用户名: 密码: 验证码:
miRNA-21调节抑癌基因PTEN参与卵巢癌发病的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     卵巢癌是妇科常见的三大恶性肿瘤之一,早期病情隐匿,诊断困难,多数患者就诊时已属晚期,死亡率居妇科恶性肿瘤首位。卵巢癌细胞具有较强的恶性生物学行为,易出现盆腹腔内广泛的种植转移,然而对卵巢癌的发病及恶性生物学行为机制尚不明确。因此揭示卵巢癌的发生发展机制,寻找新的诊断及治疗靶点,是目前亟待解决的任务。
     MicroRNAs(miRNAs)是一种长约22nt的单链小分子RNA。广泛存在于真核生物中,是一组不编码蛋白质的短序列RNA,可通过与mRNA分子序列互补相结合,参与基因转录后水平调控,呈现出组织特异性或发育阶段特异性表达特征。近年来,随着生物信息学的迅猛发展和研究手段的进步,越来越多miRNAs分子在各种生物中不断被揭示,目前已有700多个miRNAs被发现,调控机体内1/3以上基因表达,参与生命过程中一系列的重要进程,包括胚胎发育、干细胞分化、细胞增殖与凋亡,造血生成及激素分泌等多种生物学过程。越来越多的证据表明,miRNAs参与癌症的发生。研究发现,在多种肿瘤组织及细胞系中检测到miRNAs的异常表达,50%以上的miRNA基因位于肿瘤相关的基因组区域或脆性位点,可能通过调节体内某些抑癌基因或癌基因的表达,在肿瘤的发生发展中发挥重要致癌或抑癌的功能。
     有研究报道,miR-21通过调节PTEN、PDCD4、TPM-Ⅰ及TIMPs等抑癌基因的表达,促进细胞增殖和抑制凋亡。已发现其在乳腺癌、胶质母细胞瘤、胃癌、肺癌、肝癌等多种癌组织中过高表达,是实体肿瘤中最常见的高表达miRNAs之一,在肿瘤的发生发展中可能起到一个癌基因的作用。目前,已相继有研究证实,在卵巢癌组织、病人血清及外周血小体中检测到多种miRNAs的异常表达,其中miR-21不仅在卵巢癌组织中过高表达,而且在病人血清及外周血小体中也同样检测到miR-21的异常表达,提示miR-21在卵巢癌的发生发展中可能具有不容忽视的重要地位。但有关miR-21在卵巢癌发生发展中的功能及作用机制国内外尚未见报道。
     本研究目的是检测miR-21及PTEN在上皮性卵巢癌中的表达,并通过RNA干扰技术抑制卵巢癌细胞系中miR-21的表达,观察miR-21对PTEN的影响及miR-21对细胞增殖、迁移及侵袭能力的调控作用。探讨miR-21在卵巢癌发生发展、侵袭转移等过程中的作用机制,为寻找卵巢癌的诊断及治疗新靶点提供理论依据。
     目的:检测上皮性卵巢癌组织中miR-21及PTEN蛋白的表达,分析miR-21异常表达与PTEN蛋白的相关性及其与卵巢癌临床分期、组织分级、病理类型等特征间的关系,初步探讨miR-21及PTEN在卵巢癌分子发病中的作用。
     方法:采用茎环实时荧光逆转录聚合酶链反应(stem-loop real-time RT-PCR)检测上皮性卵巢癌组织、良性上皮性卵巢肿瘤及正常卵巢组织标本中miR-21表达。采用链霉菌抗生物素蛋白-过氧化酶(SP)免疫组化方法检测上述组织中PTEN蛋白表达。
     结果:1.miR-21在卵巢癌组织中的相对表达量(2-△△CT)为4.849±1.813,显著高于良性卵巢肿瘤(1.133±0.291)及正常卵巢组织(P<0.01),在良性卵巢肿瘤和正常卵巢组织间miR-21表达量无明显差异。
     2.miR-21在Ⅲ、Ⅳ期卵巢癌组织中表达量为5.603±1.787,明显高于其在Ⅰ、Ⅱ期组织中表达3.341±0.254(p<0.01);在低分化卵巢癌组织中表达量为7.057±1.552,明显高于其在中高分化癌组织中表达3.845±0.680(p<0.01);在淋巴结转移组表达量为7.095±1.728,明显高于无淋巴结转移组4.100±1.070(p<0.01);miR-21在浆液性、粘液性及内膜样卵巢癌组织中的相对表达量无明显差异。
     3. PTEN在卵巢癌组织中阳性表达率为41.66%,明显低于卵巢良性肿瘤(83.33%)及正常卵巢(100%);在Ⅲ、Ⅳ卵巢癌组织中PTEN阳性表达率明显低于Ⅰ、Ⅲ期(25%vs 75%,P=0.001);在低分化卵巢癌组织中阳性表达率明显低于中高分化(10.71%vs85%,P=0.000);在淋巴结转移组.PTEN阳性表达率为16.66%,明显低于无转移组50.00%(P=0.034)。miR-21及PTEN均与组织病理类型无关。
     4.相关分析结果表明,卵巢癌组织中miR-21表达量与PTEN阳性表达率存在显著负相关(r=-0.447,P<0.01);
     结论:miR-21在上皮性卵巢癌组织中高表达,且与卵巢癌分期、组织分级及淋巴结转移密切相关,在卵巢癌发生发展中发挥重要的癌基因作用。miR-21与PTEN蛋白表达呈负相关,二者可能共同参与卵巢癌的发病机制。
     目的:拟通过siRNA干扰卵巢癌细胞系中miR-21的表达,分析降调miR-21的表达后对卵巢癌细胞中PTEN蛋白表达及细胞的增殖、迁移及侵袭能力的影响,进一步揭示miR-21在卵巢癌分子发病中的作用机制。
     方法:选用卵巢癌细胞系OVCAR3进行体外培养,采用shRNA表达载体法,根据miR-21的两个成熟片段,设计合成干扰miR-21的siRNA序列,并与表达载体pSIREN-RetroQ连接重组,合成质粒pSIREN-miR-21-1、pSIREN-miR-21-2及pSIREN-miR-21-Neg,分别转染卵巢癌OVCAR3细胞系,干扰miR-21在OVCAR3中的表达,同时设立空白对照组。采用茎环实时荧光逆转录聚合酶链反应(stem-loop real-time RT-PCR)检测转染后细胞系中miR-21表达。Western blot方法检测转染后细胞系中PTEN蛋白表达,应用MTT实验、划痕实验和Transwell细胞侵袭实验方法分析转染后细胞增殖、迁移及侵袭能力的变化。探讨miR-21在卵巢癌发生发展中的可能作用机制。
     结果:1. Real time RCR结果显示pSIREN-miR-21-1和pSIREN-miR-21-2转染组细胞中miR-21相对表达量(2-△△CT)为0.26±0.08、0.19±0.06,明显低于阴性对照(1.26±0.21)及空白对照组(1.0±0.19),说明两组干扰质粒均具有良好的干扰效果。转染72小时后,Western blot检测PTEN在pSIREN-miR-21-1和pSIREN-miR-21-2组中表达明显上调,pSIREN-miR-21-neg组无明显变化。
     2.MTT检测转染后细胞增殖活力,显示在转染pSIREN-miR-21-1和pSIREN-miR-21-2组中,OVCAR3细胞增殖的抑制率分别为23.9%和29.4%,均明显高于对照组(p<0.05,p<0.01),说明肿瘤细胞增殖能力的下降。
     4.划痕实验结果显示:经过48小时无血清培养后,空白对照组和转染pSIREN-miR-21-neg组中的划痕已经基本长满细胞,而pSIREN-miR-21-1组中有少量细胞,但仍可见明显划痕。pSIREN-miR-21-2组愈合最差,划痕中央无细胞。提示转染pSIREN-miR-21-1和-2组中细胞的活能力受到明显的抑制。
     5. Transwell实验:转染pSIREN-miR-21-1和pSIREN-miR-21-2组中24小时内穿透小室聚碳酸酯膜的细胞数为40±3.56和29.5±2.38,明显低于空白对照组(73±2.16)和阴性对照组为(69±1.83),卵巢癌细胞在转染pSIREN-miR-21质粒后,侵袭能力也明显下降。
     结论:干扰质粒pSIREN-miR-21能够成功抑制卵巢癌细胞系中miR-21表达,直接导致PTEN蛋白表达增加,进而对卵巢癌细胞的增殖、侵袭及迁移能力产生抑制。说明miR-21通过PTEN调控卵巢癌细胞的恶性生物学行为,是导致卵巢癌发生发展及浸润转移的重要调节机制。
Objective:To investigate the expression of miR-21 and PTEN in epithelial ovarian cancers (EOC) and their correlation with the clinicopathologic features of the patients.
     Methods:Stem-loop real-time RT-PCR was used to detect the expression of miR-21 in epithelial ovarian cancers and benign epithelial ovarian cysts and normal ovarian tissues. PTEN protein was also examined with S-P immunohistochemistry method. Their correlation with histological differentiation, clinicopathological stage, and lymph node status was analyzed.
     Results:Among the 48 ovarian cancer samples analyzed, the relative expression of miR-21 (2-△△CT= 4.849±1.813) was significantly upregulated by 4-fold or more compared with the benign ovarian cysts (2-△△CT=1.133±0.291) and normal ovarian tissues (2-△△CT=1.057±0.126) (P<0.01, respectively). No differences were observed in miR-21 relative expression between benign ovarian cysts and normal controls. The relative expressions of miR-21 were significantly higher in advanced stage and grade 3 tumor samples compared to the early stage and grade 1 to 2 tumor samples (2-△△CT=5.603±1.787 vs.3.341±0.254 and 2-△△CT=7.057±1.552 vs.3.845±0.680, p<0.01 respectively). The same differences were observed between the lymph node positive group and negative group (2-△△CT= 7.095±1.728 vs.4.100±1.070, p<0.01).
     20 of 48 (41.66%) ovarian cancer tissues were positive for PTEN, mainly weakly positive and expressed in the cytoplasm, which was distinctly lower than that in begin ovarian cysts and normal controls. Moreover, eight of 32 (25%) stageⅢ-Ⅳtissue samples were positive for PTEN, which was lower than that in stageⅠ-Ⅱtissue samples (12/16,75%). Three of 28 (10.71%) grade 3 tissue samples and two of 12 (16.66%) lymph node positive samples were positive for PTEN, which are obviously lower compared with gradel-2 samples (17/20,85%) and lymph node negative samples (18/36,50%) Both miR-21 and PTEN have no correlation with distinct histotypes of ovarian cancers.
     Seven cases were positive for PTEN among the 21 cases of ovarian cancer tissues with relatively low miR-21 expression (3.410±0.261), but only six cases were positive for PTEN among the 27 cases of ovarian cancer tissues with relatively high miR-21 expression (5.967±1.711). Spearman rank correlation analysis showed that PTEN expression was negatively correlated with miR-21 expression (r=-0.447, P<0.01)
     Conclusion:Our data suggest that miR-21 aberrantly expressed in EOC and negtively correlated with PTEN, it might play an important role as an oncogene in the genesis and development of epithelial ovarian cancer.
     Objective:To detect the expression of PTEN and changes in cell proliferation, migration and invasion capabilities after downregulating the miR-21 expression in OVCAR3 cells with siRNA method. And investigate the mechanism by which miR-21 negatively controls the expression of PTEN, might play an important role as an oncogene, in the genesis and development of epithelial ovarian cancer.
     Methods:A short-hairpin RNA specifically targeting miR-21 was constructed and ligated with vector Linear pSIREN-RetroQ, resulting in three recombinants: pSIREN-miR-21-1、pSIREN-miR-21-2 and pSIREN-miR-21-Neg which were used to transfected OVCAR3 cells respectively. Stem-loop real-time RT-PCR was used to detect the expression of miR-21 and western blotting for PTEN protein. Cell proliferation, invasion and migration abilities were examined using MTT assay, Scratch-wound assay and transwell invasion assay respectively.
     Results:Seventy-two hours after infection, the infection efficiency reached more than 70% in the three groups of infected cells indicating successful transfection in all groups. miR-21 expression levels decreased and PTEN increased significantly both in pSIREN-miR-21-1 and pSIREN-miR-21-2 infected cells compared to pSIREN-miR-21-Neg infected cells and control group, that indicate inhibition of miR-21 can significantly increased PTEN expression in OVCAR3 cell lines. MTT assay indicates transfection of miR-21 inhibitor(pSIREN-miR-21-1 and-2) resulted in significant inhibition of 23.9% and 29.4% respectively at 72 hours in OVCAR3 cells indicating cell proliferation ability was decreased. Scratch-wound assay indicated cells migrated slowly after transfected with pSIREN-miR-21-1 and-2 compared with the control. Transwell invasion assay indicated the number of invasive cells in pSIREN-miR-21-1 group and group 2 was 40±3.56 and 29.5±2.38 that was significantly reduced relative to the control cells and pSIREN-miR-21-neg group (73±1.26,69±1.83).
     Conclusion:Our data suggest that the relative expression of miR-21 could be inhibited successfully using RNA interference. The downregulation of miR-21 could inhibite the cell proliferation, invasion and migration abilities through increasing the expression of PTEN protein in OVCAR3 cells that might play an important role in the genesis and development of epithelial ovarian cancer.
引文
[1]Lewis BP, Burge CB, Bartel DP:Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005;120:15-20.
    [2]Johnston RJ, Hobert O:A microrna controlling left/right neuronal asymmetry in caenorhabditis elegans. Nature 2003;426:845-849.
    [3]Bartel DP:Micrornas:Genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.
    [4]Xu P, Guo M, Hay BA:Micrornas and the regulation of cell death. Trends Genet 2004;20:617-624.
    [5]Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM:Human microrna genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.
    [6]Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ:Ras is regulated by the let-7 microrna family. Cell 2005;120:635-647.
    [7]Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T: Suppression of non-small cell lung tumor development by the let-7 microrna family. Proc Natl Acad Sci U S A 2008;105:3903-3908.
    [8]Chan JA, Krichevsky AM, Kosik KS:Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-6033.
    [9]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY:Mir-21-mediated tumor growth. Oncogene 2007;26:2799-2803.
    [10]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T:Microrna-21 regulates expression of the pten tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647-658.
    [11]Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM:Microrna signatures in human ovarian cancer. Cancer Res 2007;67:8699-8707.
    [12]Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE:The detection of differentially expressed micrornas from the serum of ovarian cancer patients using a novel real-time pcr platform. Gynecol Oncol 2009;112:55-59.
    [13]Taylor DD, Gercel-Taylor C:Microrna signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110:13-21.
    [14]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H:Microrna-21 (mir-21) post-transcriptionally downregulates tumor suppressor pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-2136.
    [15]Chan SH, Wu CW, Li AF, Chi CW, Lin WC:Mir-21 microrna expression in human gastric carcinomas and its clinical association. Anticancer Res 2008;28:907-911.
    [16]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y:Microrna-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-4379.
    [17]Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Hu XQ:[expression of microrna-21 in invasive ductal carcinoma of the breast and its association with phosphatase and tensin homolog deleted from chromosome expression and clinicopathologic features]. Zhonghua Yi Xue Za Zhi 2008;88:2833-2837.
    [18]Wang Y, Kristensen GB, Helland A, Nesland JM, Borresen-Dale AL, Holm R: Protein expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas. Am J Clin Pathol 2005;124:392-401.
    [19]Kurose K, Zhou XP, Araki T, Cannistra SA, Maher ER, Eng C:Frequent loss of pten expression is linked to elevated phosphorylated akt levels, but not associated with p27 and cyclin dl expression, in primary epithelial ovarian carcinomas. Am J Pathol 2001;158:2097-2106.
    [20]Lee YK, Park NH:Prognostic value and clinicopathological significance of p53 and pten in epithelial ovarian cancers. Gynecol Oncol 2009;112:475-480.
    [21]Ho CM, Lin MC, Huang SH, Huang CJ, Lai HC, Chien TY, Chang SF:Pten promoter methylation and loh of 10q22-23 locus in pten expression of ovarian clear cell adenocarcinomas. Gynecol Oncol 2009; 112:307-313.
    [22]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN:Microrna genes are transcribed by rna polymerase ii. Embo J 2004;23:4051-4060.
    [23]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN:The nuclear rnase iii drosha initiates microrna processing. Nature 2003;425:415-419.
    [24]Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ:Argonaute2, a link between genetic and biochemical analyses of rnai. Science 2001;293:1146-1150.
    [25]Calin GA, Croce CM:Microrna signatures in human cancers. Nat Rev Cancer 2006;6:857-866.
    [26]He L, Hannon GJ:Micrornas:Small rnas with a big role in gene regulation. Nat Rev Genet 2004;5:522-531.
    [27]Esquela-Kerscher A, Slack FJ:Oncomirs-micrornas with a role in cancer. Nat Rev Cancer 2006;6:259-269.
    [28]Hammond SM:Micrornas as oncogenes. Curr Opin Genet Dev 2006;16:4-9.
    [29]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM:Frequent deletions and down-regulation of micro-rna genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-15529.
    [30]Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM:Mir-15 and mir-16 induce apoptosis by targeting bcl2. Proc Natl Acad Sci U S A 2005;102:13944-13949.
    [31]Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T:Apoptosis induction by antisense oligonucleotides against mir-17-5p and mir-20a in lung cancers overexpressing mir-17-92. Oncogene 2007;26:6099-6105.
    [32]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM:Microrna gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-7070.
    [33]Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J:Identification by real-time pcr of 13 mature micrornas differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006;5:29.
    [34]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM:A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103:2257-2261.
    [35]He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM:A microrna polycistron as a potential human oncogene. Nature 2005;435:828-833.
    [36]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (pdcd4) is an important functional target of the microrna mir-21 in breast cancer cells. J Biol Chem 2008;283:1026-1033.
    [37]Zhu S, Si ML, Wu H, Mo YY:Microrna-21 targets the tumor suppressor gene tropomyosin 1 (tpml). J Biol Chem 2007;282:14328-14336.
    [38]Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S:Microrna expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008;14:2690-2695.
    [39]Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R:Altered expression of mir-21, mir-31, mir-143 and mir-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397-402.
    [40]Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C: Altered pten expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 2000;92:924-930.
    [41]Hlobilkova A, Knillova J, Svachova M, Skypalova P, Krystof V, Kolar Z:Tumour suppressor pten regulates cell cycle and protein kinase b/akt pathway in breast cancer cells. Anticancer Res 2006;26:1015-1022.
    [42]Schondorf T, Ebert MP, Hoffmann J, Becker M, Moser N, Pur S, Gohring UJ, Weisshaar MP:Hypermethylation of the pten gene in ovarian cancer cell lines. Cancer Lett 2004;207:215-220.
    [43]Saito M, Okamoto A, Kohno T, Takakura S, Shinozaki H, Isonishi S, Yasuhara T, Yoshimura T, Ohtake Y, Ochiai K, Yokota J, Tanaka T:Allelic imbalance and mutations of the pten gene in ovarian cancer. Int J Cancer 2000;85:160-165.
    [44]Schondorf T, Dostal A, Grabmann J, Gohring UJ:Single mutations of the pten gene in recurrent ovarian carcinomas. J Soc Gynecol Investig 2000;7:313-316.
    [1]He L, Hannon GJ:Micrornas:Small rnas with a big role in gene regulation. Nat Rev Genet 2004;5:522-531.
    [2]Calin GA, Croce CM:Microrna signatures in human cancers. Nat Rev Cancer 2006;6:857-866.
    [3]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (pdcd4) is an important functional target of the microrna mir-21 in breast cancer cells. J Biol Chem 2008;283:1026-1033.
    [4]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY:Mir-21-mediated tumor growth. Oncogene 2007;26:2799-2803.
    [5]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T:Microrna-21 regulates expression of the pten tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133:647-658.
    [6]Saito T, Saetrom P:Micrornas-targeting and target prediction. N Biotechnol.
    [7]Kurreck J:Antisense and rna interference approaches to target validation in pain research. Curr Opin Drug Discov Devel 2004;7:179-187.
    [8]Meister G, Landthaler M, Dorsett Y, Tuschl T:Sequence-specific inhibition of microrna-and sirna-induced rna silencing. Rna 2004; 10:544-550.
    [9]Davis S, Lollo B, Freier S, Esau C:Improved targeting of mirna with antisense oligonucleotides. Nucleic Acids Res 2006;34:2294-2304.
    [10]Horwich MD, Zamore PD:Design and delivery of antisense oligonucleotides to block microrna function in cultured drosophila and human cells. Nat Protoc 2008;3:1537-1549.
    [11]Yu JY, DeRuiter SL, Turner DL:Rna interference by expression of short-interfering rnas and hairpin rnas in mammalian cells. Proc Natl Acad Sci U S A 2002;99:6047-6052.
    [12]Cerutti H:Rna interference:Traveling in the cell and gaining functions? Trends Genet 2003; 19:39-46.
    [13]Fraser A:Rna interference:Human genes hit the big screen. Nature 2004;428:375-378.
    [14]Singer 0, Verma IM:Applications of lentiviral vectors for shrna delivery and transgenesis. Curr Gene Ther 2008;8:483-488.
    [15]Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD:Sirna, mirna, and shrna:In vivo applications. J Dent Res 2008;87:992-1003.
    [16]Chan SH, Wu CW, Li AF, Chi CW, Lin WC:Mir-21 microrna expression in human gastric carcinomas and its clinical association. Anticancer Res 2008;28:907-911.
    [17]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H:Microrna-21 (mir-21) post-transcriptionally downregulates tumor suppressor pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-2136.
    [18]Chan JA, Krichevsky AM, Kosik KS:Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-6033.
    [19]He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM:A microrna polycistron as a potential human oncogene. Nature 2005;435:828-833.
    [20]Zhu S, Si ML, Wu H, Mo YY:Microrna-21 targets the tumor suppressor gene tropomyosin 1 (tpml). J Biol Chem 2007;282:14328-14336.
    [21]Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY:Microrna-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008;18:350-359.
    [22]Pezzolesi MG, Platzer P, Waite KA, Eng C:Differential expression of pten-targeting micrornas mir-19a and mir-21 in cowden syndrome. Am J Hum Genet 2008;82:1141-1149.
    [23]Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S, Ma D: Effect of tumor suppressor gene pten on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett 2008;271:260-271.
    [24]Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH:Role of pi3k and akt specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70s6k1 pathway. Cell Signal 2006;18:2262-2271.
    [25]Lu QJ, Zhao XD, Song JY, Li XH, Ma Y, Meng H, Jiang WG:[research on the mechanisms of pten gene inactivation in ovarian cancer]. Zhonghua Bing Li Xue Za Zhi 2005;34:266-269.
    [26]Saito M, Okamoto A, Kohno T, Takakura S, Shinozaki H, Isonishi S, Yasuhara T, Yoshimura T, Ohtake Y, Ochiai K, Yokota J, Tanaka T:Allelic imbalance and mutations of the pten gene in ovarian cancer. Int J Cancer 2000;85:160-165.
    [27]Schondorf T, Dostal A, Grabmann J, Gohring UJ:Single mutations of the pten gene in recurrent ovarian carcinomas. J Soc Gynecol Investig 2000;7:313-316.
    [28]Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, Lee SR:Redox regulation of pten and protein tyrosine phosphatases in h(2)o(2) mediated cell signaling. FEBS Lett 2004;560:7-13.
    [29]Sulis ML, Parsons R:Pten:From pathology to biology. Trends Cell Biol 2003;13:478-483.
    [30]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y: Microrna-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-4379.
    [31]Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM: Estradiol downregulates mir-21 expression and increases mir-21 target gene expression in mcf-7 breast cancer cells. Nucleic Acids Res 2009;37:2584-2595.
    [32]Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM:Microrna 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008;28:5369-5380.
    [33]Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T:Involvement of human micro-rna in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006;130:2113-2129.
    [1]Johnston RJ, Hobert O:A microrna controlling left/right neuronal asymmetry in caenorhabditis elegans. Nature 2003;426:845-849.
    [2]Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP:Vertebrate microrna genes. Science 2003;299:1540.
    [3]Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M:A pancreatic islet-specific microrna regulates insulin secretion. Nature 2004;432:226-230.
    [4]Lee RC, Feinbaum RL, Ambros V:The c. Elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 1993;75:843-854.
    [5]Wightman B, Ha I, Ruvkun G:Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in c. Elegans. Cell 1993;75:855-862.
    [6]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G:The 21-nucleotide let-7 rna regulates developmental timing in caenorhabditis elegans. Nature 2000;403:901-906.
    [7]Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G:The lin-41 rbcc gene acts in the c. Elegans heterochronic pathway between the let-7 regulatory rna and the lin-29 transcription factor. Mol Cell 2000;5:659-669.
    [8]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ:Mirbase: Microrna sequences, targets and gene nomenclature. Nucleic Acids Res 2006;34:D140-144.
    [9]Bartel DP, Chen CZ:Micromanagers of gene expression:The potentially widespread influence of metazoan micrornas. Nat Rev Genet 2004;5:396-400.
    [10]Lewis BP, Burge CB, Bartel DP:Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005;120:15-20.
    [11]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN:Microrna genes are transcribed by rna polymerase ii. Embo J 2004;23:4051-4060.
    [12]Kim VN:Microrna biogenesis:Coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-385.
    [13]Bartel DP:Micrornas:Genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.
    [14]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN:The nuclear rnase iii drosha initiates microrna processing. Nature 2003;425:415-419.
    [15]Cai X, Hagedorn CH, Cullen BR:Human micrornas are processed from capped, polyadenylated transcripts that can also function as mrnas. Rna 2004;10:1957-1966.
    [16]Murchison EP, Hannon GJ:Mirnas on the move:Mirna biogenesis and the rnai machinery. Curr Opin Cell Biol 2004; 16:223-229.
    [17]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U:Nuclear export of microrna precursors. Science 2004;303:95-98.
    [18]Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ:Argonaute2, a link between genetic and biochemical analyses of rnai. Science 2001;293:1146-1150.
    [19]Meltzer PS:Cancer genomics:Small rnas with big impacts. Nature 2005;435:745-746.
    [20]Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN:Molecular basis for the recognition of primary micrornas by the drosha-dgcr8 complex. Cell 2006;125:887-901.
    [21]Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A:The contributions of dsrna structure to dicer specificity and efficiency. Rna 2005;11:674-682.
    [22]He L, Hannon GJ:Micrornas:Small rnas with a big role in gene regulation. Nat Rev Genet 2004;5:522-531.
    [23]Li X, Carthew RW:A microrna mediates egf receptor signaling and promotes photoreceptor differentiation in the drosophila eye. Cell 2005;123:1267-1277.
    [24]Seggerson K, Tang L, Moss EG:Two genetic circuits repress the caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 2002;243:215-225.
    [25]Heo I, Joo C, Cho J, Ha M, Han J, Kim VN:Lin28 mediates the terminal uridylation of let-7 precursor microrna. Mol Cell 2008;32:276-284.
    [26]Newman MA, Thomson JM, Hammond, SM:Lin-28 interaction with the let-7 precursor loop mediates regulated microrna processing. Rna 2008;14:1539-1549.
    [27]Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG:A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008;10:987-993.
    [28]Viswanathan SR, Daley GQ, Gregory RI:Selective blockade of microrna processing by lin28. Science 2008;320:97-100.
    [29]Xu P, Guo M, Hay BA:Micrornas and the regulation of cell death. Trends Genet 2004;20:617-624.
    [30]Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ:Dicer is essential for mouse development. Nat Genet 2003;35:215-217.
    [31]Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ:The rnaseiii enzyme dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 2005;102:10898-10903.
    [32]Carrington JC, Ambros V:Role of micrornas in plant and animal development. Science 2003;301:336-338.
    [33]Houbaviy HB, Murray MF, Sharp PA:Embryonic stem cell-specific micrornas. Dev Cell 2003;5:351-358.
    [34]Zhao Y, Samal E, Srivastava D:Serum response factor regulates a muscle-specific microrna that targets hand2 during cardiogenesis. Nature 2005;436:214-220.
    [35]Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U, Marks DS, Sander C, Tuschl T, Gaul U:Antisense-mediated depletion reveals essential and specific functions of micrornas in drosophila development. Cell 2005;121:1097-1108.
    [36]Chen CZ, Li L, Lodish HF, Bartel DP:Micrornas modulate hematopoietic lineage differentiation. Science 2004;303:83-86.
    [37]Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD:Passenger-strand cleavage facilitates assembly of sirna into ago2-containing rnai enzyme complexes. Cell 2005;123:607-620.
    [38]Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R:Human risc couples microrna biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-640.
    [39]Maniataki E, Mourelatos Z:A human, atp-independent, risc assembly machine fueled by pre-mirna. Genes Dev 2005;19:2979-2990.
    [40]MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA:In vitro reconstitution of the human risc-loading complex. Proc Natl Acad Sci U S A 2008;105:512-517.
    [41]Tomari Y, Du T, Zamore PD:Sorting of drosophila small silencing rnas. Cell 2007;130:299-308.
    [42]Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T: Identification of novel argonaute-associated proteins. Curr Biol 2005;15:2149-2155.
    [43]Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G:Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mrnas. Cell 2009;136:496-507.
    [44]Liu J, Rivas FV, Wohlschlegel J, Yates JR,3rd, Parker R, Hannon GJ:A role for the p-body component gwl82 in microrna function. Nat Cell Biol 2005;7:1261-1266.
    [45]Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG:A conserved motif in argonaute-interacting proteins mediates functional interactions through the argonaute piwi domain. Nat Struct Mol Biol 2007;14:897-903.
    [46]Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E:Mrna degradation by mirnas and gw182 requires both ccr4:Not deadenylase and dcpl:Dcp2 decapping complexes. Genes Dev 2006;20:1885-1898.
    [47]Ding XC, Grosshans H:Repression of c. Elegans microrna targets at the initiation level of translation requires gw182 proteins. Embo J 2009;28:213-222.
    [48]Pillai RS, Artus CG, Filipowicz W:Tethering of human ago proteins to mrna mimics the mirna-mediated repression of protein synthesis. Rna 2004;10:1518-1525.
    [49]Doench JG, Petersen CP, Sharp PA:Sirnas can function as mirnas. Genes Dev 2003;17:438-442.
    [50]Zeng Y, Yi R, Cullen BR:Micrornas and small interfering rnas can inhibit mrna expression by similar mechanisms. Proc Natl Acad Sci U S A 2003;100:9779-9784.
    [51]Lai EC:Micro rnas are complementary to 3' utr sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002;30:363-364.
    [52]Yekta S, Shih IH, Bartel DP:Microrna-directed cleavage of hoxb8 mrna. Science 2004;304:594-596.
    [53]Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet 0:Widespread translational inhibition by plant mirnas and sirnas. Science 2008;320:1185-1190.
    [54]Johnston RJ, Jr., Chang S, Etchberger JF, Ortiz CO, Hobert 0:Micrornas acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A 2005;102:12449-12454.
    [55]Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A:Identification of mammalian microrna host genes and transcription units. Genome Res 2004;14:1902-1910.
    [56]Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V:The let-7 microrna family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in caenorhabditis elegans. Dev Cell 2005;9:403-414.
    [57]Humphreys DT, Westman BJ, Martin DI, Preiss T:Micrornas control translation initiation by inhibiting eukaryotic initiation factor 4e/cap and poly(a) tail function. Proc Natl Acad Sci U S A 2005;102:16961-16966.
    [58]Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillar RS, Filipowicz W, Duchaine TF, Sonenberg N: Microrna inhibition of translation initiation in vitro by targeting the cap-binding complex eif4f. Science 2007;317:1764-1767.
    [59]Petersen CP, Bordeleau ME, Pelletier J, Sharp PA:Short rnas repress translation after initiation in mammalian cells. Mol Cell 2006;21:533-542.
    [60]Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z:An mrna m7g cap binding-like motif within human ago2 represses translation. Cell 2007;129:1141-1151.
    [61]Eulalio A, Huntzinger E, Izaurralde E:Gw182 interaction with argonaute is essential for mirna-mediated translational repression and mrna decay. Nat Struct Mol Biol 2008;15:346-353.
    [62]Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF:Zebrafish mir-430 promotes deadenylation and clearance of maternal mrnas. Science 2006;312:75-79.
    [63]Wakiyama M, Takimoto K, Ohara 0, Yokoyama S:Let-7 microrna-mediated mrna deadenylation and translational repression in a mammalian cell-free system. Genes Dev 2007;21:1857-1862.
    [64]Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W:Inhibition of translational initiation by let-7 microrna in human cells. Science 2005;309:1573-1576.
    [65]Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R:Microrna silencing through risc recruitment of eif6. Nature 2007;447:823-828.
    [66]Conne B, Stutz A, Vassalli JD:The 3'untranslated region of messenger rna:A molecular 'hotspot' for pathology? Nat Med 2000;6:637-641.
    [67]Stark A, Brennecke J, Russell RB, Cohen SM:Identification of drosophila microrna targets. PLoS Biol 2003;1:E60.
    [68]Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH:Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res 2004;32:6284-6291.
    [69]Doench JG, Sharp PA:Specificity of microrna target selection in translational repression. Genes Dev 2004;18:504-511.
    [70]Brennecke J, Stark A, Russell RB, Cohen SM:Principles of microrna-target recognition. PLoS Biol 2005;3:e85.
    [71]Rajewsky N:Microrna target predictions in animals. Nat Genet 2006;38 Suppl:S8-13.
    [72]Maziere P, Enright AJ:Prediction of microrna targets. Drug Discov Today 2007;12:452-458.
    [73]Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP:Prediction of plant microrna targets. Cell 2002;110:513-520.
    [74]Sontheimer EJ, Carthew RW:Silence from within:Endogenous sirnas and mirnas. Cell 2005;122:9-12.
    [75]Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM:Human microrna genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.
    [76]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM:Frequent deletions and down-regulation of micro-rna genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-15529.
    [77]Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM:Mir-15 and mir-16 induce apoptosis by targeting bcl2. Proc Natl Acad Sci U S A 2005;102:13944-13949.
    [78]Esquela-Kerscher A, Slack FJ:Oncomirs-micrornas with a role in cancer. Nat Rev Cancer 2006;6:259-269.
    [79]Hanahan D, Weinberg RA:The hallmarks of cancer. Cell 2000;100:57-70.
    [80]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM:A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-2261.
    [81]Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM:Microrna signatures in human ovarian cancer. Cancer Res 2007;67:8699-8707.
    [82]Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T:Involvement of human micro-rna in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006;130:2113-2129.
    [83]Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC:Unique microrna molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-198.
    [84]Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ:Ras is regulated by the let-7 microrna family. Cell 2005;120:635-647.
    [85]Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW:Mirna profiling for diagnosis and prognosis of human cancer. DNA Cell Biol 2007;26:293-300.
    [86]Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ:Microrna expression profiling in human ovarian cancer:Mir-214 induces cell survival and cisplatin resistance by targeting pten. Cancer Res 2008;68:425-433.
    [87]Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, Liang S, Leminen A, Deng S, Smith L, Johnstone CN, Chen XM, Liu CG, Huang Q, Katsaros D, Calin GA, Weber BL, Butzow R, Croce CM, Coukos G, Zhang L:Microrna microarray identifies let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008;68:10307-10314.
    [88]Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih Ie M, Zhang Y, Wood W,3rd, Becker KG, Morin PJ:Microrna expression and identification of putative mirna targets in ovarian cancer. PLoS One 2008;3:e2436.
    [89]Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S:Microrna expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008;14:2690-2695.
    [90]Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE:The detection of differentially expressed micrornas from the serum of ovarian cancer patients using a novel real-time pcr platform. Gynecol Oncol 2009;112:55-59.
    [91]Taylor DD, Gercel-Taylor C:Microrna signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110:13-21.
    [92]Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ:A double-negative feedback loop between zebl-sipl and the microrna-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008;68:7846-7854.
    [93]Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O'Briant KC, Ventura AP, Godwin AK, Karlan BY, Drescher CW, Urban N, Knudsen BS, Tewari M:Regulation of mir-200 family micrornas and zeb transcription factors in ovarian cancer:Evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol;116:117-125.
    [94]Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Chan G, Kamath SG, Chen DT, Dressman H, Lancaster JM:Micrornas and their target messenger rnas associated with ovarian cancer response to chemotherapy. Gynecol Oncol 2009; 113:249-255.
    [95]Chan SH, Wu CW, Li AF, Chi CW, Lin WC:Mir-21 microrna expression in human gastric carcinomas and its clinical association. Anticancer Res 2008;28:907-911.
    [96]Chan JA, Krichevsky AM, Kosik KS:Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-6033.
    [97]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM:Microrna gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-7070.
    [98]Slaby 0, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R:Altered expression of mir-21, mir-31, mir-143 and mir-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397-402.
    [99]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY:Mir-21-mediated tumor growth. Oncogene 2007;26:2799-2803.
    [100]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y: Microrna-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-4379.
    [101]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H:Microrna-21 (mir-21) post-transcriptionally downregulates tumor suppressor pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-2136.
    [102]Zhu S, Si ML, Wu H, Mo YY:Microrna-21 targets the tumor suppressor gene tropomyosin 1 (tpml). J Biol Chem 2007;282:14328-14336.
    [103]Pezzolesi MG, Platzer P, Waite KA, Eng C:Differential expression of pten-targeting micrornas mir-19a and mir-21 in cowden syndrome. Am J Hum Genet 2008;82:1141-1149.
    [104]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T:Microrna-21 regulates expression of the pten tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133:647-658.
    [105]Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, Lee SR:Redox regulation of pten and protein tyrosine phosphatases in h(2)o(2) mediated cell signaling. FEBS Lett 2004;560:7-13.
    [106]Davidson B, Hadar R, Schlossberg A, Sternlicht T, Slipicevic A, Skrede M, Risberg B, Florenes VA, Kopolovic J, Reich R:Expression and clinical role of dj-1, a negative regulator of pten, in ovarian carcinoma. Hum Pathol 2008;39:87-95.
    [107]Wang Y, Kristensen GB, Helland A, Nesland JM, Borresen-Dale AL, Holm R: Protein expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas. Am J Clin Pathol 2005;124:392-401.
    [108]Kurose K, Zhou XP, Araki T, Cannistra SA, Maher ER, Eng C:Frequent loss of pten expression is linked to elevated phosphorylated akt levels, but not associated with p27 and cyclin dl expression, in primary epithelial ovarian carcinomas. Am J Pathol 2001;158:2097-2106.
    [109]Lee YK, Park NH:Prognostic value and clinicopathological significance of p53 and pten in epithelial ovarian cancers. Gynecol Oncol 2009; 112:475-480.
    [110]Schondorf T, Ebert MP, Hoffmann J, Becker M, Moser N, Pur S, Gohring UJ, Weisshaar MP:Hypermethylation of the pten gene in ovarian cancer cell lines. Cancer Lett 2004;207:215-220.
    [111]Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C: Altered pten expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 2000;92:924-930.
    [112]Schondorf T, Dostal A, Grabmann J, Gohring UJ:Single mutations of the pten gene in recurrent ovarian carcinomas. J Soc Gynecol Investig 2000;7:313-316.
    [113]Tashiro H, Blazes MS, Wu R, Cho KR, Bose S, Wang SI, Li J, Parsons R, Ellenson LH:Mutations in pten are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997;57:3935-3940.
    [114]Obata K, Hoshiai H:Common genetic changes between endometriosis and ovarian cancer. Gynecol Obstet Invest 2000;50 Suppl 1:39-43.
    [115]Saito M, Okamoto A, Kohno T, Takakura S, Shinozaki H, Isonishi S, Yasuhara T, Yoshimura T, Ohtake Y, Ochiai K, Yokota J, Tanaka T:Allelic imbalance and mutations of the pten gene in ovarian cancer. Int J Cancer 2000;85:160-165.
    [116]Ho CM, Lin MC, Huang SH, Huang CJ, Lai HC, Chien TY, Chang SF:Pten promoter methylation and loh of 10q22-23 locus in pten expression of ovarian clear cell adenocarcinomas. Gynecol Oncol 2009;112:307-313.
    [117]Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T:Reduced expression of the let-7 micrornas in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-3756.
    [118]Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ:The let-7 microrna represses cell proliferation pathways in human cells. Cancer Res 2007;67:7713-7722.
    [119]Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ:Micrornas as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007;67:11111-11116.
    [120]Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T:A polycistronic microrna cluster, mir-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-9632.
    [121]Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL:Transgenic over-expression of the microrna mir-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007;310:442-453.
    [122]Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T:Apoptosis induction by antisense oligonucleotides against mir-17-5p and mir-20a in lung cancers overexpressing mir-17-92. Oncogene 2007;26:6099-6105.
    [123]Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek NE, Rajpert-De Meyts E, Kjems J, Leffers H:Translational repression of e2fl mrna in carcinoma in situ and normal testis correlates with expression of the mir-17-92 cluster. Cell Death Differ 2007;14:879-882.
    [124]Woods K, Thomson JM, Hammond SM:Direct regulation of an oncogenic micro-rna cluster by e2f transcription factors. J Biol Chem 2007;282:2130-2134.
    [125]Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM:An oligonucleotide microchip for genome-wide microrna profiling in human and mouse tissues. Proc Natl Acad Sci U S A 2004; 101:9740-9744.
    [126]Ma L, Teruya-Feldstein J, Weinberg RA:Tumour invasion and metastasis initiated by microrna-10b in breast cancer. Nature 2007;449:682-688.
    [127]Adams BD, Furneaux H, White BA:The micro-ribonucleic acid (mirna) mir-206 targets the human estrogen receptor-alpha (eralpha) and represses eralpha messenger rna and protein expression in breast cancer cell lines. Mol Endocrinol 2007;21:1132-1147.
    [128]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (pdcd4) is an important functional target of the microrna mir-21 in breast cancer cells. J Biol Chem 2008;283:1026-1033.
    [129]Bouras T, Southey MC, Venter DJ:Overexpression of the steroid receptor coactivator aib1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and her2/neu. Cancer Res 2001;61:903-907.
    [130]Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ: Circulating micrornas as novel minimally invasive biomarkers for breast cancer. Ann Surg;251:499-505.
    [131]Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ:Reduced accumulation of specific micrornas in colorectal neoplasia. Mol Cancer Res 2003;1:882-891.
    [132]Akao Y, Nakagawa Y, Naoe T:Micrornas 143 and 145 are possible common onco-micrornas in human cancers. Oncol Rep 2006;16:845-850.
    [133]Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J:Identification by real-time pcr of 13 mature micrornas differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006;5:29.
    [134]Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J: Non-coding micrornas hsa-let-7g and hsa-mir-181b are associated with chemoresponse to s-1 in colon cancer. Cancer Genomics Proteomics 2006;3:317-324.
    [135]Mudduluru G, Medved F, Grobholz R, Jost C, Gruber A, Leupold JH, Post S, Jansen A, Colburn NH, Allgayer H:Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase b, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007;110:1697-1707.
    [136]Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J:Differentially regulated micro-rnas and actively translated messenger rna transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006;12:2014-2024.
    [137]Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA:Microrna expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007;26:4442-4452.
    [138]Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CQ Bhatt D, Taccioli C, Croce CM:Microrna expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Jama 2007;297:1901-1908.
    [139]Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM:Microrna profiling reveals distinct signatures in b cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004; 101:11755-11760.
    [140]Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M:Circulating micrornas as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513-10518.
    [141]Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY: Characterization of micrornas in serum:A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006.
    [142]Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC:Coordinate suppression of erbb2 and erbb3 by enforced expression of micro-rna mir-125a or mir-125b. J Biol Chem 2007;282:1479-1486.
    [143]Hossain A, Kuo MT, Saunders GF:Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of aib1 mrna. Mol Cell Biol 2006;26:8191-8201.
    [144]Akao Y, Nakagawa Y, Naoe T:Let-7 microrna functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006;29:903-906.
    [145]Wagner RW:Gene inhibition using antisense oligodeoxynucleotides. Nature 1994;372:333-335.
    [146]Meister G, Landthaler M, Dorsett Y, Tuschl T:Sequence-specific inhibition of microrna-and sirna-induced rna silencing. Rna 2004;10:544-550.
    [147]Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J: Comparison of different antisense strategies in mammalian cells using locked nucleic acids,2'-o-methyl rna, phosphorothioates and small interfering rna. Nucleic Acids Res 2003;31:3185-3193.
    [148]Fluiter K, ten Asbroek AL, de Wissel MB, Jakobs ME, Wissenbach M, Olsson H, Olsen 0, Oerum H, Baas F:In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (lna) antisense oligonucleotides. Nucleic Acids Res 2003;31:953-962.
    [149]Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M:Silencing of micrornas in vivo with 'antagomirs'. Nature 2005;438:685-689.
    [150]Chen C, Ridzon D, Lee CT, Blake J, Sun Y, Strauss WM:Defining embryonic stem cell identity using differentiation-related micrornas and their potential targets. Mamm Genome 2007;18:316-327.
    [151]Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG:Mir-124 and mir-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008;6:14.
    [152]Pardridge WM:Shrna and sirna delivery to the brain. Adv Drug Deliv Rev 2007;59:141-152.
    [1]Legge F, Ferrandina G, Salutari V and Scambia G:Biological characterization of ovarian cancer:prognostic and therapeutic implications. Ann Oncol 16:Suppl 4:iv95-101, 2005.
    [2]Cannistra SA:Cancer of the ovary. N Engl J Med 351:2519-2529,2004.
    [3]Calin GA, Sevignani C, Dumitru CD, et al:Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999-3004,2004.
    [4]Dohner H, Stilgenbauer S, Benner A, et al:Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910-1916,2000.
    [5]Calin GA, Dumitru CD, Shimizu M, et al:Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524-15529,2002.
    [6]Cimmino A, Calin GA, Fabbri M, et al:miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944-13949,2005.
    [7]Volinia S, Calin GA, Liu CG, et al:A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257-2261,2006.
    [8]Iorio MV, Visone R, Di Leva G, et al:MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699-8707,2007.
    [9]Meng F, Henson R, Lang M, et al:Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130: 2113-2129,2006.
    [10]Chan JA, Krichevsky AM and Kosik KS:MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029-6033,2005.
    [11]Nam EJ, Yoon H, Kim SW, et al:MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14:2690-2695,2008.
    [12]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647-658,2007.
    [13]Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R and Kreisberg JI: Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8:1168-1171,2002.
    [14]Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V and Lianidou ES: Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696-1704, 2008.
    [15]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S and Allgayer H:MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128-2136,2008.
    [16]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A and Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026-1033,2008.
    [17]Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY:miR-21-mediated tumor growth. Oncogene 26:2799-2803,2007.
    [18]Davidson B, Hadar R, Schlossberg A, et al:Expression and clinical role of DJ-1, a negative regulator of PTEN, in ovarian carcinoma. Hum Pathol 39:87-95,2008.
    [19]Kurose K, Zhou XP, Araki T, Cannistra SA, Maher ER and Eng C:Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas. Am J Pathol 158: 2097-2106,2001.
    [20]Lee YK and Park NH:Prognostic value and clinicopathological significance of p53 and PTEN in epithelial ovarian cancers. Gynecol Oncol 112:475-480,2009.
    [21]Wang Y, Kristensen GB, Helland A, Nesland JM, Borresen-Dale AL and Holm R: Protein expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas. Am J Clin Pathol 124:392-401,2005.
    [22]Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T and Noguchi M: Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary:possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 60:7052-7056,2000.
    [23]Schondorf T, Ebert MP, Hoffmann J, et al:Hypermethylation of the PTEN gene in ovarian cancer cell lines. Cancer Lett 207:215-220,2004.
    [24]Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ and Campbell IG:Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 58:2095-2097,1998.
    [1]Legge F, Ferrandina G, Salutari V, Scambia G:Biological characterization of ovarian cancer:Prognostic and therapeutic implications. Ann Oncol 2005;16 Suppl 4:iv95-101.
    [2]Cannistra SA:Cancer of the ovary. N Engl J Med 2004;351:2519-2529.
    [3]Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC:Unique microrna molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-198.
    [4]Xi Y, Shalgi R, Fodstad 0, Pilpel Y, Ju J:Differentially regulated micro-rnas and actively translated messenger rna transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006;12:2014-2024.
    [5]Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM: Estradiol downregulates mir-21 expression and increases mir-21 target gene expression in mcf-7 breast cancer cells. Nucleic Acids Res 2009;37:2584-2595.
    [6]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM:A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-2261.
    [7]Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ:Microrna expression profiling in human ovarian cancer: Mir-214 induces cell survival and cisplatin resistance by targeting pten. Cancer Res 2008;68:425-433.
    [8]Slaby 0, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R:Altered expression of mir-21, mir-31, mir-143 and mir-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397-402.
    [9]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY:Mir-21-mediated tumor growth. Oncogene 2007;26:2799-2803.
    [10]Zhu S, Si ML, Wu H, Mo YY:Microrna-21 targets the tumor suppressor gene tropomyosin 1 (tpml). J Biol Chem 2007;282:14328-14336.
    [11]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T:Microrna-21 regulates expression of the pten tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647-658.
    [12]Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S, Ma D:Effect of tumor suppressor gene pten on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett 2008;271:260-271.
    [13]Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH:Role of pi3k and akt specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70s6k1 pathway. Cell Signal 2006;18:2262-2271.
    [14]Kurose K, Zhou XP, Araki T, Cannistra SA, Maher ER, Eng C:Frequent loss of pten expression is linked to elevated phosphorylated akt levels, but not associated with p27 and cyclin dl expression, in primary epithelial ovarian carcinomas. Am J Pathol 2001;158:2097-2106.
    [15]Ho CM, Lin MC, Huang SH, Huang CJ, Lai HC, Chien TY, Chang SF:Pten promoter methylation and loh of 10q22-23 locus in pten expression of ovarian clear cell adenocarcinomas. Gynecol Oncol 2009;112:307-313.
    [16]Calin GA, Croce CM:Microrna signatures in human cancers. Nat Rev Cancer 2006;6:857-866.
    [17]Esquela-Kerscher A, Slack FJ:Oncomirs-micrornas with a role in cancer. Nat Rev Cancer 2006;6:259-269.
    [18]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H:Microrna-21 (mir-21) post-transcriptionally downregulates tumor suppressor pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-2136.
    [19]Lee YK, Park NH:Prognostic value and clinicopathological significance of p53 and pten in epithelial ovarian cancers. Gynecol Oncol 2009;112:475-480.
    [20]Sansal I, Sellers WR:The biology and clinical relevance of the pten tumor suppressor pathway. J Clin Oncol 2004;22:2954-2963.
    [21]Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T:Involvement of human micro-ma in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006;130:2113-2129.
    [22]Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY:Microrna-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008;18:350-359.
    [23]Chan JA, Krichevsky AM, Kosik KS:Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-6033

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700