA. Oligonucleotides.2007.17(2):223-36.
    [56]Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell.1998. 94(4):491-501.
    [57]Green DR, Reed JC. Mitochondria and apoptosis. Science.1998. 281(5381):1309-12.
    [58]Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J.1999. 18(19):5242-51.
    [59]Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I. Expression of survivin is associated with malignant potential in epithelial ovarian carcinoma. Int J Mol Med.2002.10(2):211-6.
    [60]李潞,周清华.人肺癌中细胞凋亡水平与预后关系的研究.肺癌杂志.1998.1(2):70-73.
    [61]O'Barr S, Schultz J, Rogers J. Expression of the protooncogene bcl-2 in Alzheimer's disease brain. Neurobiol Aging.1996.17(1):131-6.
    [62]Zelazowska-Rutkowska B, Wysocka J, Hassmann-Poznanska E, Zak J. [Expression Bcl-2 protein of lymphocytes T and B in hypertrophied adenoid in children with otitis media with effusion]. Otolaryngol Pol.2006.60(5):737-42.
    [63]Nahas Z, Jiang Y, Zeidan YH, et al. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats. Behav Brain Res. 2009.197(1):41-4.
    [64]Tanaka S, Wakeyama H, Akiyama T, et al. Regulation of osteoclast apoptosis. by bcl-2 family protein bim and caspase-3. Adv Exp Med Biol.2010.658:111-6.
    [65]Rachfal AW, Brigstock DR. Structural and functional properties of CCN proteins. Vitam Horm.2005.70:69-103.
    [66]Inadera H, Shimomura A, Tachibana S. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation. Biochem Biophys Res Commun.2009.379(4):969-74.
    [67]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods.1983.65(1-2):55-63.
    [68]Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 198.7.47(12):3239-45.
    [69]Weaver CV, Liu SP. Differentially expressed pro-and anti-apoptogenic genes in response to benzene exposure: Immunohistochemical localization of p53, Bag, Bad, Bax, Bcl-2, and Bcl-w in lung epithelia. Exp Toxicol Pathol.2008.59(5):265-72.
    [70]刘晓翌,刘建军.Caspase与细胞凋亡.武汉大学学报(医学版).2004.25(6):742-745.
    [71]Schindler CK, Shinoda S, Simon RP, Henshall DC. Subcellular distribution of Bcl-2 family proteins and 14-3-3 within the hippocampus during seizure-induced neuronal death in the rat. Neurosci Lett.2004.356(3):163-6.
    [72]Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev.1999.13(15):1899-911.
    [73]Shimizu S, Eguchi Y, Kamiike W, Matsuda H, Tsujimoto Y. Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene.1996.12(11):2251-7.
    [74]Tanaka S, Wakeyama H, Akiyama T, et al. Regulation of osteoclast apoptosis by bcl-2 family protein bim and caspase-3. Adv Exp Med Biol.2010.658:111-6.
    [75]Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002.9(5):505-12.
    [76]Kok SH, Cheng SJ, Hong CY, et al. Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett.2005.217(1):43-52.
    [77]Wu C, Fujihara H, Yao J, et al. Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke.2003.34(7):1803-8.
    [78]Chen RJ, Ho YS, Guo HR, Wang YJ. Long-term Nicotine Exposure-Induced Chemoresistance is Mediated by Activation of Stat3 and Downregulation of ERK1/2 via nAChR and beta-AR in Human Bladder Cancer Cells. Toxicol Sci.2010
    [79]Stepensky P, Brooks R, Waldman E, et al. A rare case of GATA1 negative chemoresistant acute megakaryocytic leukemia in an 8-month-old infant with trisomy 21. Pediatr Blood Cancer.2010
    [80]Han F, Mignot E, Wei YC, et al. Ventilatory chemoresponsiveness, narcolepsy-cataplexy, and HLA-DQB1*0602 status. Eur Respir J. 2010
    [81]Erlichman JS, Leiter JC. Glia modulation of the extracellular milieu as a factor in central C02 chemosensitivity and respiratory control. J Appl Physiol.2010
    [82]Power DG, Reynolds JV. Localized adenocarcinoma of the esophagogastric junction-Is there a standard of care. Cancer Treat Rev.2010.
    [83]Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001.37 Suppl 4:S3-8.
    [84]Kuo SC, Chao Y, Luo JC, et al. Primary small cell carcinoma of the stomach successfully treated with cisplatin and etoposide. J Chin Med Assoc.2009.72(11):598-602.
    [85]Raffaghello L, Lee C, Safdie FM, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A.2008. 105(24):8215-20.
    [86]Yasuda K, Taguchi H, Sawamura Y, et al. Low-dose craniospinal irradiation and ifosfamide, cisplatin and etoposide for non-metastatic embryonal tumors in the central nervous system. Jpn J Clin Oncol.2008.38(7):48.6-92.
    [87]Kim DW, Jo YH, Kim JH, et al. Neoadjuvant etoposide, ifosfamide, and cisplatin for the treatment of olfactory neuroblastoma. Cancer. 2004.101(10):2257-60.
    [88]Marigny K, Aubin F, Burgot G, Le GE, Gandemer V. Particular cutaneous side effects with etoposide-containing courses:is VP16 or etoposide phosphate responsible. Cancer Chemother Pharmacol. 2005.55(3):244-50.
    [89]Olijslagers SJ, Zhang YH, Backendorf C, Noteborn MH. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Basic Clin Pharmacol Toxicol. 2007.100(2):127-31.
    [90]Fan JR, Peng AL, Chen HC, Lo SC, Huang TH, Li TK. Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses. DNA Repair (Amst).2008.7(3):452-63.
    [91]Bae JH, Lee SJ, Lee A, et al. Neoadjuvant cisplatin and etoposide followed by radical hysterectomy for stage 1B-2B cervical cancer. Gynecol Oncol.2008.111(3):444-8.
    [92]Trepel M, Groscurth P, Malipiero U, Gulbins E, Dichgans J, Weller M. Chemosensitivity of human malignant glioma:modulation by p53 gene transfer. J Neurooncol.1998.39(1):19-32.
    [93]Raffo AJ, Kim AL, Fine RL. Formation of nuclear Bax/p53 complexes is associated with chemotherapy induced apoptosis. Oncogene.2000. 19(54):6216-28.
    [94]Oizumi S, Isobe H, Ogura S, et al. Topoisomerase inhibitor-induced apoptosis accompanied by down-regulation of Bcl-2 in human lung cancer cells. Anticancer Res.2002.22(6C):4029-37.
    [1]Brigstock DR, Goldschmeding R, Katsube KI, et al. Proposal for a unified CCN nomenclature. Mol Pathol.2003.56(2):127-8.
    [2]Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol.2009.41(4):771-83.
    [3]Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol.2001.54(2):57-79.
    [4]Rachfal AW, Brigstock DR. Structural and functional properties of CCN proteins. Vitam Horm.2005,70:69-103.
    [5]Bleau AM, Planque N, Lazar N, et al. Antiproliferative activity of CCN3: involvement of the C-terminal module and post-translational regulation. J Cell Biochem.2007.101(6):1475-91.
    [6]Bleau AM, Planque N, Perbal B. CCN proteins and cancer:two to tango. Front Biosci.2005.10:998-1009.
    [7]Perbal B. NOV story:the way to CCN3. Cell Commun Signal.2006.4:3.
    [8]Pennica D, Swanson TA, Welsh JW, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A.1998.95(25):14717-22.
    [9]Hashimoto Y, Shindo-Okada N, Tani M, et al. Expression of the Elml gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses In vivo tumor growth and metastasis of K-1735 murine melanoma cells. J Exp Med.1998.187(3): 289-96.
    [10]Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res.2001.61(24): 8917-23.
    [11]Su F, Overholtzer M, Besser D, Levine AJ. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev.2002.16(1):46-57.
    [12]Saxena N, Banerjee S, Sengupta K, Zoubine MN, Banerjee SK. Differential expression of WISP-1 and WISP-2 genes in normal and transformed human breast cell lines. Mol Cell Biochem.2001.228(1-2):99-104.
    [13]Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1-and beta-catenin-responsive oncogene. Genes Dev.2000.14(5):585-95.
    [14]Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM. Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem.2003.278(13): 11465-70.
    [15]Su F, Overholtzer M, Besser D, Levine AJ. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev.2002.16(1):46-57.
    [16]唐琼兰,刘卫平,张文燕等.CYR61和血管内皮生长因子在结外鼻型NK/T细胞淋巴瘤中的表达及其意义.中华血液学杂志.2006.27(10):661-665.
    [17]Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science.2000. 288(5468):1053-8.
    [18]Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell.2001.7(3):683-94.
    [19]Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell.2001.7(3):673-82.
    [20]Tian C, Zhou ZG, Meng WJ, et al. Overexpression of connective tissue growth factor WISP-1 in Chinese primary rectal cancer patients. World J Gastroenterol.2007.13(28):3878-82.
    [21]田超,周总光.结肠癌发病机制研究的新位点-WISP-1.华西医学.2007.22(1):181-182.
    [22]Nusse R, van OA, Cox D, Fung YK, Varmus H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature.1984. 307(5947):131-6.
    [23]张晓峰,陈幕华,陈萍萍,崔玲玲,王旗,谢东.肺癌组织中Atrogin-1基因mRNA表达及其临床意义.山东医药.2008.48(10):18-20.
    [24]Ray G, Banerjee S, Saxena NK, Campbell DR, Van Veldhuizen P, Banerjee SK. Stimulation of MCF-7 tumor progression in athymic nude mice by 17beta-estradiol induces WISP-2/CCN5 expression in xenografts:a novel signaling molecule in hormonal carcinogenesis. Oncol Rep.2005.13(3): 445-8.
    [25]马焕芝,曾炳芳,Huan-zhi MA, Bing-fang Z. CCN家族与骨的形成与修复.国际骨科学杂志.2007.28(2):71-73,98.
    [26]Hashimoto Y, Shindo-Okada N, Tani M, Takeuchi K, Toma H, Yokota J. Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res.1996.56(22):5266-71.
    [27]Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci.2008.33(10):461-73.
    [28]Lake AC, Bialik A, Walsh K, Castellot JJ Jr. CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. Am J Pathol. 2003.162(1):219-31.
    [29]Brigstock DR. The CCN family:a new stimulus package. J Endocrinol.2003. 178(2):169-75.
    [30]Zoubine MN, Banerjee S, Saxena NK, Campbell DR, Banerjee SK. WISP-2:a serum-inducible gene differentially expressed in human normal breast epithelial cells and in MCF-7 breast tumor cells. Biochem Biophys Res Commun.2001.282(2):421-5.
    [31]Mason HR, Lake AC, Wubben JE, Nowak RA, Castellot JJ Jr. The growth arrest-specific gene CCN5 is deficient in human leiomyomas and inhibits the proliferation and motility of cultured human uterine smooth muscle cells. Mol Hum Reprod.2004.10(3):181-7.
    [32]Sengupta K, Banerjee S, Dhar K, et al. WISP-2/CCN5 is involved as a novel signaling intermediate in phorbol ester-protein kinase Calpha-mediated breast tumor cell proliferation. Biochemistry.2006.45(35):10698-709.
    [33]Inadera H, Hashimoto S, Dong HY, et al. WISP-2 as a novel estrogen-responsive gene in human breast cancer cells. Biochem Biophys Res Commun.2000.275(1):108-14.
    [34]Inadera H, Hashimoto S, Dong HY, et al. WISP-2 as a novel estrogen-responsive gene in human breast cancer cells. Biochem Biophys Res Commun.2000.275(1):108-14.
    [35]Inadera H, Dong HY, Matsushima K. WISP-2 is a secreted protein and can be a marker of estrogen exposure in MCF-7 cells. Biochem Biophys Res Commun.2002.294(3):602-8.
    [36]Banerjee S, Saxena N, Sengupta K, Tawfik O, Mayo MS, Banerjee SK. WISP-2 gene in human breast cancer:estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia.2003.5(1): 63-73.
    [37]Banerjee S, Saxena N, Sengupta K, Tawfik O, Mayo MS, Banerjee SK. WISP-2 gene in human breast cancer:estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia.2003.5(1): 63-73.
    [38]Zhang R, Averboukh L, Zhu W, et al. Identification of rCop-1, a new member of the CCN protein family, as a negative regulator for cell transformation. Mol Cell Biol.1998.18(10):6131-41.
    [39]Eida S, Sumi M, Sakihama N, Takahashi H, Nakamura T. Apparent diffusion coefficient mapping of salivary gland tumors:prediction of the benignancy and malignancy. AJNR Am J Neuroradiol.2007.28(1):116-21.
    [40]Francioso F, Carinci F, Tosi L, et al. Identification of differentially expressed genes in human salivary gland tumors by DNA microarrays. Mol Cancer Ther. 2002.1(7):533-8.
    [41]Choi CS, Choi G, Jung KY, Choi JO, Chae YS. Low expression of p27(Kipl) in advanced mucoepidermoid carcinomas of head and neck. Head Neck.2001. 23(4):292-7.
    [42]Yin HF, Okada N, Takagi M. Apoptosis and apoptotic-related factors in mucoepidermoid carcinoma of the oral minor salivary glands. Pathol Int.2000. 50(8):603-9.
    [43]Kouzu Y, Uzawa K, Kato M, et al. WISP-2 expression in human salivary gland tumors. Int J Mol Med.2006.17(4):567-73.
    [44]Brand R, Mahr C. Risk factors for pancreatic adenocarcinoma:are we ready for screening and surveillance. Curr Gastroenterol Rep.2005.7(2):122-7.
    [45]Rodriguez JA, Li M, Yao Q, Chen C, Fisher WE. Gene overexpression in pancreatic adenocarcinoma:diagnostic and therapeutic implications. World J Surg.2005.29(3):297-305.
    [46]Cowgill SM, Muscarella P. The genetics of pancreatic cancer. Am J Surg.2003. 186(3):279-86.
    [47]Dhar G, Mehta S, Banerjee S, et al. Loss of WISP-2/CCN5 signaling in human pancreatic cancer:a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett.2007.254(1):63-70.
    [48]Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol.2002.14(1):86-91.
    [49]Hoh J, Jin S, Parrado T, Edington J, Levine AJ, Ott J. The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci U S A.2002.99(13):8467-72.
    [50]Sen M, Cheng YH, Goldring MB, Lotz MK, Carson DA. WISP3-dependent regulation of type Ⅱ collagen and aggrecan production in chondrocytes. Arthritis Rheum.2004.50(2):488-97.
    [51]Schutze N, Noth U, Schneidereit J, Hendrich C, Jakob F. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation. Cell Commun Signal.2005.3(1):5.
    [52]Kleer CG, Zhang Y, Pan Q, Merajver SD. WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia.2004.6(2):179-85.
    [53]Kleer CG, Zhang Y, Pan Q, et al. WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res.2004.6(2):R110-5.
    [54]Zhang Y, Pan Q, Zhong H, Merajver SD, Kleer CG. Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res. 2005.7(6):R1080-9.
    [55]Kleer CG, Zhang Y, Merajver SD. CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs.2007.185(1-3): 95-9.
    [56]Cervello M, Giannitrapani L, Labbozzetta M, et al. Expression of WISPs and of their novel alternative variants in human hepatocellular carcinoma cells. Ann N Y Acad Sci.2004.1028:432-9.
    [57]Thorstensen L, Diep CB, Meling GI, et al. WNT1 inducible signaling pathway protein 3, WISP-3, a novel target gene in colorectal carcinomas with microsatellite instability. Gastroenterology.2001.121(6):1275-80.
    [58]Tanaka S, Sugimachi K, Maehara S, Shimada M, Maehara Y. A loss of function mutation in WISP3 derived from microsatellite unstable gastric carcinoma. Gastroenterology.2003.125(5):1563-4.
    [59]Thorstensen L, Holm R, Lothe RA, et al. WNT-inducible signaling pathway protein 3, WISP-3, is mutated in microsatellite unstable gastrointestinal carcinomas but not in endometrial carcinomas. Gastroenterology.2003.124(1): 270-1.
    [60]Colston JT, de la Rosa SD, Koehler M, et al. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol.2007.293(3):H1839-46.
    [61]Desnoyers L, Arnott D, Pennica D. WISP-1 binds to decorin and biglycan. J Biol Chem.2001.276(50):47599-607.
    [62]French DM, Kaul RJ, D'Souza AL, et al. WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair. Am J Pathol.2004. 165(3):855-67.
    [63]Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1-and beta-catenin-responsive oncogene. Genes. Dev.2000.14(5):585-95.
    [64]Pennica D, Swanson TA, Welsh JW, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A.1998.95(25):14717-22.
    [65]Planque N, Perbal B. A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int.2003.3(1): 15.
    [66]Yeger H, Perbal B. The CCN family of genes:a perspective on CCN biology and therapeutic potential. J Cell Commun Signal.2007.1(3-4):159-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700