用户名: 密码: 验证码:
北半球冬季阻塞活动长期变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气环流持续性异常现象——阻塞系统的活动,是一种在西风带中重要的低频变化过程。由于阻塞事件的发生和存在会对相关区域的天气,例如夏季降水,冬季寒潮、冻雨等造成极大影响,另外,为了提高中长期天气预报的准确性,给长期预报提供真实依据,因此对阻塞活动的研究具有重要意义。本文利用NCEP/NCAR再分析气象资料,借助LO阻塞指数、TM阻塞指数、Dole阻塞指数以及DLL阻塞指数,探讨了1948年以来北半球冬季阻塞活动特征的发展变化以及20世纪50年代末以来北大西洋涛动对其的影响。通过详细分析,主要结论如下:
     北半球冬季振幅强烈的阻塞事件主要分布在北大西洋东部欧洲大陆(20°W-40°E)以及东亚鄂霍茨库海到北太平洋(130°E-150°W)附近,乌拉尔山区域(50°E-90°E)也有阻塞,强度小于两大主要分布区的阻塞活动发生的强度。
     北大西洋欧洲区与北太平洋北美洲区的冬季阻塞平均强度在20世纪80年代中期之前的变化与整个北半球的平均强度变化大致相同,1985年之后北大西洋欧洲区平均强度略有加强,北太平洋北美洲区则减弱;但多年平均来说,北太平洋北美洲区阻塞强度,阻塞发生个数以及总天数的平均状况要比北大西洋欧洲区低,北大西洋欧洲区在四个区域中发生个例最多。
     近20年左右的阻塞强度、阻塞总天数及个例数在北大西洋欧洲区接近或高于常年平均值,在北太平洋北美洲区接近或低于常年平均值。前后11年对比发现,北大西洋欧洲区分布在7-12天持续时间的平均强度值由高于均值水平下降,而北太平洋北美洲区分布在10天以内持续时间的由均值以下上升。两个区域,持续5-14天左右的阻塞天数以及个例数高于平均值的在降低,低于平均值的在升高,都在向多年平均状态靠拢。
     乌拉尔山区与东亚-鄂霍茨库海区的冬季阻塞平均强度、个例数以及总天数年变化都比北大西洋欧洲区域和北太平洋北美洲区来得小,线性趋势中无论上上升或下降其走势都不明显;乌拉尔山区与东亚-鄂霍茨库海区的冬季阻塞个例数、总天数的差异都不大,并且其两者曲线的波动基本一致,平均强度线性发展趋势相互接近,个例数、总天数线性发展趋势相交。
     乌拉尔山脉区近20年来阻塞事件个例数、阻塞总天数一直在平均值以下,而东亚-鄂霍茨库海区则高于平均值。1998年冬以来乌拉尔山脉对应持续时间5-8天的阻塞强度上升到平均水平,而东亚-鄂霍茨库海区阻塞平均强度基本在减弱。两者阻塞事件的天数同个例数距平相似,距平差异都很小,基本处在多年平均值水平。
     20世纪50年代末以来北大西洋涛动变化趋势对北半球冬季阻塞活动产生一定的影响。线性回归分析表明北大西洋涛动(NAO)主要影响大西洋、欧洲及乌拉尔山地区阻塞。NAO指数与大西洋地区和乌拉尔山地区阻塞活动频率呈负相关关系,与欧洲阻塞活动正相关。在NAO负位相时期阻塞活动在大西洋地区较为频繁,在正位相时期大西洋地区阻塞活动受到抑制,而在欧洲相对活跃,同时乌拉尔山地区的阻塞活动也显著减少。正NAO指数表现为先增强后减弱的特征。在NAO正指数增强的阶段大西洋的阻塞活动受到明显抑制;而在NAO正指数减弱的阶段,东大西洋,尤其是欧洲地区阻塞活动得以增加。区域阻塞的逐年变化表现为,大西洋和乌拉尔地区阻塞在NAO指数增强的阶段呈下降趋势,欧洲阻塞呈增加的趋势。在NAO指数减弱的阶段大西洋阻塞成弱的上升趋势,欧洲和乌拉尔地区阻塞呈下降趋势。NAO指数的变化对阻塞强度也有明显影响,大西洋阻塞随NAO指数的加强而减弱,欧洲阻塞随NAO指数增加而增强。
     北半球两个明显的阻塞区域都位于风暴轴的出口区。表明了冬季阻塞活动与涡动之间存在某种联系。NAO正位相有利于冬季欧洲大陆阻塞发生和加强,负位相有利于冬季大西洋地区阻塞活动,且中纬度涡旋活动的强弱和位置对NAO位相的变化起到重要作用。风暴带向东加强有利于NAO趋于正位相,但其进一步加强可使NAO正位相减弱。
     本文关于北半球冬季阻塞活动特征变化规律以及与北大西洋涛动两者关系,互相影响的问题研究只是做了初步探讨,还有许多问题需要进一步的研究。
The persistent anomaly in the atmospheric circulation-blocking activity, is an important low-frequency process in the westerly. As blocking events greatly affect regional weather, such as summer rainfalls, winter cold waves, freezing rains, and so on. In addition, in order to improve the accuracy of minddle and long term weather forecasts, to provide the real basis for long-term forecasting, the research about blocking activities is of great significance. In this paper, applying NCEP/NCAR reanalysis weather data, by LO index, TM index, Dole index, and DLL index, it has been discussed variance and development of winter blocking events'features in the Northern Hemisphere since 1948 and since the late 1950, influences of North Atlantic Oscillation on it. Through analyzing it carefully, the main conclusions are as follows:
     In the Northern Hemisphere, winter blocking events with the strongest amplitude mainly distribute over the eastern North Atlantic and Continental Europe sector (20°W-40°E), the East Asia Okhotsk Sea to North Pacific sector (130°E-150°W). Close to the Ural Mountains region (50°E-90°E) also owns blocking activities, but their intensity are weaker than them occuring two major blocking distribution above.
     Before the mid-1980, The variance about average intensity of the winter blocking activities of the North Atlantic and Continental Europe sector, and the North Pacific and North America region, is in accordance with it over entire Northern Hemisphere. After 1985, the North Atlantic European average intensity increases slightly, the North Pacific and North America's is weakened; But for years, on average, the North Pacific North and North America winter blocking intensity, occurence and the total numbers of days are lower than the average conditions of the North Atlantic Europe, and the North Atlantic European region in the four sectors, the maximum winter blocking events occurred.
     Lately in about 20 years, winter blocking intensity, total numbers of blocking days, and its cases in the North Atlantic and Continental Europe are close to or higher than the average value, which are close to or lower in the North Pacific and North America. The comparison between 11 years before and after shows, the North Atlantic European winter average blocking intensity (lasting 7-12 days) declines from higher than average, while in the North Pacific and North America region it (lasting less than 10 days) increases from lower than average. In two regions above, the number of winter blocking days and cases (lasting 5-14 days) decline which are higher than average condition, meanwhile the part below the average rise, and both are close to the many years average station.
     In the Ural Mountains and East Asia Okhotsk Sea region, the average intensity, cases and the total numbers of winter blocking days are smaller than the annual change in the North Atlantic and Continental Europe, and North Pacific and North America. whether up or down in the linear trend, the movements are not obvious; Winter blocking cases and the total numbers of days are not highly different in both areas, and the two curves basically have the same fluctuation. The linear trends of average intensity apporch each other, which of cases and the total numbers of winter blocking days are intersection.
     Since the past 20 years, the cases and total number of winter blocking days over Ural Mountains area have been below the average value, while in the East Asia Okhotsk Sea region it is higher than mean. Winter blocking intensity (lasting 5-8 days) in the Ural Mountains has risen up to the average level since 1998, but in the East Asia Okhotsk Sea area it has basically reduced. The cases and numbers of days in the two areas above have a similar anomaly, the differences between which are small, and on the whole, they stay in the average level of many years.
     Since the late 1950, the variation trendency of North Atlantic Oscillation has affected winter blocking activity in the Northern Hemisphere to a certain degree. The linear regression analysis shows that the North Atlantic Oscillation (NAO) mainly affects the blocking events of the Atlantic Ocean, Europe and the Ural Mountains. There are negative relevant relations between NAO index and the frequency of blocking activities in the Atlantic arid the Urals region, which has positive correlation with the European blocking activities. During the negative NAO phase, the blocking activities are more frequent in the Atlantic region, which are inhibited in the positive phase. During the positive NAO phase, the blocking events in Europe are relatively active, and at the same time the blocking activities of Ural Mountains also significantly reduce. The feature of positive NAO index displays firstly enhanced and then weakened. During the positive NAO index increasing phase, the blocking activities of Atlantic Ocean are significantly restraint; but in the positive NAO index weakening stage, the blocking activities of the East Atlantic Ocean increase, particularly in European region. The annual changes in the regional blocking events show that during the enhancing phase of the NAO index the blocking situations in the Atlantic and the Urals region tend a downward trend, which increase in Europe. In the weakening phase of the NAO index, the Atlantic blocking cases present a weak uptrend, which trend downwards in Europe and the Ural region. NAO index changes have also significant effect on the blocking intensity. The Atlantic Ocean blocking intensity weakens with the strengthening NAO index, and the European blocking intensity reinforces with the increasing NAO index.
     Over the Northern Hemisphere, two distinct blocking regions are both in the storm track outlet region. This expresses that winter blocking activities have a link with the eddies. Positive NAO phase is beneficial to the occurrence and enhancement of winter blocking activities in the Continental Europe, and negative phase is good for the North Atlantic, besides, the strength and position of mid-latitude eddies play an important role in the NAO phase shift. The storm zones which strengthen towards east favor that NAO tends to positive phase, but its further reinforcement weaken NAO positive phase.
     This paper discussed variance and development of winter blocking events' features in the Northern Hemisphere and influences of North Atlantic Oscillation on it. This is just a preliminary investigation, but there are many issues needed further study.
引文
[1]巢纪平,黄瑞新.1980:旋转正压大气中的椭圆余弦波[J].中国科学(A辑),10(7):697-704.
    [2]刁一娜.2004:中纬度负指数环流与阻塞过程研究[D].中国海洋大学博士学位论文,167pp.
    [3]范可,王会军,2006:南极涛动的年际变化及其对东亚冬春季气候的影响[J].中国科学(D辑),36(4):385-391.
    [4]韩添丁,丁永建,叶柏生等,2007:北大西洋涛动和北极涛动与新疆河川径流变化[J].冰川冻土,29(1):107-113.
    [5]胡跃文,杨小怡,2007:北极涛动和北大西洋涛动的低频变化特征[J].气象科学,27(3):316-322.
    [6]黄菲,姜治娜.2002:欧亚大陆阻塞高压的统计特征及其与中国东部夏季降水的关系[J].青岛海洋大学学报,32(2):186-192.
    [7]黄荣辉,邹捍.1989:球面斜压大气中上传行星波与纬向平均气流的相互作用[J].大气科学,13(4):383-392.
    [8]季明霞,黄建平,王绍武,等.2008:冬季中高纬地区阻塞高压活动及其气候影响[J].高原气象,27(2):415-420.
    [9]刘式达,刘式适.1982:大气中非线性波动方程的解[J].气象学报,40(3):279-288.
    [10]刘式达,刘式适.1985:斜压Rossby波稳定性的线性与非线性问题[J].中国科学(B辑),15(11):1055-1062.
    [11]刘式达,谭本馗.1988:地形作用下的非线性Rossby波[J].应用数学和力学,9(3):229-240.
    [12]陆日宇,黄荣辉.1996:变形的经向环流变化方程及其在诊断阻塞高压形成中的应用[J].大气科学,20(2):138-148.
    [13]罗德海,纪立人.1989:大气中阻塞形成的一个理论[J].中国科学(B辑),19(1):103-112.
    [14]罗哲贤,马镜娴.1991:强迫耗散非线性系统的局域阻塞流型[J].大气科学,15(4):17-25.
    [15]罗哲贤.1989:阻塞高压形成机制的数值研究[J].中国科学(B辑),19(6):665-672.
    [16]吕克利,蒋后硕.1998:局地热力强迫与准定常大振幅扰动的形成[J].气象学报,56(4):424-435.
    [17]龚道溢,王绍武,1998:南极涛动[J],科学通报,43(3):296-301.
    [18]龚道溢,王绍武,2000:北大西洋涛动指数的比较及其年代际变率[J],大气科学,24(2):187-192.
    [19]沈学顺,木本昌秀,2007:春季欧亚大陆地表气温变化特征的气候意义[J].大气科学,31(1):19-27.
    [20]施能,1996:北半球冬季大气环流遥相关型的长期变化及其与我国气候变化的关系[J].气象学报,54(6):675-683.
    [21]唐红玉,翟盘茂,常有奎,2005:中国北方春季沙尘暴频数与北半球500 hPa高度场的SVD分析[J].中国沙漠,25(4):570-576.
    [22]武炳义,黄荣辉,1999:冬季北大西洋涛动极端异常变化与东亚冬季风[J].大气科学, 23(6):641-651.
    [23]杨莲梅,张庆云,2008:北大西洋涛动对新疆夏季降水异常的影响[J].大气科学,32(5):1187-1196.
    [24]叶笃正,陶诗言,朱抱真,等.1962:北半球冬季阻塞形势的研究[M].北京:科学出版社,135pp.
    [25]仪清菊.1982:北半球阻高的某些统计特征[J].气象,9(3):11-13.
    [26]张培忠,杨素兰.1996:阻塞高压活动的气候变化及其对中国某些地区早涝的影响[J].气象学报,54(5):633—640.
    [27]张天宇,陈海山,孙照渤,2007:欧亚秋季雪盖与北半球冬季大气环流的联系[J].地理学报,62(7):728-741.
    [28]赵汉光,陈雪珍.1990:北半球阻塞高压的统计分析[J].气象,16(3):3-7.
    [29]朱抱真.1964:大地形和热源的动力控制与超长波活动关系的初步研究[J].气象学报,34(3):285-298.
    [30]朱正心,朱抱真.1982:纬向不对称热力强迫下超长波的非线性平衡态与阻塞形势[J].中国科学(B辑),12(4):361-371.
    [31]Appenzeller, C., T. F. Stocker, and M. Anklin,1998:North Atlantic Oscillation dynamics recorded in Greenland ice core [J]. Science,282:446-449.
    [32]Barnston, A. G., and R. E. Livezey,1987:Classification,seasonality and persistence of low frequency atmospheric circulation patterns [J]. Mon. Wea. Rev.,105:1083-1126.
    [33]Berggren, R., B. Bolin, and C. G. Rossby,1949:An aerological study of zonal motion, its perturbations and break-down [J]. Tellus,1(2):14-37.
    [34]Bjerknes, J.,1966:A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature [J]. Tellus,18(4):820-829.
    [35]Charney, J. G, and J. G. Devote,1979:Multiple flow equilibria in the atmosphere and blocking [J]. J. Atmos. Sci.,36(7):1205-1216.
    [36]Charney, J. G, and D. M. Straus,1980:Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems [J]. J. Atmos. Sci.,37(6):1157-1176.
    [37]Clara, D.,2000:On the teleconnection of the "Arctic Oscillation" [J]. Geophys. Res. Lett.,27: 779-782.
    [38]CLIVARA.1993:Reasearch program on Climate Variability and Predictability for the 21st Century.32-33.
    [39]Cook, E. R., R. D. D'A rrigo, and K. R. Briffa,1998:The North Atlantic Oscillation and its expression in circum-Atlantic tree-ring chronologies from North America and Europe [J]. The Holocene,8(1):9-17.
    [40]Cook, E. R., R. D. D'A rrigo, and M. E. Mann,2001:A Well-Verified,Multiproxy Reconstruction of the Winter North Atlantic Oscillation Index since A. D.1400*[J]. J. Climate,15: 1754-1764.
    [41]Cullen, H., R. D. D'A rrigo, and E. Cook.2000:Multiproxy reconstructions of the Norther Atlantic Oscillation [J]. Paleoceanography,16(1):27-39.
    [42]Deser, C., J. E. Walsh, and M. S. Timlin,2000:Arctic sea ice variability in the context of recent wintertime atmospheric circulation trends [J]. J. Climate,13:617-633.
    [43]Deser, C., and M. L. Blackmon,1993:Surface climate variations over the north Atlantic ocean during winter:1900-1989 [J]. J. Climate,6:1743-1753.
    [44]Diao, Y. N., J. P. Li, and D. H. Luo,2006:A New Blocking Index and Its Application: Blocking Action in the Northern Hemisphere [J]. J. Climate,19(19):4819-4827.
    [45]Dole, R. M., and N. D. Gordon,1983:Persistent anomalies of the extra-tropical Northern Hemisphere wintertime circulation:Geographical distribution and regional persistence characteristics [J]. Mon. Wea. Rev.,111(8):1567-1586.
    [46]Dugam, S. S., S. B. Kakade, and R. K. Verma,1997:Interannual and long-term variability in the North Atlantic Oscillation and Indian Summer monsoon rainfall [J]. Theor. Appl. Climatol., 58(1-2):21-29.
    [47]Egger, J., and Schilling, H.-D.,1983:On the theory of the long-term variability of the atmosphere [J]. J. Atmos. Sci.,40:1073-1085.
    [48]Elliott, R. D., and T. B. Smith,1949:A study of the effcts of large blocking highs on the general ciuculation in the Northern-Hemisphere Westerlies [J]. J. Atmos. Sci.,6(2):27-85.
    [49]Feldstein, S. B.,2000:Teleconnections and ENSO:The timescale,power spectra,and climate noise properties [J]. J. Climate,13:4430-4440.
    [50]Feldstein, S. B.,2002:Fundamental mechanisms of PNA teleconnection pattern growth and decay [J]. Quart. J. Roy. Meteor. Soc.,128A:775-796.
    [51]Feldstein, S. B.,2003:The dynamics of NAO teleconnection pattern growth and decay [J]. Quart. J. Roy. Meteor. Soc.,129:901-924.
    [52]Garriott, E. B.,1904:Long range forecasts [J]. U.S.Weather Bur. Bull.35.
    [53]Hurrell, J. W.,1995:Decadal trends in the North Atlantic Oscillation:regional temperatures and precipitation [J]. Science,269:676-679.
    [54]Hurrell, J. W.,1996:Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature [J]. Geophys. Res. Lett.,23:665-668.
    [55]Hurrell, J. W., and H. van Loon,1997:Decadal variations in climate associated with the North Atlantic Oscillation [J]. Climatic Change,36:301-326.
    [56]J. Ignacio, L., and M. V. Sergio,2006:Positive and Negative Phases of the Wintertime North Atlantic Oscillation and Drought Occurrence over Europe:A Multitemporal-Scale Approach [J]. J. Climate,21(6):1220-1243.
    [57]Judah, C., and M. Barlow,2005:The NAO,the AO,and Global Warming How Closely Related? [J]. J. Climate,18:4498-4513.
    [58]Kaas, E., and G. Branstator,1993:The relationship between a zonal index and blocking activity [J]. J. Atmos. Sci.,50(18):3061-3077.
    [59]Koslowski, G., and P. Loewe,1994:The Western Baltic Sea ice season in terms of a mass-related serity index 1879-1992. Part Ⅰ:Temporal variability and association with the North Atlantic Oscillation [J]. Tellus,46A(1):66-74.
    [60]Lejenas, H., and H.(?)kland,1983:Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data [J]. Tellus,35A:350-362.
    [61]Li, J. P., and J. X. L. Wang,2003:A New North Atlantic Oscillation Index and Its Variability [J]. Advances in Atmospheric sciences.,20(5):661-676.
    [62]Lorenz, E. N.,1951:Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile [J]. J. Meteor.,8:52-59.
    [63]Luo, D. H., and L. R. Ji,1988:Algebraic Rossby solitary wave and blocking in the atmosphere [J]. Adv. Atmos. Sci.,5(4):445-454.
    [64]Luo, D. H.,2005a:A barotropic envelope Rossby soliton model for block-eddy interaction. Part Ⅰ:Effect of topography [J]. J. Atmos. Sci.,62(1):5-21.
    [65]Luo, D. H.,2005b:A barotropic envelope Rossby soliton model for block-eddy interaction. Part Ⅱ:Role of westward-traveling planetary waves [J]. J. Atmos. Sci.,62(1):22-40.
    [66]Luo, D. H.,2005c:A barotropic envelope Rossby soliton model for block-eddy interaction. Part Ⅲ:Wavenumber conservation theorems for isolated blocks and deformed eddies [J]. J. Atmos. Sci.,62(11):3839-3859.
    [67]Luo, D. H.,2005d:A barotropic envelope Rossby soliton model for block-eddy interaction. Part Ⅳ:Block activity and its linkage with sheared environment [J]. J. Atmos. Sci.,62(11): 3860-3884.
    [68]Luo, D. H.,2005e:Why is the North Atlantic block more frequent and long-lived during the negative NAO phase [J]. Geophys. Res. Lett.,32, L20804,doi:10,1029/2005GL022927.
    [69]Luo, D. H., A. R. Lupo, and H. Wan,2007a:Dynamics of Eddy-Driven Low-Frequency Dipole Modes.Part Ⅰ:A Simple Model of North Atlantic Oscillations [J]. J. Atmos. Sci.,64: 3-28.
    [70]Luo, D. H., and T. T. Gong,2007b:Dynamics of Eddy-Driven Low-Frequency Dipole Modes.Part II:Free Mode Characteristics of NAO and Diagnostic Study [J]. J. Atmos. Sci.,64: 29-51.
    [71]Luo, D. H., T. T. Gong, and Y. N. Diao,2007c:Dynamics of Eddy-Driven Low-Frequency Dipole Modes.Part Ⅲ:Meridional Displacement of Westerly Jet Anomalies during Two Phases of NAO [J]. J. Atmos. Sci.,64:3232-3248.
    [72]Lupo, A. R., and P. J. Smith,1995a:Climatological features of blocking anticyclones in the Northern Hemisphere [J]. Tellus,47A(4):439-456.
    [73]Lupo, A. R., and P. J. Smith,1995b:Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic [J]. Tellus,47A(5):575-596.
    [74]Luterbacher, J., C. Schmutz, and D. Gyalistras,1999:Reconstruction of monthly NAO and EU indices back to AD 1675 [J]. Geophys. Res. Lett.,26:2745-2748.
    [75]Mann, M., J. Park, and R. Bradley,1995:Global interdecadal and century-scale oscillations during the past five centuries [J]. Nature,378:266-270.
    [76]Mc Williams,.J. C.,1980:An application of equivalent modons to atmospheric blocking [J]. Dyn. Atmos. Oceanc,5(1):43-66.
    [77]Montgomery, R. B.,1940:Report on the work of G.T.Walker [J]. Mon. Wea. Rev.,39(Suppl), 1-22.
    [78]Moses, T., G. N. Kiladis, and H. F. Diaz,1987:Characteristic and frequency of reversals in mean sea level pressure in the north Atlantic sector and their relationship to long-term temperature trends [J]. J. Climatol.,7:13-30.
    [79]Namias, J.,1947:Characteristics of the general circulation over the Northern Hemisphere during the abnormal winter 1946-47 [J]. Mon. Wea. Rev.,75(8):145-152.
    [80]Pelly, J. L., and B. J. Hoskins,2003:A new perspective on blocking [J]. J. Atmos. Sci.,60(5): 743-755.
    [81]Pierrehunbert, R. T., and P. Malguzzi,1984:Forced coherent structures and local multiple equilibria in a barotropic atmosphere [J]. J. Atmos.Sci.41:246-257.
    [82]Rex, D. E.,1950a:Blocking action in the middle troposphere and its effect upon regional climate. Ⅰ. An aerological study of blocking action [J]. Tellus,2:196-211.
    [83]Rex, D. E.,1950b:Blocking action in the middle troposphere and its effect upon regional climate. Ⅱ. The climatology of blocking action [J]. Tellus,2:275-301.
    [84]Rogers, J. C.,1984:The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere [J]. Mon. Wea. Rev.,112:1999-2015.
    [85]Shabbar, A., J. Huang, and K. Higuchi,2001:The Relationship between the Wintertime North Atlantic Oscillation and Blocking Episodes in the North Atlantic [J]. Int. J. Climatol.,21(3): 355-369.
    [86]Shutts, G.,1983:The propagation of eddies in different jet-streams:eddy vorticity forcing of "blocking" flow fields [J]. Q. J. R. Meteorol. Soc.,109:737-761.
    [87]Simon, B., K. Fraedrich, and M. Junge,2005:Daily North-Atlantic Oscillation(NAO)index: Statistics and its stratospheric polar vortex dependence [J]. Meteorologische Zeitschrift,14(6): 763-769.
    [88]Thompson, D. W. J., and J. M. Wallace,1998:The Arctic Oscillation signature in the wintertime geopotential height and temperature fields [J]. Geophys. Res. Lett.,25(9):1297-1300.
    [89]Thompson, D. W. J., and J. M. Wallace,2000a:Annular modes in the extratropical circulation. Part I:Month to month variability [J]. J. Climate,13(5):1000-1016.
    [90]Thompson, D. W. J., and J. M. Wallace,2000b:Annular modes in the extropical circulation Part Ⅱ:Trends [J]. J. Climate,13(5):1018-1036.
    [91]Tibaldi, S., and F. Molteni,1990:On the operational predictability of blocking [J]. Tellus, 42A(3):343-365.
    [92]Treidl, R. A., E. C. Birch, and P. Sajecki,1981:Blocking action in the Northern Hemisphere: A climatological Study [J]. Atmos.-Ocean,19(1):1-23.
    [93]Tung, K. K., and R.S. Lindzen,1979a:A theory of stationary long waves. Part Ⅰ:A simple theory of blocking [J]. Mon.Weather Rev.,107:714-734.
    [94]Tung, K. K., and R.S. Lindzen,1979b:A theory of stationary long waves. Part Ⅱ:Resonant Rossby waves in the presence of realistic vertical shears [J]. Mon.Weather Rev.,107:735-750.
    [95]Wallace, J. M.,2000:North Atlantic Oscillation/Annular mode:two paradigms-one phenomenon [J]. Quart. J. Roy. Meteor. Soc.,126(564):791-805.
    [96]Wallace, J. M., and H. Hsu H-,1985:Another look at index cycle [J], Tellus,37A:478-486.
    [97]Wiedenmann, J. M., A. R. Lupo,I.I. Mokhov, and E. A. Tikhonova,2002:The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres:Block Intensity as a Diagnostic [J]. J. Climate,15(23):3459-3473
    [98]Wiin-Nielsen, A.,1979:Steady states and stability properties of a low order barotropic system with forcing and dissipation [J]. Tellus,31,375-386.
    [99]Yeh, T. C.,1949:On energy dispersion in the atmosphere [J]. J. Meteor.,6(1):1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700