用户名: 密码: 验证码:
核仁素在大鼠心肌缺血预适应中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌缺血及缺血-再灌注损伤导致心肌坏死和凋亡,是启动心肌重构和心力衰竭的主要原因。因此,努力减轻其所致心肌损伤成为了心力衰竭防治的关键环节。心肌缺血预适应(ischemic precondi-tioning, IP)是近年来发现的重要的心肌内源性保护现象,可明显减轻心肌缺血-再灌注(ischemia/reperfusion, I/R)损伤,即减轻缺血-再灌注所致的心律失常,改善心肌舒缩功能,缩小心肌梗死面积。深入探讨缺血预适应(IP)的心肌保护机制具有重要的科学意义,并将为心肌损伤和心力衰竭的防治提供新的思路。
     核仁素(又称C23)是核仁中含量最多的一种RNA结合蛋白,其已知的主要功能是结合与运输rRNA,调控核糖体的生成,调控细胞生长、增殖等。核仁素含有三个主要的功能结构域:氨基端,中心区和羧基端。核仁素的许多重要功能,如调控核糖体的生成与成熟,调控细胞生长与增殖等,主要依赖于其中心区的RNA结合结构域。
     核仁素是细胞内一个非常重要的具有多功能的穿梭蛋白。除了上述经典的生物学功能外,近年研究发现,核仁素在丙型肝炎病毒复制、人类免疫缺陷病毒与人副流感病毒感染宿主细胞、基因转录调控等过程中也发挥了重要作用。我们研究室以前的研究也发现活性氧诱导C2C12肌原细胞、血管内皮细胞及RAW264.7细胞凋亡时伴有核仁素表达下调。进一步采用核仁素真核表达载体及反义寡核苷酸,发现核仁素在氧化应激所致细胞损伤中发挥重要保护作用,而且发现热休克反应及热休克蛋白70可抑制氧化应激所致的核仁素表达下调及细胞凋亡的发生。上述结果提示,核仁素可能是一个重要抗损伤因子。然而,核仁素在心肌缺血预适应中是否具有及具有何种作用,目前尚不清楚。
     本课题在本实验室以往的工作基础上,采用大鼠心肌缺血预适应动物模型、新生大鼠心肌细胞过氧化氢预适应及缺氧预适应细胞模型,探讨核仁素在心肌缺血预适应中的时空表达模式,并探讨核仁素在心肌缺血预适应中的心肌保护作用及其机制。主要方法与结果如下:
     1.采用在体大鼠结扎冠状动脉前降支5min,再灌注10min,再结扎5min,再灌注10min,构建心肌缺血预适应的动物模型;采用血清酶学检测、Caspase-3活性分析及DNA“梯状”条带检测心肌受损情况;采用Real-time PCR和Western-blot检测心肌中核仁素的表达。结果显示:大鼠心肌缺血预适应导致心肌中核仁素的mRNA表达逐渐升高,12h达高峰;蛋白质水平也表现为逐渐增多,以12h、24h最明显,并明显减轻了缺血30min,再灌注3h所致的心肌损伤,即血清酶学指标下降,心肌Caspase-3活性和DNA“梯状”条带明显减少。
     2.原代培养新生大鼠心肌细胞经过氧化氢(100μm)预处理90min或经缺氧预处理30 min后,恢复24h,构建模拟在体心肌缺血预适应的细胞模型;采用MTT、LDH活性分析及凋亡百分率检测细胞受损情况;采用Real-time PCR和Western-blot检测核仁素的表达;采用细胞成分分离及间接免疫荧光观察核仁素的定位情况。结果显示,上述过氧化氢预适应及缺氧预适应均能明显减轻心肌细胞的氧化应激损伤(500μM H2O2)和缺氧-复氧损伤(缺氧2h,复氧12-24h);在上述过氧化氢预适应及缺氧预适应心肌细胞模型中,核仁素的mRNA表达逐渐升高,12h达高峰;蛋白质水平也表现为逐渐增多,以12h-24h最明显;而且,在正常情况下,核仁素大部分位于心肌细胞胞核,过氧化氢预适应及缺氧预适应均可导致核仁素向胞浆移位。
     3.采用基因转染及RNA干扰技术探讨核仁素在过氧化氢预适应所致心肌细胞保护中的作用。结果显示,核仁素过表达可增强过氧化氢预适应对心肌细胞氧化应激损伤(500μM H2O2)的保护作用,表现为LDH释放减少,细胞存活率增加,细胞凋亡减少;而核仁素低表达则明显抑制了上述过氧化氢预适应的心肌细胞保护作用。
     4.将新生大鼠心肌细胞暴露于过氧化氢(500μM H2O2,6h),采用核仁素抗体进行免疫共沉淀,抽提沉淀物中RNA进行大鼠基因表达谱芯片分析以及生物信息学分析,对氧化应激损伤时心肌细胞中核仁素调控的可能靶基因进行了筛选。根据大鼠基因表达谱芯片结果以及生物信息学提供的信息,初步筛选出氧化应激损伤时心肌细胞中包括Hsp32, Hsp70在内的10个可能受核仁素调控的靶基因。
     5.采用Real-time PCR和Western-blot技术观察到Hsp32, Hsp70在大鼠心肌缺血预适应整体及细胞模型中表达明显增加,为探讨Hsp32及Hsp70在缺血预适应心肌保护中的作用,进一步采用Hsp32特异性抑制剂及Hsp70的RNA干扰片段抑制了Hsp32的活性或抑制Hsp70的表达,发现抑制Hsp32活性或抑制Hsp70表达可明显减弱过氧化氢预适应的心肌保护作用。
     6.采用Real-time PCR和Western-blot技术探讨了核仁素对Hsp32和Hsp70表达的调控作用。结果显示,核仁素过表达可上调Hsp32和Hsp70的表达;进一步采用mRNA稳定性分析,IP-RT-PCR、RNA-EMSA技术和荧光素酶报告基因技术探讨了核仁素对Hsp32和Hsp70基因的调控机制。结果显示,在心肌缺血预适应中,核仁素与Hsp32, Hsp70的3’UTR相结合,进一步采用荧光素酶报告基因系统检测发现核仁素可通过与Hsp32, Hsp70的3’UTR相结合,增加Hsp32和Hsp70 mRNA的,从而发挥心肌保护作用。
     综上所述,大鼠心肌缺血预适应及心肌细胞过氧化氢预适应及缺氧预适应可导致心肌中核仁素的mRNA及蛋白质水平表达上调,并促进其从胞核向胞浆的移位;核仁素与靶基因Hsp32, Hsp70 mRNA的3’UTR相结合,通过增加调控Hsp32, Hsp70 mRNA的稳定性,而上调Hsp32,Hsp70的表达,从而在心肌缺血预适应的心肌保护中发挥重要作用。
Myocardial ischemia and ischemia/reperfusion (I/R) injury are the major causes for myocardial remodeling and heart failure. Therefore, reducing myocardial injury plays a critical role in the protection from heart failure. Myocardial ischemic preconditioning (IP) is an important endogenous protection mechanism, which was discovered to significantly reduce myocardial IR injury. Clarifying the mechanism by which IP protects myocardium has important scientific significance and may provide new ideas for the prevention and treatment of myocardial injury and heart failure.
     Nucleolin (C23) is the most abundant RNA-binding protein in the cell nucleolus. Its major functions are binding and transporting rRNAs, regulating the assembly of ribosomes and regulating the growth and proliferation of cells. There are three major functional domains in nucleolin:the N-terminal, the central and the C-terminal domains. The most important functions of nucleolin, such as the regulation of synthesis and maturation of ribosomes and regulation of growth and proliferation of cells, mainly depend on the RNA binding domain in the central region of the protein.
     Nucleolin is a very important multifunctional shuttle protein in the cell. Other than the aforementioned biological functions, in recent years, nucleolin was also reported playing very important roles in the replication of hepatitis C virus, in the infection processes of human immunodefi-ciency virus and human parainfluenza virus, and in the regulation of gene transcriptions. In previous studies, we observed the downregulations of nucleolin expression in apoptosis induced by H2O2 in C2C12 cells, HUVEC and RAW264.7 macrophages. Further studies in this lab using transfection of eukaryotic expression vector and antisense oligonu-cleotides of nucleolin demonstrated that nucleolin played important cytoprotective effects on cellular injuries induced by oxidative stress and found that the heat shock and heat shock protein 70 could inhibit the downregulation of nucleolin induced by oxidative stress as well as apoptosis. These results suggest that nucleolin may be an important anti-damage factor. However, whether nucleolin plays some roles in myocardial protection of IP or not and what the roles are, remain unclear.
     Based on the previous findings, in this study, we used an intact rat model of myocardial IP, and two cell models of hydrogen peroxide preconditioning and hypoxia preconditioning with neonatal rat cardiomyocytes to investigate the spatial and temporal expression patterns of nucleolin and the roles and major mechanisms of nucleolin in the myocardial protection of IP. The major methods and results are as follows:
     1. The myocarial protective role and expression of nucleolin in the intact rat model of myocardial IP
     Ligation of anterior descending coronary artery in vivo was used in this study to establish the intact model of myocardial IP in rats. Briefly, episodes of ligation 5min, reperfusion 10min, and re-ligation 5min and reperfusion 10min were performed. The myocardial injuries were measured through serological enzymatic assay, analysis of caspase-3 activity and DNA ladder detection, while the nucleolin expression was detected with real-time PCR and Western-blot. The results showed that myocardial IP significantly up-regulated the expression of nucleolin in both mRNA and protein levels with the peak expression of mRNA at 12h, and that of protein at 12h and 24h, and that myocardial IP protected significantly myocardium against the injury induced by 30 min of ischemica followed by 3h of reperfusion, as indicated by the decrease of serological enzymatic indexes, myocardial caspase-3 activity and DNA laddering.
     2. The expression and cytoprotective effect of nucleolin in hydrogen peroxide or hypoxia-induced cell models of IP in cardiomyocytes
     Primary cultures of neonatal rat cardiomyocytes were pretreated with sub-lethal hydrogen peroxide (100μM) or hypoxia to establish the cell model of IP. Briefly, the myocardial cells were pretreated with 100μM hydrogen peroxide for 90 min or hypoxia for 30 min, then recovered for 24h. The cell injuries were evaluated by MTT assay, release of LDH and detection of apoptotic percentage, while the expression of nucleolin was detected with real-time PCR and Western-blot. Sub-cellular fractionation and immunofluorescence were used to detect the cellular localization of nucleolin. The results showed that preconditioning with sub-lethal hydrogen peroxide or hypoxia, like IP, significantly attenuated the injuries of cardiomyocytes induced by oxidative stress (500μM H2O2) or hypoxia-reoxygenation (hypoxia 2h and reoxygenation 12-24h). The mRNA expression of nucleolin was gradually upregulated in these two cell models of IP with its peak expression at 12h, while the protein levels were also gradually upregulated with the maximum at 12h to 24h. Moreover, nucleolin mainly located in the nuclei of myocardial cells under normal conditions, but it translocated from the nuclei to the cytoplasm after the preconditioning with hydrogen peroxide or hypoxia.
     3. The role of nucleolin in the cytoprotection mediated by hydrogen peroxide or hypoxia preconditioning in neonatal rat cardiomyocytes
     The effects of nucleolin overexpression and low expression on cytoprotection mediated by hydrogen peroxide preconditioning against the injury induced by oxidative stress (500μM H2O2) were determined with gene transfection and RNA interference technologies in neonatal rat cardiomyocytes. The results showed that overexpression of nucleolin enhanced the hydrogen peroxide preconditioning-induced cytoprotective effect against the injuries induced by hydrogen peroxide (500μM H2O2) in cardiomyocytes, as indicated by the decrease of LDH release and apoptotic percentage, and the increase of cell viability, while the suppressed expression of nucleolin with RNA interference, on the contrary, significantly reduced the cytoprotective effect mediated by hydrogen peroxide preconditioning. Similar results were obstained in the cytoprotection mediated by hypoxia preconditioning.
     4. Studies on the mechanisms of nucleolin involved in myocardial protection meiated by myocardial IP
     1) In order to screen the potential target genes which were regulated by nucleolin during oxidative stress, neonatal rat cardiomyocytes were exposed to hydrogen peroxide (500μM H2O2,6h). After co-immunopre-cipitation with a specific anti-nucleolin antibody, the total RNAs in the precipitate were isolated for gene profiling analysis with rat genome wide cDNA chips and bioinformatics technology. Ten candidate genes, which contain the binding sites of nucleolin, including Hsp32 and Hsp70 were primarily selected for further studies based on the results of gene profiling and bioinformatics analysis.
     2) The expression of Hsp32 and Hsp70 in the intact rat model and cell models of IP were found up-regulated significantly with real-time PCR and Western-blot techniques. The specific inhibitor of Hsp32 and RNA interference oligonucleotide of Hsp70 obviously attenduated the cytoprotective effect of hydrogen peroxide preconditioning against oxidative stress.
     3) The regulatory effects of nucleolin on gene expression of Hsp32 and Hsp70 were analyzed with transfection of nucleolin gene or its interference RNA plasmid. Analysis of mRNA stability, IP-RT-PCR, RNA-EMSA, UV-crosslinking and luciferase reporter assay were applied to further study the mechanisms by which nucleolin regulated the expression of Hsp32 and Hsp70 translationally. The results demonstrated that nucleolin up-regulated the gene expression of Hsp32 and Hsp70 by directly binding to the 3'-UTR of Hsp32 and Hsp70 mRNA and increasing their mRNA stabilities, thus played protective effect on cardiomyocytes during myocardial IP.
     In conclusion, the data in this study showed that mRNA and protein expression of nucleolin were upregulated by myocardial IP in the myocar-dium of rats and by hydrogen peroxide or hypoxia preconditioning in cardiomyocytes, these changes were also associated by the translocation of nucleolin from nuclei to cytosols. Nucleolin played very important myocardial protective roles by binding to the 3'-UTRs, and then upregulating the gene expression of both Hsp32 and Hsp70 in myocardial ischemic preconditioning.
引文
[1]Reimer KA, Jennings RB. Biologic basis for limitation of infarct size. Adv Exp Med Biol.1986,194:315-330.
    [2]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation,1986,74(5):1124-1136.
    [3]Piot CA, Padmanaban D, Ursell PC, et al. Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation,1997,96(5):1598-1604.
    [4]Laskey WK. Beneficial impact of preconditioning during PTCA on creatine kinase release. Circulation,1999,99(16):2085-2089.
    [5]Venugopal V, Hausenloy DJ, Ludman A, et al. Remote Ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold blood cardioplegia:a randomised controlled trial. Heart.2009, in press.
    [6]Zhu J, Jiang X, Shi E, Ma H, Wang J. Sevoflurane preconditioning reverses impairment of hippocampal long-term potentiation induced by myocardial ischaemia-reperfusion injury. Eur J Anaesthesiol.2009, in press.
    [7]Kwak HJ, Park KM, Choi HE, Park HY. Protective mechanisms of NO preconditioning against NO-induced apoptosis in H9c2 cells:role of PKC and COX-2. Free Radic Res.2009,43(8):744-752.
    [8]Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Pharmacolo-gical preconditioning using intraportal infusion of L-arginine protects against hepatic ischemia reperfusion injury. J Surg Res.2009,155(2):244-253.
    [9]Hu X, Jiang H, Cui B, Xu C, Lu Z, He B. Preconditioning with high mobility group box 1 protein protects against myocardial ischemia-reperfusion injury. Int J Cardiol.2009, in press.
    [10]Tang YL, Zhu W, Cheng M, Chen L, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res.2009,104(10):1209-1216.
    [11]Sayan H, Ozacmak VH, Sen F, Cabuk M, Atik DY, Igdem AA, Ozacmak ID. Pharmacological preconditioning with erythropoietin reduces ischemia-reperfusion injury in the small intestine of rats. Life Sci.2009,84:364-371.
    [12]Takano H, Manchikalapudi S, Tang XL, et al. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation,1998,98(5):441-449.
    [13]Zhou FW Li YJ, Lu R, et al. Protection of calcitonin gene-related peptide-mediated preconditioning against coronary endothelial dysfunction induced by reperfusion in the isolated rat heart. Life Sci,1999,64(13):1091-1097.
    [14]Lu R, Li YJ, Deng HW. Evidence for calcitonin gene-related peptide-mediated ischemic preconditioning in the rat heart. Regul Pept,1999,82(1-3): 53-57.20
    [15]Takano H, Manchikalapudi S, Tang XL, et al. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in consicious rabbits. Circulation,1998,98(5):441-449.
    [16]Baxter GF, Marber MS, Patel VC, et al. Adenosine receptor involved in a delayed phase of myocardial protection 24h after ischemic preconditioning. Circula-tion,1994,90(6):2993-3000
    [17]Elliott GT. Monophosphoryl lipid A induces delayed preconditioning against cardiac ischemia reperfusion injury. J Moll Cell Cardiol,1998,30(1):3-17.
    [18]Takano H, Tang XL, Qiu Y, et al. Nitric oxide donors induces late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res,1998,83(1):73-84.
    [19]Yamashita T, Shoge M, Oda E, Yamamoto Y, et al. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo. Platelets.2006,17(3):201-206
    [20]Qiu Y, Ping P, Tang XL, et al. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest, 1998,101(10):2182-2198.
    [21]Sadat U. Signaling pathways of cardioprotective ischemic preconditioning. Int J Surg.2009, Jun 21,in press.
    [22]Patel DJ, Purecll HJ, Fox KM. Cardioprotection by opening of the KATP channel in unstable angina. Eur Heart J,1999,20(1):51-57.
    [23]Xuan YT, Tang XL, Banerjee S, et al. Nuclear factor-plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res, 1999,84(9):1095-1109.
    [24]Lu X, Liu H, Wang L, Schaefer S. Activation of NF-kappaB is a critical element in the antiapoptotic effect of anesthetic preconditioning. Am J Physiol Heart Circ Physiol.2009,296(5):H1296-1304.
    [25]Ge PF, Luo TF, Zhang JZ, Chen DW, Luan YX, Fu SL. Ischemic precondi-tioning induces chaperone hsp70 expression and inhibits protein aggregation in the CA1 neurons of rats. Neurosci Bull.2008,24(5):288-296.
    [26]Jancso G, Cserepes B, Gasz B, et al. Expression and protective role of heme oxygenase-1 in delayed myocardial preconditioning. Ann N Y Acad Sci.2007, 1095:251-261.
    [27]Mallick IH, Winslet MC, Seifalian AM. Ischemic preconditioning of small bowel mitigates the late phase of reperfusion injury:heme oxygenase mediates cytoprotection. Am J Surg.2009, in press.
    [28]Lin JS, Chen YS, Chiang HS, Ma MC. Hypoxic preconditioning protects rat hearts against ischaemia-reperfusion injury:role of erythropoietin on progenitor cell mobilization. J Physiol.2008,586(Pt 23):5757-5769.
    [29]Inserte J, Molla B, Aguilar R, et al. Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection Constitutive COX-2 expression and cardioprotection. J Mol Cell Cardiol.2009,46(2):160-8.
    [30]Eckle T, Kohler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection:a new paradigm for ischemic preconditioning. Circulation.2008,118(2):166-175.
    [31]Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol,2002,12(1):1-11.
    [32]Ginisty H, Sicard H, Roger B, et al. Structure and functions of nucleolin. J Cell Sci.1999,112 (Pt 6):761-772.
    [33]Srivastava M, Pollard HB.:Molecular dissection of nucleolin's role in growth and cell proliferation:new insights. FASEB J.1999,13(14):1911-1922.
    [34]Huang S:Building an efficient factory:where is pre-rRNA synthesized in the nucleolus? J Cell Biol.2002,157(5):739-741.
    [35]Khurts S, Masutomi K, Delgermaa L, Arai K, Oishi N, Mizuno H, Hayashi N, Hahn WC, Murakami S. Nucleolin interacts with telomerase. J Biol Chem.2004,279(49):51508-51515.
    [36]Shimakami T, Honda M, Kusakawa T, et al. Effect of hepatitis C virus (HCV) NS5B-nucleolin interaction on HCV replication with HCV subgenomic replicon. J Virol.2006,80(7):3332-3340.
    [37]Hovanessian AG:Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res.2006,16(2):174-181.
    [38]Bose S, Basu M, Banerjee AK:Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Virol.2004,78(15):8146-8158.
    [39]Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol.2009,83(6):2632-2644.
    [40]Calle A, Ugrinova I, Epstein AL, Bouvet P, Diaz JJ, Greco A. Nucleolin is required for an efficient herpes simplex virus type 1 infection. J Virol.2008,82(10): 4762-2773.
    [41]Sato H, Kusumoto-Matsuo R, Ishii Y, Mori S, et al. Identification of nucleolin as a protein that binds to human papillomavirus type 16 DNA. Biochem Biophys Res Commun.2009,387(3):525-530.
    [42]Mikhaylova LM, Boutanaev AM, Nurminsky DI:Transcriptional regulation by Modulo integrates meiosis and spermatid differentiation in male germ line. Proc Natl Acad Sci.2006,103 (32):11975-11980.
    [43]Masumi A, Fukazawa H, Shimazu T:Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation. Oncogene.2006,25(37): 5113-5124.
    [44]Destouches D, El Khoury D, Hamma-Kourbali Y, et al. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS One.2008,3(6):e2518.
    [45]Hoja-Lukowicz D, Przybylo M, Pochec E, et al. The new face of nucleolin in human melanoma. Cancer Immunol Immunother.2009,58(9):1471-1480.
    [46]Mi Y, Thomas SD, Xu X, Casson LK, Miller DM, Bates PJ. Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin. J Biol Chem.2003,278(10):8572-8579.
    [47]Otake Y, Sengupta TK, Bandyopadhyay S, Spicer EK, FeRNAndes DJ: Retinoid-induced apoptosis in HL-60 cells is associated with nucleolin down-regulation and destabilization of Bcl-2 mRNA. Mol Pharmacol.2005,67(1): 319-326.
    [48]Saba JA, McComb ME, Potts DL, Costello CE, Amar S. Proteomic mapping of stimulus-specific signaling pathways involved in THP-1 cells exposed to Porphyro-monas gingivalis or its purified components.J Proteome Res.2007,6(6): 2211-2221.
    [49]Zhang X, Kuramitsu Y, Fujimoto M, et al. Proteomic analysis of macro- phages stimulated by lipopolysaccharide:lipopolysaccharide inhibits the cleavage of nucleophosmin. Electrophoresis.2006,27(8):1659-1668.
    [50]王慷慨,蒋磊,鄂顺梅,等.核仁素表达下调对C2 C12细胞增殖与凋亡的影响.中南大学学报(医学版).2005,30(2):125-129.
    [51]邹江,王慷慨,刘可,等.核仁素反义寡核苷酸对RAW264.7细胞增殖与凋亡的影响.医学临床研究.2005,22(12):1641-1644.
    [52]王慷慨,蒋磊,刘可,等.热休克蛋白70对氧化应激所致核仁素裂解的影响.中国动脉硬化杂志.2004,2(4):373-377.
    [53]Kito S, Shimizu K,Okamura H,et al. Cleavage of nucleolin and argyrophilic nucleolar organizer region associated proteins in apoptosis-induced cells. Biochem Biophys Res Commun.2003,300(4):950-956.
    [54]Bin Zhang, Haiyun Wang, Bimei Jiang, et al. Nucleolin/C23 is a negative regulator of hydrogen peroxide induced apoptosis in HUVECs. Cell Stress and Chaperones.2009, in press.
    [55]Thomas DS & Kenneth JL. Analyzing real-time PCR data by the comparative method. Nature Protocols.2008,6:1101-1108.
    [56]田刚.心肌损伤标志物.马爱群,胡大一主编.心血管病学.北京:人民卫生出版社,2005,294-297
    [57]Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium [J]. Circ Res,1996,79:949-956.
    [58]Itoh G, Tamura J, Suzuki M, et al. DNA fagmentation of human infarated myocardial cells demonatrated by the nick end labeling method and DNA agarose gel electrophoresis [J]. Am J Pathol,1995,146:1325-1333.
    [59]Olivetti G, Abbi R, Quaini F. Apoptosis in the failing human heart [J]. N Engl J Med,1997,336:1131-1341.
    [60]Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning:upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res.2009,104(5):572-575.
    [61]Jiang B, zhang B, Liang P, et al. Nucleolin/C23 Mediates the Anti-apoptotic Effect of Hsp70 during Oxidative stress. FEBS J.2009.in press.
    [62]Toufektsian MC, Tanguy S, Jeunet A, et al.Role of reactive oxygen species in cardiac preconditioning:study with photoactivated Rose Bengal in isolated rat hearts. Free Radic Res.2000,33(4):393-405.
    [63]Penna C, Mancardi D, Rastaldo R, Pagliaro P. Cardioprotection:a radical view Free radicals in pre and postconditioning. Biochim Biophys Acta.2009, 1787(7):781-793.
    [64]Sharma A, Singh M. Protein kinase C activation and cardioprotective effect of preconditioning with oxidative stress in isolated rat heart. Mol Cell Biochem.2001,219(1-2):1-6.
    [65]Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res.2009,104(10):1209-1216.
    [66]Tang XQ, Feng JQ, Chen J, et al. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells:mechanisms via MMP, ROS, and Bcl-2. Brain Res.2005,1057(1-2):57-64.
    [67]Leconte C, Tixier E, Freret T, et al. Delayed Hypoxic Postconditioning Protects Against Cerebral Ischemia in the Mouse. Stroke.2009. [Epub ahead of print]
    [68]Da Silva MM, Sartori A, Belisle E, Kowaltowski AJ. Ischemic precondi-tioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport. Am J Physiol Heart Circ Physiol.2003,285(1):H154-162.
    [69]Valen G, Starkopf J, Takeshima S, et al. Preconditioning with hydrogen peroxide (H2O2) or ischemia in H2O2-induced cardiac dysfunction. Free Radic Res. 1998,29(3):235-245.
    [70]Tang XQ, Chen J, Tang EH, Feng JQ, Chen PX. Hydrogen peroxide preconditioning protects PC 12 cells against apoptosis induced by oxidative stress. Sheng Li Xue Bao.2005,757(2):211-216.
    [71]Iliakis G, Krieg T, Guan J, et al. Evidence for an S-phase checkpoint regulating DNA replication after heat shock. Int J Hyperthermia,2004, 20(2):240-249
    [72]Daniely Y, Dimitrova DD, Borowiec JA. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol Cell Biol.2002, 22(16):6014-6022.
    [73]Webster KA, Discher DJ, Bishopric NH. Cardioprotection in an in vitro model of hypoxic preconditioning. J Mol Cell Cardiol.1995,27(1):453-458.
    [74]Yang CC, Ma MC, Chien CT, Wu MS, Sun WK, Chen CF. Hypoxic preconditioning attenuates lipopolysaccharide-induced oxidative stress in rat kidneys. J Physiol.2007,582(Pt1):407-419.
    [75]Shinmura K, Tang XL, Wang Y, et al. Cyclooxygenase-2 mediates the cardioprotective efects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci USA,2000,97:10197-10202.
    [76]Bernstein E,Caudy AA,Hammond SM,et al.Role of a bidentate ribonuclease in the initiation step of RNA interference. Nature.2001,409(6818):363-366.
    [77]Yang D, Lu H, Erickson JW. Evidence that processed small dsENAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Bio.2000,10(19):1191-1200.
    [78]朱睿,张开立,邹向阳.RNA干扰(RNAi)技术及其在功能基因组学研究中的应用[J].大连医科大学学报.2003,25(2):105-107.
    [79]Chen CY, Gherzi R, Andersen JS, et al:Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes & Dev.2000,14(7):1236-1248.
    [80]Zhang J, Tsaprailis G, Bowden GT.Nucleolin stabilizes Bcl-X L messenger RNA in r sponse to UVA irradiation. Cancer Res.2008,68(4):1046-1054.
    [81]Fahling M, Steege A, Perlewitz A, Nafz B, Mrowka R, Persson PB, Thiele BJ:Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochimica et Biophysica Acta.2005,1731(1):32-40.
    [82]Jiang Y, Xu XS, Russell JE:A nucleolin-binding 3'untranslated region element stabilizes beta-globin mRNA in vivo. Mol Cell Biol.2006,26 (6):2419-2429.
    [83]Sengupta TK, Bandyopadhyay S, FeRNAndes DJ, Spicer EK: Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization, J Biol Chem.2004,279 (12):10855-10863.
    [84]Zhang Y, Bhatia D, Xia H, et al. Nucleolin links to arsenic-induced stabilization of GADD45a mRNA. Nucleic Acids Research.2006,34(2):485-495.
    [85]Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 Translation and Induction after DNA Damage by Ribosomal Protein L26 and Nucleolin. Cell.2005,123(1):49-63.
    [86]Benjamin IJ, McMillan DR. Stress (heat shock) proteins molecular chape-rones in cardiovascular biology and disease. Circ Res,1998,83:117-
    [87]Xiao XZ,Benjamin IJ. Stress-response proteins in cardiovascular disease. Am J Hum Genet.1999,64:685-690.
    [88]Otterbein LE, Choi AMP. Heme oxygenase:colors of defense against cellular stress [J]. Am J Physiol,2000,279:L1029-1037
    [89]喻陆,何作云.内源性一氧化碳合成酶-1在体内分布状态.第三军医大学学报.1998,20(5):449-451
    [90]Kotsch K, Martins PN, Klemz R, et al. Heme oxygenase-1 ameliorates ischemia/reperfusion injury by targeting dendritic cell maturation and migration. Antioxid Redox Signal.2007,9(12):2049-2063
    [91]Zeynalov E, Shah ZA, Li RC, Dore S.Heme oxygenase 1 is associated with ischemic preconditioning-induced protection against brain ischemia. Neurobiol Dis. 2009,35(2):264-269.
    [92]Bornmonl L, Steinmon CM, Grick GS, et al. In vivo heat shock protects rat myocardial mitochonidria. Biochem Biophys Res Commum,1998,246:836-840.
    [93]Mokuno (?) Berthiaume F, Tompkins RQ et al. Technique for expanding the donor liver pool:heat shock preconditioning in a rat fatty liver model. Liver transpl. 2004,10(2):264-272.
    [94]何洁,张敏,刘俊昌,等.血红素氧化酶-1在离体大鼠心肌缺血预处理中的作用.中国病理生理杂志.2001,17(11):932-934.
    [95]Oshihisa O, Andress K, Tuzuner E, et al. Contribution of nitric oxide to the protective efects of ischemic preconditioning in ischemia reperfused rat kidneys. J Lab Clin Med.2001,138:50-58.
    [96]Tamion F, Richard V, Lacoume Y, et al. Intestinal preconditioning protects systemic inflammatory response in hemorrhagic shock, role of HO-1. Am J Physiol Gastroihtest Liver Physiol.2002,283(2):G408-414
    [97]鲁蓉,李元建,邓汉武,等.一氧化碳介导大鼠心脏缺血预适应的早期保护作用.生理通讯.1998,17(S:S):45
    [98]Lai R, Ma MC, Chen CF, et al. The protective role of heme oxygenase-1 on the liver after hypoxic preconditioning in rats. Transplantation.2004,77(7):1004-1008
    [99]Jayakumar J, Suzuki K, Sammut IA, et al. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation.2001,104 (Suppll):303-307.
    [100]Jiang B, Wang K, Liang P, et al. ATP-binding domain of heat shock protein 70 is essential for its effects on the inhibition of the release of the second mitochondria-derived activator of caspase and apoptosis in C2C12 cells. FEBS J. 2009,276(9):2615-2624.
    [101]Hampton CR, Shimamoto A, Rothnie CL, et al. HSP70.1 and HSP 70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am J Physiol Heart Circ Physiol.2003.285(2):H866—H874.
    [102]Xiao X, Zuo X, Davis AA, et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J.1999,18(21):5943-5952.
    [103]Moseley PL, Wallen ES, McCafferty JD, et al. Heat stress regulates the human 70-kDa heat-shock gene through the 3'-untranslated region. Am J Physiol. 1993,264(6 Pt 1):L533-537.
    [104]Yost HJ, Petersen RB, Lindquist S. RNA metabolism:strategies for regulation in the heat shock response.Trends Genet.1990,6(7):223-227.
    [105]Kaarniranta K, Elo M, Sironen R, et al. Hsp70 accumulation in chondro-cytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation.Proc Natl Acad Sci USA.1998, 95(5):2319-2324.
    [106]Alfieri RR, Bonelli MA, Petronini PG, Borghetti AF. Stabiliza-tion of hsp70 mRNA on prolonged cell exposure to hypertonicity. Biochim Biophys Acta. 2002,1592(2):135-140.
    [107]Alfieri RR, Bonelli MA, Pedrazzi G, et al. Increased levels of inducible HSP70 in cells exposed to electromagnetic fields. Radiat Res.2006.165(1):95-104.
    [108]Zhao M, Tang D, Lechpammer S, et al. Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress. J Biol Chem.2002, 277(46):44539-44547
    [109]Kaarniranta K, Holmberg CI, Helminen HJ, et al. Protein synthesis is required for stabilization of hsp70 mRNA upon exposure to both hydrostatic pressuri-zation and elevated temperature. FEBS Lett.2000,475(3):283-286.
    [110]Leautaud V, Demple B.Regulation of heme oxygenase-1 mRNA deadeny-lation and turnover in NIH3T3 cells by nitrosative or alkylation stress. BMC Mol Biol. 2007,8:116.
    [111]Panchenko MV, Farber HW, Korn JH. Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts. Am J Physiol Cell Physiol. 2000,278(1):C92-C101.
    [112]Bouton C, Demple B. Nitric oxide-inducible expression of heme oxyge-nase-1 in human cells. Translation-independent stabilization of the mRNA and evi-dence for direct action of nitric oxide. J Biol Chem.2000,275(42):32688-32693.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans Heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993,75:843-854.
    [2]Reinhart BJ, Slack F, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000,403: 901-906.
    [3]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identifcation of novel genes coding for small expressed RNAs. Science.2001,294:853-858
    [4]Lau NC, Lira LP, Weinstein EG, et al. Anabundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science.2001,294:858-862
    [5]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science.2001,294:862-864.
    [6]KimVN. MicroRNA precursors in motion:exportin-5 medi-ates their nuclear exportion. Trends Cell Biol.2004,14(4):156-159.
    [7]Bartel DP. MicroRNAs:Genomics, biogenesis, mechanism, and function. Cell.2004,116:281-297.
    [8]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO.2004,23:40-51.
    [9]Liu J, Valencia-Sanchez MA, Harmon GJ, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian p-bodies. Nat Cell Biol.2005,7(7): 719-723.
    [10]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science.2004,303:83.
    [11]Krek A. Combinatorial microRNA target predictions. Nature Genet.2005, 37:495.
    [12]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005,120:15-20.
    [13]Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet.2003,35(3):287.
    [14]Volinia S, Calin GA, I iu CG, et al. A microRNA expression signature of human solid tumors defines cancergene targets. Proc Natl Acad Sci USA.2006, 103(7)2257-22561.
    [15]Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell.2006, 126(4):767.
    [16]Yang BF, Lin HX, Xiao JN, et al. The muscle-specific microRNA miR-1 regulates cardiac amhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007,13(4):486-491.
    [17]Zhao Y, Samal E, Srivastava D, et al. Serum response factor regulates a muscle specific microRNA that targets Hand 2 during cardiogenesis. Nature.2005, 436 (7048):214-220.
    [18]McFadden DG. Barbosa AC, Richardson JA, et al. The Handl and Hand2 transcription factors regulate expansion of the embryonic ear-diac ventricles in a gene dosage-dependent manner. Development.2005,132:189.
    [19]Van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA.2006,103(48):18255-18560.
    [20]Kru tzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with antagomirs. Nature.2005,438(7068):685.
    [21]Van Rooij E, Sutherland LB, Qi x, et al. Control of stress-depenent cardiac growth and gene expression by a microRNA. Science.2007,316(5824):575.
    [22]Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertro-phy. Nat Med.2007,13(5):613-618.
    [23]Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res.2007,100:416-424.
    [24]Caxtby JJ. Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol.2007,102:306-313.
    [25]Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR, Pu WT.MicroRNA-1 negatively regulates expression of the hypertro-phy-associated calmodulin and Mef2a genes. Mol Cell Biol.2009,29(8): 2193-2204.
    [26]ChengYH, Ji RR,Yue JM, et al. MicroRNAs are aberrantly expressed in hypertrophic heart. Am J Pathol.2007,170(6):1831-1840.
    [27]Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart:A clue to fetal gene reprogramming in heart failure. Circulation.2007.116:258-267.
    [28]Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA. 2009,106(29):12103-12108.
    [29]Mishra PK, Tyagi N, Kundu S, Tyagi SC.MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling.Cell Biochem Biophys.2009 [Epub ahead of print].
    [30]Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc.Natl.Acad.Sci.U.S.A.2008,105:2111-2116.
    [31]Xiao J, Yang B, Lin H, et al. Mesenchymal stem cells transfected with HCN2 genes by LentiV can be modified to be cardiac pacemaker cells. J Cell Physiol.2007,212:285.
    [32]Zhao Y, Ransom JF, Li AK, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell.2007,129:303-317.
    [33]Silvestri P, Di Russo C, Rigattieri S, et al. MicroRNAs and ischemic heart disease:towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets.Recent Pat Cardiovasc Drug Discov.2009,4(2):109-118.
    [34]Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature.2008, 456(7224):980-984.
    [35]Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor:implications for a role of microRNAs in myocardial matrix remodeling. Circ Res.2009,104(2):170-178.
    [36]Shan ZX, Lin QX, Fu YH, et al.Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun.2009, 381(4):597-601.
    [37]Yang B, Lin H, Xiao J, et al. Nat Med.2007,13:486-491.
    [38]Wang, S., Aurora, A.B., Johnson, B.A., Qi, X., McAnally, J., Hill, J.A., Richardson, J.A., Bassel-Duby, R., and Olson, E.N. Dev Cell.2008,15:261-271.
    [39]Yin, C., Wang, X., Kukreja, R.C. FEBS Lett.2008,582:4137-4142.
    [40]Van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill, J.A., and Olson, E.N. Proc Natl Acad Sci USA.2008, 105,13027-13032.
    [41]Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009, [Epub ahead of print]
    [42]Cheng Y, Liu X, Zhang S, et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4.J Mol Cell Cardiol.2009,47(1):5-14.
    [43]Tang Y, Zheng J, Sun Y, Wet al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J.2009,50(3):377-387.
    [44]Ren XP, Wu J, Wang X, Sartor MA, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation.2009,119(17):2357-2366.
    [45]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation.1986,74(5):1124-1136.
    [46]Piot CA, Padmanaban D, Ursell PC, et al. Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation.1997,96(5):1598-1604.
    [47]Laskey WK. Beneficial impact of preconditioning during PTCA on creatine kinase release. Circulation.1999,99(16):2085-2089.
    [48]Venugopal V, Hausenloy DJ, Ludman A, et al. Remote Ischaemic precondi- tioning reduces myocardial injury in patients undergoing cardiac surgery with cold blood cardioplegia:a randomised controlled trial. Heart.2009, in press.
    [49]Rane S, He M, Sayed D, Vashistha H, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-lalpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res.2009,104(7):879-886.
    [50]Yin C, Salloum FN, Kukreja RC.A novel role of microRNA in late preconditioning:upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res.2009,104(5):572-575.
    [51]Suarez Y, Sessa WC.MicroRNAs as novel regulators of angiogenesis.Circ Res.2009,104(4):442-454.
    [52]Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angioge-nesis and functional recovery of ischemic tissues in mice. Science.2009, 324(5935):1710-1713.
    [53]Margulies KB.MicroRNAs as Novel Myocardial Biomarkers.Clin Chem. 2009. [Epub ahead of print]
    [54]Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a Biomarker of Myocardial Injury.Clin Chem.2009. [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700