用户名: 密码: 验证码:
退行性脊柱侧凸的血清比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     退行性脊柱侧凸(degenerative scoliosis, DS)不仅导致外观畸形,还可引起腰痛、下肢放射痛、间歇性跛行等,甚至损害心肺功能。随着人口老龄化趋势及老年人生活方式的转变,DS逐渐成为导致脊柱功能障碍、影响老年人生活质量的一种重要的腰椎退行性疾病。DS的病因不明,可能与椎间盘、关节突关节的不对称退变、骨质疏松和遗传学因素有关,但这些并不是发生退行性脊柱侧凸的直接原因。目前关于DS的研究绝大多数都是针对该病的治疗,涉及病因学方面的基础研究很少,而且还没有分子生物学方面的报道。因此,弄清DS的病因,确立DS发病及进展相关的分子标志物,从而找到有效预测和防治侧凸加重的方法对于该病的临床诊治具有重大意义。2D-DIGE是近年来发展的新蛋白质组技术,是目前定量蛋白质组学研究中可信度和准确性最高的技术之一。对DS进行比较蛋白质组学研究,寻找患者血清的蛋白质差异,有助于从分子水平认识DS的发生发展机制,也可以为DS的诊断和防治提供有效的分子标志物。
     研究目的:
     1.构建DS患者与对照间血清差异蛋白质组图谱。
     2.应用质谱鉴定技术,对差异蛋白质点进行鉴定。
     3.结合蛋白功能网络研究成果,分析所鉴定的蛋白质在DS发生发展中的作用。
     研究方法:
     1.采集12例退行性脊柱侧凸患者和12例年龄、性别匹配的腰椎管狭窄患者的血清。经去高丰度蛋白、CyDye染料交叉标记,然后进行荧光双向差异凝胶电泳、图像扫描,并用DeCyder v.5.02图像分析软件对DIGE图像进行分析和寻找差异点。
     2.对筛选出的差异点进行基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)
     分析,检索IPI-HUMAN数据库鉴定蛋白。
     研究结果:
     1.经过荧光双向差异凝胶电泳、DeCyder软件分析发现,退行性脊柱侧凸患者和腰椎管狭窄患者血清中有11个蛋白质差异点,两者之间的差异有统计学意义。其中3个点在DS血清中表达上调,8个点表达下调。
     2.11个蛋白质差异点经质谱分析,IPI-HUMAN数据库鉴定出7个差异蛋白。
     结论:
     1.首次对DS患者进行蛋白质组研究,成功构建DS患者与腰椎管狭窄患者血清差异蛋白质组资料库。
     2.应用质谱鉴定技术,成功鉴定出7个差异表达蛋白质。这种蛋白质的差异表达究竟是DS发生的始动因素还是畸形引起的继发改变尚不能明确。其具体意义、具体作用及其是否具有DS特异性尚需进一步研究以阐明。研究结果为DS的发病和进展机制研究,筛选可作为DS诊断标记的血清标志物及药物作用靶点奠定了理论基础。
Background:
     Degenerative scoliosis (DS) not only leads to the appearance of deformity, but also can lead to low back pain, sciatica, intermittent claudication, and even damages the cardiovascular system. With the population aging trends and lifestyle changes of the elderly, DS has become an important degenerative lumbar disease causing spinal dysfunction and affecting quality of life of the elderly. The pathogenesis of DS is still unknown. Although osteoporosis, asymmetric degenerative disc disease, facet tropism and inheritance have been implicated as factors in the development of degenerative scoliosis, none has been shown to be directly related. Most of current research on the DS is about the treatment of the disease, and the basic research on the etiology is few. Furthermore, there has no molecular biology study been reported. Therefore, It is very important to ascertain the etiology of degenerative scoliosis and establish related molecular markers predicting and controlling the scoliosis. The recently introduced differential in gel electrophoresis(DIGE) technology is believed to be a highly reliable and accurate tool for quantitative analysis of differentially expressed proteins. Comparative Analysis of Serum Proteomes of degenerative scoliosis contribute to understand the molecular mechanism of pathogenesis of DS and can provide effective molecular markers to diagnosis and control this disease.
     Objectives:
     1. To establish two dimensional difference in gel electrophoresis(2D-DIGE) of serum of degenerative scoliosis and control.
     2. To identify the differently expressed proteins in sernm of patients using mass spectrometry techniques.
     3. To analyze the role of the identified proteins in the development of degenerative scoliosis through the present protein functional network of research results.
     Methods:
     1. Serum was collected from 12 degenerative scoliosis patients and 12 age-and gender-matched patients with lumbar spinal stenosis. The samples were labeled with different CyDye, followed by 2D-DIGE, map scanning, and then the maps of protein spots were compared using specific software DeCyder v5.02.
     2. The differentially expressed spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and IPI-HUMAN data base.
     Results:
     1.11 spots that were differently expressed in the sera of DS patients were found and identified. There were 3 proteins significantly up-regulated and 8 spots significantly down-regulated in serum of DS patients.
     2. The differentially expressed spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS). Seven proteins were identified from samples of DS.
     Conclusions:
     1. This is the first time to study comparative serum proteomes of degenerative scoliosis. And the serum 2D-DIGE of DS patients and lumbar spinal stenosis were successfully settled.
     2. There were 7 protein spots of significance between patients with DS and lumbar spinal stenosis analyzed by DeCyder.Though the result is preliminary, and it is still not clear that these differences are original factors of DS or secondary cellular responses to deformity. reactions. Further investigations are necessary to illustrate the functioning pathway, the specificity and the mechanism of how these proteins contribute to pathogenesis of DS. The information obtained with this proteomic analysis will be very useful in understanding the pathophysiology of DS as well as in finding candidates as new diagnostic biomarkers or drug targets of DS.
引文
1. Faldini, C. Pagkrati, S. Grandi, G..Degenerative lumbar scoliosis:features and surgical treatment.J Orthopaed Traumatol.2006,7:67-71.
    2. Kobayashi T, Atsuta Y, Takemitsu M, et al. A prospective study of de novo scoliosis in a community based cohort. Spine.2006,31(2):178-82.
    3. Ploumis A, Transfledt EE, Denis F.Degenerative lumbar scoliosis associated with spinal stenosis.Spine.2007,7(4):428-36.
    4. Chin KR, Furey C, Bohlman HH. Risk of progression in de novo low magnitude degenerative lumbar curves:natural history and literature review. Am J Orthop.2009,38(8):404-9.
    5. Guillaumat M, Natural history of scoliosis from childhood to old age.Bull Acad Nad Med.1999,183(4):705-718.
    6. Schwab F, Dubey A, Pagala M, et al. Adult scoliosis:a health assessment analysis by SF-36. Spine.2003,28(6):602-606.
    7. Vanderpool DW, James JIP, Wynne-Davies R.Scoliosis in the elderly. J Bone Joint Surg [Am] 1969,51:446-52.
    8. Robin GC, Span Y, Steinberg R, et al.Scoliosis in the elderly:a follow-up study. Spine.1982,7(4):355-9.
    9. Gillespy T 3rd, Gillespy T Jr, Revak CS. Progressive Senile Seoliosis:Seven Cases of Increasing Spinal Curves in Elderly Patients. Skeletal Radiol.1985,13(4):280-6.
    10. Murata Y, Takahashi K, Hanaoka E, et al. Changes in scoliotic curvature and lordotic angle during the early phase of degenerative lumbar scoliosis. Spine 2002;27:2268-73.
    11. Pritchett JW, Bortel DT. Degenerative symptomatic lumbar scoliosis. Spine.1993,18:700-703.
    12. Sapkas G, Efstathiou P. Radiological parameters associated with the evolution of degenerative scoliosis.Bull-Hosp-Jt-Dis.1996,55(1):40-45.
    13. Tribus CB, Degenerative lumbar scoliosis:Evaluation and Management. J Am Acad Orthop Surg.2003,11(3):174-83.
    14. Grubb SA, Lipscomb HJ. Diagnostic findings in painful adult scoliosis.Spine.1992, 17(5):518-527.
    15. Daffner SD, Vaccaro AR.Adult degenerative lumbar scoliosis.Am J Orthop.2003, 32(2):77-82.
    16. Law M, Tencer AF, Anderson PA. Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine.1993,18(16):2438-2443.
    17. Takahashi M, Haro H, Wakabayashi Y, et al. The association of degeneration of the intervertebral disc with 5A/6A polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg.2001;83B:491-495.
    18. Videman T, Gibbons LE, Battie MC, et al. The relative roles of intragenic polymorphisms of the vitamin D receptor gene in lumbar spine degeneration and bone density. Spine.2001; 26:E7-E12.
    19. Cheung KM, Chan D, Karppinen J, et al.Association of the Taq 1 allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population.Spine. 2006; 31:1143-1148.
    20. Ogilvie JW, Braun J, Argyle V, et al.The search for idiopathic scoliosis genes. Spine 2006,31(6):679-681.
    21. Bader GD, Heilbut A, Andrens B, et al.Functional genomics and protemic:charting a multidimensional map of the yeast cell.Trends Cell Biol.2003,13(7):344-356.
    22. Moritz Al, Ji H, Sehutz F, et al. A proteome strategy for fractionating proteins and peptides using for continuous freeflow electrophoresis coupled off line to reversed phase high performance liquid chromatography. Anal Chem.2004,76(16):4811-4824.
    23. Friedman DB, Hill S, Keller JW,et al.Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics.2004,4(3):793-811.
    24. Chromy BA,Gonzales AD,Perkins J, et al.Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. J Proteome Res.2004,3(6):1120-7.
    25. Echan LA, Tang HY, Ali-Khan N, et al. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005,5:3292-3303.
    26. Zolotarjova N, Martosella J, Nicol G, et al. Differences among techniques for high-abundant protein depletion.Proteomics 2005; 5:3304-3313.
    27. Barelli S, Crettaz D, Thadikkaran L, et al.Plasma/serum proteomics:pre-analytical issues. Proteomics.2007,4(3):363-370.
    28. Starita Geribaldi M, Roux F, Garin J,et al. Development of narrow immobilized pH gradients covering one pH unit for human seminal plasma proteomic analysis. Proteomics.2003,3(8) 1611-1619.
    29. Eun JP, Ma TZ, Lee WJ,et al. Comparative Analysis of Serum Proteomes to Discover Biomarkers for Ossification of the Posterior Longitudinal Ligament.Spine.2007, 32(7):728-734.
    30. Tan XY, Cai DZ, Wu YL, et al.Comparative analysis of serum proteomes:discovery of proteins associated with osteonecrosis of the femoral head. Translatlonal Research. 2006,148:114-119.
    31. Wu RW, Wang FS, Ko JY, et al. Comparative serum proteome expression of osteonecrosis of the femoral head in adults. Bone,.2008,561-566.
    32. Walker-Bone K,et al. Medical management of osteoarthritis. Br Med J.2000, 321:936-940.
    33. Jmeian Y, El Rassi Z. Micro-high performance liquid chromatography platform for the depletion of high-abundance proteins and subsequent on-line concentration /capturing of medium-and low-abundance proteins from serum Application to profiling of protein expression in healthy and osteoarthritis sera by 2-D gel electrophoresis. Electrophoresis 2008,29:2801-2811.
    34. Ling SM, Patel DD, Garnero P, et al. Serum protein signatures detect early radiographic osteoarthritis. Osteoarthritis Cartilage.2009,17 (1):43-48.
    35. Xiang Y, Sekine T, Nakamura H,et al. Proteomic surveillance of autoimmunity in osteoarthritis.Identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum.2004.50 (5):1511-1521.
    36. Xiang Y, Sekine T, Nakamura H,et al. Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. J. Immunol.2006,176(5):3196-3204.
    37. Kato T, Xiang Y, Nakamura H, et al.Neoantigens in osteoarthritic cartilage. Curr. Opin. Rheumatol.2004,16(5):604-608.
    38. Li TW, Zhen BR, Huang ZX, et al. Screening disease-associated proteins from sera of patients with rheumatoid arthritis:a comparative proteomic study. Chinese Medical Journal.2010,23(5):537-543.
    39. Zhang N, Ahsan MH, Purchio AF, et al. Serum amyloid A-luciferase transgenic mice: response to sepsis, acute arthritis, and contact hypersensitivity and the effects of proteasome inhibition. J Immunol 2005,174:8125-8134.
    40. Migita K, Koga T, Torigoshi T, et al. Serum amyloid A protein stimulates CCL20 production in rheumatoid synoviocytes. Rheumatology (Oxford) 2009;,48::741-747.
    41. Goeb V, Thomas-L'Otellier M, Daveau R, et al.Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes. Arthritis Research Therapy.2009,11(2):R38.
    42. Sinz A, Bantscheff S, Ringel B, et al.Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis 2002,23, 3445-3456.
    43. Saulot V, Vittecoq O, Charlionet R, et al. Presence of Autoantibodies to the Glycolytic Enzyme α-Enolase in Sera From Patients With Early Rheumatoid Arthritis. ARTHRITIS & RHEUMATISM.2002,46 (5):1196-1201.
    44. Drynda S, Ringel B, Kekow M, et al.Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNFa therapy. Pathology Research and Practice 200,2004,2:165-171.
    45. Li YT, Dang TA, Shen JH, et al.Identification of a plasma proteomic signature to distinguish pediatric osteosarcoma from benign osteochondroma. Proteomics 2006, 6:3426-3435.
    46. Tian E, Zhan F, Waiker R, et al.The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med.2003, 349:2483-2494.
    47. Bhattacharyya S,Epstein J, Suva LJ,et al. Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learnig tools. Dis Markers,2006, 22:245-255.
    48. Benoy IH, Salgado R, Van Dam P,et al. Increased Serum Interleukin-8 in Patients with Early and Metastatic Breast Cancer Correlates with Early Dissemination and Survival.Clin Cancer Res.2004,10(21):7157-62.
    49. Le LL, Chi K, Tyldesley S, et al.Identification of Serum Amyloid A as a Biomarker to Distinguish Prostate Cancer Patients with Bone Lesions. Clinical Chemistry.2005, 51:695-707.
    50. Liu YJ, Shen H, Xiao P, et al.Molecular genetic studies of gene identification for osteoporosis:a 2004 update. J Bone Miner Res,2006,21(10):1511-1535.
    51. De Silva HV, Harmony JA, Stuart WD, et al. Apolipoprotein J:structure and tissue distribution Biochemistry 1990;29:5380-5389.
    52. Blaschuk O, Burdzy K, Fritz IB. Purification and characterization of a cell-aggregating factor(clusterin), the major glycoprotein in ram rete testis fluid. J Biol Chem 1983; 258:7714-7720.
    53. Jones SE, Jomary C. Clusterin. Int J Biochem Cell Biol 2002;34:42.
    54. Looi ML,Karsani SA, Rahman MA, et al. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma. J Biosci.2009,34: 917-925.
    55. Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends Bioc Sci 2000;25:95-98.
    56. Humphreys DT, Carver JA, Easterbrook-Smith SB, et al. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 1999, 274:6875-6881.
    57. Reddy KB, Jin G, Karode MC, et al. Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 1996,35:6157-6163.
    58. Trougakos IP, Gonos ES. Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases,.Free Radical Research,2006,40(12):1324-1334.
    59. Trougakos IP, Gonos ES. Clusterin/apolipoprotein J in human ageing and cancer. Int. J Biochem Cell Biol.2002,34:1430-1448.
    60. Trougakso IP, So A, Jansen B, et al.Silencing expression of the clusterin /apolipoprotein J gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability,and cell sensitization to genotoxic and oxidative stress. Cancer Res.2004,64:1834-1842.
    61. Pucci S, Bonanno E, Pichiorri F, et al.Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene.2004,23:2298-2304.
    62. Hogasen K., Mollnes TE, Harboe M, et al. Terminal complement pathway activation and low lysis inhibitors in rheumatoid arthritis synovial fluid. J. Rheumatol.1995,22: 24-28.
    63. Trougakos I, Gonos E.Clusterin/Apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol.2002,34:1430.
    64. Petropoulou C.Trougakos IP,.Kolettas E,et al. Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. FEBS Lett.2001,509:287-297.
    65. Bettuzzi S..Scorcioni F, Astancolle S, et al. Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalized human prostate epithelial cells by slowing down cell cycle progression. Oncogene 2002.21: 4328-4334.
    66. PoonS. Treweek TM, Wilson MR,et al. Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett.2002.513:259-266.
    67. Matsuda A., Itoh Y., Koshikawa N.,et al. Clusterin, an abundant serum factor, is a possible negative regulator of MT6-MMP/MMP-25 produced by neutrophils. J. Biol. Chem.2003.278:36350-36357.
    68. Lakins J, Steffany A, Bennett L, et al. Clusterin biogenesis is altered during apoptosis in the regressing rat ventral prostate. J Biol Chem.1998,273:27887-27895.
    69. Michel D, Chatelain G, North S, et al. Stress-induced transcription of the clusterin/apoJ gene. Biochem J 1997,328:45-50.
    70. Viard I, Wehrli P, Jornot L, et al.Clusterin gene expression mediates resistance to apoptotic cell death induced by heat shock and oxidative stress. J Invest Dermatol 1999,112:290-296.
    71. Trougakos IP, Gonos ES:Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 2002,34:1430-1448.
    72. Matsubara E, Soto C, Governale S, et al. Apolipoprotein J and Alzheimer's amyloid beta solubility. Biochem J 1996,316:671-679.
    73. McHattie S, Edington N:Clusterin prevents aggregation of neuropeptide 106-126 in vitro. Biochem Biophys Res Commun 1999,259:336-340.
    74. Janing Elke, Haslbeck M, Aigelsreiter D, et al. Clusterin Associates with Altered Elastic Fibers in Human Photoaged Skin and Prevents Elastin from Ultraviolet-Induced Aggregation in Vitro. Am J Pathol 2007,171:1474-1482.
    75. Miyake H, Hara I, Kamidono S,et al.Synergistic chemosensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin Cancer Res.2001,7: 4245-4252.
    76. Miyake H, Hara I, Gleave ME,et al. Protection of androgen-dependent human prostate cancer cells from oxidative stress-induced DNA damage by overexpression of clusterin and its modulation by androgen.Prostate,2004,61:318-323.
    77. Zellweger T, Chi K, Miyake H, et al.Enhanced radiosensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Clin Cancer Res,2002 8:3276-3284.
    78. Yang CR, Yeh S, Leskov K, et al.Isolation of Ku70-binding proteins (KUBs).Nucleic Acids Res.1999,27:2165-2174.
    79. Criswell T. Klokov D, Beman M,et al.Repression of IR-inducible clusterin expression by the p53 tumour suppressor protein. Cancer Biol Ther.2003,2:372-380.
    80. Zellweger T, Kiyama S, Chi K, et al. Overexpression of the cytoprotective protein clusterin decreases radiosensitivity in the human LNCaP prostate tumour model. BJU Int.2003,92:463-469.
    81. Miyake H, Hara I, Kamidono S, et al. Resistance to cytotoxic chemotherapy induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncol. Rep.2003,10:469-4673.
    82. Hara I, Miyake H, Gleave ME,et al.Introduction of clusterin gene into human renal cell carcinoma cells enhances their resistance to cytotoxic chemotherapy through inhibition of apoptosis both in vitro and in vivo. Jpn J Cancer Res.2001,92: 1220-1224.
    83. Miyake H, Nelson C, Rennie PS,et al.Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res.2000,60:170-176.
    84. Bettuzzi S, Scorcioni F, Astancolle S, et al.Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalized human prostate epithelial cells by slowing down cell cycle progression. Oncogene,2002,21: 4328-4334.
    85. Van Weelden K, Flanagan L, Binderup L, et al.Apoptotic regression of MCF-7 xenografts in nude mice treated with the vitamin-D3 analogue, EB1089. Endocrinology,1998,139:2102-2110.
    86. Leskov KS, Klokov DY, Li J, et al. Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem.2003,278:11590-11600.
    87. July LV, Beraldi E, So A, et al.Nucleotide-based therapies targeting clusterin chemosensitized human lung adenocarcinoma cells both in vitro and in vivo. Mol. Cancer Ther.2004,3:223-232.
    88. Trougakos IP, So A,Jansen B, et al. Silencing expression of the clusterin: apolipoprotein j gene in human cancer cells using small interfering RNA induces spontaneous apoptosis,reduced growth ability,and cell sensitization to genotoxic and oxidative stress Cancer Res,2004,64,1834-1842.
    89. Chen X, Halberg RB, Ehrhart WM, et al.Clusterin as a biomarker in routine and human intestinal neoplasia. Proc Nad Acad Sd USA,2003,100(16):9530-9535.
    90. Miyake H, Hara I, Kamidono S, Gleave ME, et al. Synergistic chemosensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin. Cancer Res.2001,7: 4245-4252.
    91. Miyake H, Hara I, Gleave ME, et al. Protection of androgendependent human prostate cancer cells from oxidative stress-induced DNA damage by overexpression of clusterin and its modulation by androgen. Prostate.2004,61:318-323.
    92. Thomas-Tikhonenko A, Viard-Leveugle I, Dews M, et al. Myc-transformed epithelial cells down-regulate clusterin, which inhibits either growth in vitro and carcinogenesis in vivo. Cancer Res.2004,61:3126-3136.
    93. Zhang LY, Ying WT, Mao YS,et al. Loss of clusterin both in serum and tissue correlates with the tumorigenesis of oesophageal squamous cell carcinoma via proteomic approaches. World J Gastroenterol.2003,9:650-654.
    94. Xie MJ, Motoo Y, Su SB, et al.Expression of clusterin in human pancreatic cancer. Pancreas 2002,25:234-238.
    95. Redondo M, Villar E, Torres-Munoz J, et al. Overexpression of clusterin in human breast carcinoma. Am. J. Pathol.2002,157:393-399.
    96. Saffer H, Wahed A, Rassidakis GZ, et al. Clusterinexpression in malignant lymphomas Mod Pathol.2002,15:1221-1223.
    97. Chung J, Kwak C,Jin RJ,et al. Enhanced chemosensitivity of bladder cancer cells to cisplatin by suppression of clusterin in vitro. Cancer Lett.2004,203,155-161.
    98. Velasco G, Cal S, Merlos-Suarez A,et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000,15;60(4):877-82.
    99. Tschopp J, Chonn A, Hertig S, et al.Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol.1993,15;151(4):2159-65.
    100.Ghiso J., Matsubara E., Koudinov A. The cerebrospinal fluid soluble form of Alzheimer's amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J.293,27-30.
    101.Partridge SR, Baker MS, Walker MJ, et al. Clusterin, a putative complement regulator, binds to the cell surface of Staphylococcus aureus clinical isolates.Infect Immun.1996,64,4324-4329.
    102.Devauchelle V, Essabbani A, Gonzague D,et al. Characterization and Functional Consequences of Underexpression of Clusterin in Rheumatoid Arthritis. J. Immunol. 2006; 177;6471-6479.
    103.McLaughlin L., Zhu G, Mistry C, et al. ApolipoproteinJ/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest.2000,106:1105-1113.
    104.Newkirk, MM., Apostolakos P., Neville C., et al. Systemic lupus erythematosus, a disease associated with low levels of clusterin/apoJ, an antiinflammatory protein. J. Rheumatol.1999.26:597-603.
    105.Taussig R, Tang W-J, Hepler JR, et al. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 1994,269:6093-6100.
    106.Gilman AG. G proteins:transducers of receptor-generated signals. Annu Rev Biochem,1987,56:615-649.
    107.Chen LT, Gilman AG, Kozasa T,et al. A candidate target for G protein action in brain. J Biol Chem 1999,274:26931-26938.
    108.Masuho I, Mototani Y, Sahara Y.Dynamic expression patterns of G protein-regulated inducer of neurite outgrowth 1 (GRIN1) and its colocalization with G a o implicate significant roles of G a o-GRIN1 signaling in nervous system. Dev Dyn.2008,237(9): 2415-2429.
    109.Andersson O, Stenqvist A, Attersand A, et al. Nucleotide sequence genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics.2001,78:178-184.
    110.Dingledine R, Borges K, Bowie D, et al. The glutamate receptorion channels. Pharmacol Rev1999,51:7-61.
    111.KaufmannCA, Suarez B, Malaspina D, et al.NIMH Genetics Initiative Millennium Schizophrenia Consortium:Linkage analysis of African-American pedigrees.AmJ Med Genet,1998,81:282-289.
    112.Riley BP, Tahir E, Rajagopalan S, et al A linkage study of the N-methyl-D-aspartate receptor subunit gene loci and schizophrenia in southern African Bantu-speaking families. Psychiatr Genet 1997,7:57-74.
    113.Zhao XZ, Li HF, Shi YY, et al.Significant Association Between the Genetic Variations in the 5'End of the N-Methyl-D-Aspartate Receptor Subunit Gene GRIN1 and Schizophrenia. Biol Psychiatry 2006;59:747-753.
    114.Campoli M, Chang CC, Ferrone S.HLA class I antigen loss, tumor immune escape and immune selection. Vaccine.2002,19; 40-5.
    115.Filaci G. Gontiai P.Brenci S. Increased serum concentration of soluble HLA-DR antigens in HIV infection and following transplantation. Tissue Antigens 1995:46: 117-123.
    116.Coudert JD, Held W. The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 2006; 16:333-43.
    117.Zavazava N.Bottcher H, Ruchhottz Z,Soluble MHC class Ⅰ antigens (sHLA) and anti-HLA antibodies in heart and kidney allograft recipients Tissue Antigens. 1993,42,20-26.
    118.Sakaguchi K, Koide N, Takenami T, et al. Soluble HLA class I antigens in sera of patients with chronic hepatitis. Gastroenterol. Jpn,1992;27:206-211.
    119.Puppo F, Orlandini A, Ruzzenenti R, et al.HLA class I soluble antigen serum levels in HIV-positive subjects- correlation with cellular and serological parameters.Cancer Detect Prevent.1990.14(3):321.
    120.Puppo F, Brenci S, Lanza L, et al.Increased level of serum HLA class Ⅰ antigens in HIV infection. Correlation with disease progression. Hum Immunol 1994.40(4):259.
    121.Puppo F, Ruzzenenti R, Brenci S, et al.Major histocompatibility gene products and human immunodeficiency virus infection. J Lab Clin Med1991,117(2):91,.
    122.Biswal BM, Kumar R, Julka PK, et al. Human leucocytic antigens (HLA) in breast cancer. Indian J Med Sci.1998;52(5):177-83.
    123.Linda K, Cecilia K, Gunnar S, et al.Increased Level of Soluble HLA Class I Antigens in Systemic Lupus Erythematosus:Correlation with Anti-DNA Antibodies and Leukopenia. Journal of Autoimmunity,2001,16(4):471-478.
    124.Wolf RE, Adamashvili IM,Gelder FB,et al. Soluble HLA-I in rheumatic diseases. Human immunology 1998;59(10):644-9.
    125.Naoyuki T, Michiko S, Akihiro Y, et al. Elevated serum level of soluble HLA class I antigens in patients with systemic lupus erythematosus Arthritis Rheum,1996,39: 792-796.
    126.Kass R, Bellone S, Palmieri M,et al. Restoration of tumor-specific HLA class I restricted cytotoxicity in tumor infiltrating lymphocytes of advanced breast cancer patients by in vitro stimulation with tumor antigen-pulsed autologous dendritic cells. Breast Cancer Res Treat.2003,80(3):275-85.
    127.Nocito M, Montalban C, Gonzalez-Porque P, et al.Increased Soluble Serum HLA Class I Antigens in Patients with Lymphoma. Hum Immunol.1997,58(2):106-111.
    128.Munoz-Fernandez S, Martin J, Martin-Mola E,et al.Soluble HLA class I antigens in serum and synovial fluid from patients with rheumatoid arthritis and other arthropathies. Rheumatology (Oxford).2001;40(12):1365-9.
    129.Gilberto F.Paola C.Sabrina B,et al. Soluble HLA class I and II molecule levels in serum and cerebrospinal fluid of multiple sclerosis patients.Human Immunol, 1997,54:54-62.
    1. Faldini, C. Pagkrati, S. Grandi, G. Degenerative lumbar scoliosis:features and surgical treatment. J Orthopaed Traumatol.2006,7:67-71.
    2. Ploumis A, Transfledt EE, Denis F. Degenerative lumbar scoliosis associated with spinal stenosis. Spine J.2007,7(4):428-36.
    3. Tribus CB. Degenerative lumbar scoliosis:Evaluation and Management. J Am Acad Orthop Surg.2003,11 (3):174-83.
    4. Kobayashi T, Atsuta Y, Takemitsu M, et al.A prospective study of de novo scoliosis in a community based cohort. Spine.2006,31(2):178-82.
    5. Chin KR, Furey C, Bohlman HH. Risk of progression in de novo low magnitude degenerative lumbar curves:natural history and literature review. Am J Orthop.2009, 38(8):404-9.
    6. Robin GC, Span Y, Steinberg R, et al. Scoliosis in the elderly:a follow-up study. Spine 1982;7:355-9.
    7. Grubb SA, Lipscomb HJ.Diagnostic findings in painful adult scoliosis.Spine.1992, 17(5):518-527.
    8. Ploumis A, Transfledt EE, Denis F.Degenerative lumbar scoliosis associated with spinal stenosis.Spine J.2007,7(4):428-36.
    9. Gillespy T 3rd, Gillespy T Jr, Revak CS. Progressive Senile Seoliosis:Seven Cases of Increasing Spinal Curves in Elderly Patients. Skeletal Radiol.1985,13(4):280-6.
    10. Daffner SD, Vaccaro AR.Adult degenerative lumbar scoliosis.Am J Orthop.2003, 32(2):77-82.
    11. Sapkas G, Efstathiou P. Radiological parameters associated with the evolution of degenerative scoliosis.Bull-Hosp-Jt-Dis.1996,55(1):40-45.
    12. Benner B, Ehni G. Degenerative lumbar scoliosis.Spine.1979.4:548-52.
    13. Dewald CJ,Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65::surgical considerations and treatment options in patients with poor bone quality.Spine.2006,31 (19):144-151.
    14. James N. Low back pain:a scientific and clinical overview. New york Press,1995. 17
    15. Vernon-Roberts B, Fazzalari NL,Manthey BA. Pathogensis of tears of the anulus investigated by mutiplelevel transaxial analysis of the T12-L1 disc. Spine.1997,22 (22):2641-6.
    16.赵伟儿,倪桂宝.青少年腰椎间盘突出症临床及病理分析.中国脊柱脊髓杂志,2001,5(11):318-322.
    17. Pope MH, Goh KL,Magnusson ML. Spine ergonomics. Annu Rev Biomed Eng. 2002,4:49-55.
    18. Battie MC, Videman T, Gibbons LE, et al.Occupational driving and lumbar disc degeneration:a case-control study. Lancet.2002,360(9343):1369-74.
    19. Videman T,Battie MC. The influence of occupation on lumbar degeneration. Spine. 1999,24(11):1164-8.
    20. Puustjarvi K, Lammi M, Helminen H, et al. Proteoglycans in the interverterbal disc of young dogs following strenuous running exercise. Conn Tiss Res.1993,30 (3): 225-40.
    21. latridis JC, Mente PL,Stokes IA,et al. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine.1999,24(10):996-1002.
    22. Battie MC,Haynor DR,Fisher LD. Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins.J Bone Joint Surg Am, 1995,77(11):1662-70.
    23. Battie MC, Videman T, Levalahti E, et al. Heritability of low back pain and the role of disc degeneration. Pain.2007,131:272-280.
    24. Ala-Kokko L. Genetic risk factors for lumbar disc disease. Ann Med.2002,34:42-47.
    25. Varlotta GP, Brown MD, Kelsey JL, et al. Familial predisposition for herniation of a lumbar disc in patients who are less than twenty-one years old. J Bone Joint Surg Am.1991,73:124-128.
    26. Matsui H, Terahata N, Tsuji H, et al. Familial predisposition and clustering for juvenile lumbar disc herniation.Spine.1992,17:1323-1328.
    27. Matsui H, Maeda A, Tsuji H, et al. Risk indicators of low back pain among workers in Japan. Association of familial and physical factors with low back pain. Spine.1997,22:1242-1247.
    28. Kimura T, Nakata K, Tsumaki N,et al. Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop.1996; 20:177-181.
    29. Paassilta P,Lohiniva J, Goring HH, at al. Identification of a novel common genetic risk factor for lumbar disk disease. JAMA,2001,285(14):1846-8.
    30. Jim JJ, Noponen-Hietala N, Cheung KM,et al. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity disc degeneration. Spine.2005; 30:2735-2742.
    31. Tigashino K, Matsui Y, Yagi S,et al. The alpha2 type IX collagen tryptophan polymorphism is associated with the severity of disc degeneration in younger patients with herniated nucleus pulposus of the lumbar spine. Int Orthop.2007; 31: 107-111.
    32. Tsunoda T, Kubo T, Toyama Y,et al. Association study of COL9A2 with lumbar disc disease in the Japanese population. J Hum Genet.2006; 51:1063-1067.
    33. Paassilta P, Lohiniva J, Goring HH, et al. Identification of a novel common genetic risk factor for lumbar disc disease. JAMA.2001; 285:1843-1849.
    34. Christiani DC. The role of collagen IX tryptophan polymorphisms in symptomatic intervertebral disc disease in Southern European patients. Spine.2004; 29: 1266-1270.
    35. Solovieva S, Lohiniva J, Leino-Arjas P, et al. Intervertebral disc degeneration in relation to the COL9A3 and the IL-lss gene polymorphisms. Eur Spine J.2006; 15: 613-619.
    36. Karppinen J, Paakko E, Paassilta P, et al. Radiologic phenotypes in lumbar MR imaging for a gene defect in the COL9A3 gene of type IX collagen.Radiology. 2003,227:143-148.
    37. Videman T, Gibbons LE, Battie MC, et al. The relative roles of intragenic polymorphisms of the vitamin D receptor gene in lumbar spine degeneration and bone density. Spine.2001; 26:E7-E12.
    38. Cheung KM, Chan D, Karppinen J, et al.Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population.Spine. 2006; 31:1143-1148.
    39. Amizuka N, Ozawa H. Intracellular localization and translocation of 1 alpha, 25-dihydroxyvitamin D3 receptor in osteoblasts.Arch Histol Cytol.1992; 55:77-88.
    40. Balmain N, Hauchecorne M, Pike JW, et al. Distribution and subcellular immunolocalization of 1,25-dihydroxyvitamin D3 receptors in rat epiphyseal cartilage. Cell Mol Biol (Noisy-le-grand).1993; 39:339-350.
    41. Corvol MT, Dumontier MF, Tsagris L, Lang F, Bourguignon J.Cartilage and vitamin D in vitro (author's transl). Ann Endocrinol(Paris).1981; 42:482-487.
    42. Kawaguchi Y, Kanamori M, Ishihara H, et al. The Association of Lumbar Disc Disease with Vitamin-D Receptor Gene Polymorphism. J Bone Joint Surg Am.2002;84A:2022-2028.
    43. Pedeutour F, Merscher S, Durieux E, et al.Mapping of the 12q12-q22 region with respect to tumor translocation breakpoints. Genomics.1994; 22:512-518.
    44. Sedowofia KA,Tomlinnson IW,Weiss JB,et al.Collagenolytic enzyme systems in humna inlervertebral discs.Spine.1982,7:213-222.
    45. Nishida T.Kinetics of tissue and serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in intervertebral disc degeneration and disc herniation.Kurume Med J.1999,46(1):39-50.
    46. Haro H, Crawford HC,Fingleton B,et al.Matrix metalloproteinase-3 dependent generation of a macrophage chemoattractant in model of herniated disc resorption.J Clin Invest.2000,105(2):133-41.
    47. Handa T, Ishihara H, Ohshima H, et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine.1997; 22:1085-1091.
    48. lto A, Mukaiyama A, Itoh Y, et al. Degradation of interleukin lbetaby matrix metalloproteinases. J Biol Chem.1996; 271:14657-14660.
    49. Takahashi M, Haro H, Wakabayashi Y, et al. The association of degeneration of the intervertebral disc with 5A/6A polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg.2001;83B:491-495.
    50. Jill PG. Urban Sally Roberts Degeneration of the intervertebral disc. J Arthritis Res Ther,2003,5(3):120-123
    51. Nachemson A,Lewin T, Maroudas A,et al. In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand,1970,41(6):589-607.
    52. Nerlich AG. Immunolohistologic markers forage-related changes of human lumbar intervertebral discs. Spine,1997,22:2761-5
    53. Ishihara H.Urban JP. Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res, 1999,17 (6):829-35.
    54. Holm S,Maroudas A,Urban JP, et al.Nutrition of the intervertebral disc:solute transport and metabolism.J Connect Tissue Res,1981,8(2):101-19
    55. Kauppila L. Prevalence of stenotic changes in arteries supplying the lumbar spine. A postmortem angiographic study on 140 subjects. Ann Rheum Dis,1997,56 (10):591-595.
    56. Holm S,Nachemson A. Variation in the utrition of the canine intervertebral disc induced by motion. Spine,1983,8(8):866-74.
    57. Oda J,Tanaka H, Tsuzuki N,et al. Intervertebral disc change with ageing of human cervical vertebra. Spine.1988,13 (11)1205-11.
    58. Matsui Y, Maeda M, Nakagami W, et al. The Involvement of Matrix Metalloproteinases and Inflammation in Lumbar Disc Herniation. Spine.1998,23 (8):863-8.
    59. Tortorella MD,Burn TC,Pratta MA. Purification and cloning of aggrecanase-1:a member of the ADAMTS family of proteins. Science.1999,284 (5420):1664-6.
    60. Tortorella MD,Liu RQ,Burn T,et al. Characterization of human aggrecanase 2(ADAM-TS5):substrate specificity studies and comparison with aggrecanase (?) (ADAM-TS4).Matrix Biol.2002,21(6):499-511.
    61. Roughley PJ,Alini M, Antoniou J. The role of proteoglycans in aging,degeneration and repair of the inervertebral disc. Biochem Soc Trans,2002,30 (Pt 6):869-74.
    62. James D. Herniated lumbar inervertebral discs spontaneously produce matrix metalloproteinases,nitric oxide, interleukin-6 and prostaglandin E2.Spine,1996, 21(3):271-7.
    63. Osada R, Ohshima H, Ishihara H. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion,and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res,1996,14 (5):690-9.
    64. Masuda K, Takegami K, An H, et al. Recombiant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res,2003,21(5):922-30.
    65. Raininko R, Saarela J, Riihimaki H. Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology.2004; 15:626-633.
    66. Solovieva S, Leino-Arjas P, Saarela J, et al. Possible association of interleukinl gene locus polymorphisms with low back pain. Pain.2004; 109:8-19.
    67. Ye W, Ma RF, Su PQ, et al.Association of single nucleotide polymorphisms of IL-1B with lumbar disc disease. Yi Chuan.2007; 29(8):923-928.
    68. Valdes AM, Hassett G, Hart DJ, et al. Radiographic Progression of Lumbar Spine Disc Degeneration Is Influenced by Variation at Inflammatory Genes:A Candidate SNP Association Study in the Chingford Cohort. Spine.2005; 30:2445-2451.
    69. Liu GZ,Ishihara H,Osada R,et al. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine,2001,26(2):134-41.
    70. Kohyana i,Saura R,Doits M. Intervertebral disc cell apoptosis by nitric oxide :biological understanding of intervertbral disc degeneration.Kobe J Med Sci, 2000,46(6):283-95.
    71. Furusaw N,Baba H, Miyoshi N,et al. Herniation of cervical intervertebral disc:immunohistochemical examination and measurement of nitric oxide production. Spine,2001,26(10):1110-6.
    72.刘斌,瞿东滨,金大地,等.NO含量及NOS活性在兔软骨终板退变过程中的变化[J].第一军医大学学报,2004,24(3):278-281.
    73. Park JB, Chang H, Kim KW. Expression of fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine,2001,26(6):618-621.
    74. Park JB, Kim KW, Han CW, et al. Expression of fas receptor on disc cells in herniated lumbar disc tissue[J].Spine,2001,26(2):142-146.
    75. Ogilvie J W, Braun J, Argyle V, et al.The search for idiopathic scoliosis genes. Spine 2006,31(6):679-681.
    76. Heary RF,Madhavan K.Genetics of scoliosis.Neurosurgery.2008,63(3):222-7.
    77. Van Rhijn LW, Jansen EJ, Plasmans CM, et al.Changing curve pattern in infantile idiopathic scoliosis:Family report with a follow-up of 15 years.Spine.2001, 26:E373-E376.
    78. Miller NH, Justice CM, Marosy B, et al. Identification of candidate regions for familial idiopathic scoliosis. Spine.2005;30:1181-7.
    79. Alden KJ, Marosy B, Nzegwu N, et al. Idiopathic scoliosis:identification of candidate regions on chromosome 19p13. Spine.2006;31:1815-9.
    80. Chan V, Fong GC, Luk KD, et al. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet 2002;71:401-6.
    81. Kesling KL,Reinker KA.Scoliosis in twins:A meta-analysis of the literature and report of six cases.Spine.1997,22(17):2009-2015.
    82. Wise CA, Barnes R, Gillum J, et al.Localization of susceptibility to familial idiopathic scoliosis. Spine.2000,25:2372-2380.
    83. Chan V, Fong GC, Luk KD,et al. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet 2002,71:401-406.
    84. Salehi LB, Mangino M, De Serio S.et al.Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17pll. Hum Genet.2002, 111:401-404.
    85. Smith AC, Dykens E, Greenberg F. Behavioral phenotype of Smith-Magenis syndrome (del 17p11.2). Am J Med Genet.1998,81:179-185.
    86. Alden KJ, Marosy B, Nzegwu N, et al.Idiopathic scoliosis:Identification of candidate regions on chromosome 19p13. Spine.2006,31:1815-1819.
    87. Justice CM, Miller NH, Marosy B, et al.Familial idiopathic scoliosis:evidence of an X-linked susceptibility locus. Spine.2003,28:589-594.
    88. Bonaiti C.Feingold J.Briard ML,et al.Genetics of idiopathic scoliosis.Helv Paediatr Acta.1976,31(3):229-40.
    89. Axenovich TI.Zaidman AM.Zorkohseva IV, et al.Segregation analysis of Scheuermann disease in ninety families from Siberia. Am J Med Genet.2001,100(4): 275-9.
    90. Sanders,JO,Browne RH,McConnell SJ,et al. Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am.2007,89(1): 64-73.
    91. Raczkowski JW. The concentrations of testosterone and estradiol in girls with adolescent idiopathic scoliosis. Neuro Endocrinol Lett.2007,28(3):302-304.
    92. Inoue M, Minami S, Nakata Y, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine.2002,27:2357-2362.
    93. Inoue M, Minami S, Nakata Y, et al. Prediction of curve progression in idiopathic scoliosis from gene polymorphic analysis. Stud Health Technol Inform..2002,91: 90-96.
    94. Komm BS, Terpening C M, Benz DJ, et al.Estrogen binding, receptor mRNA, and biological response in osteoblast-like osteosarcoma cells. Science.1988,241:81-84..
    95. Pensler J M, Radosevich JA, Higbee R, et al. Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors. J Bone Miner Res.1990,5:797-802.
    96. Kobayashi S, Inoue S, Hosoi T, et al. Association of bone mineral density with polymorphism of the estrogen receptor gene.J Bone Miner Res.1996,11:306-311.
    97. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Eng J Med.1994,331:1056-1061.
    98. Wu J, Qiu Y, Zhang L, Sun Q, et al.Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis.Spine.2006, 31:1131-1136.
    99. Tang NL, Yeung HY, Lee KM,et al. A relook into the association of the estrogen receptor[alpha] gene (PvuⅡ, Xbal) and adolescent idiopathic scoliosis:A study of 540 Chinese cases. Spine.2006,31(21):2463-2468.
    100.Floman Y, Liebergall M, Robin GC, et al. Abnormalities of aggregation, thromboxane A2 synthesis, and 14C serotonin release in platelets of patients with idiopathic scoliosis. Spine.1983;8:236-41.
    101.Muhlrad A, Yarom R. Contractile protein studies on platelets from patients with idiopathic scoliosis. Haemostasis 1982;11:154-60.
    102.Peleg I, Eldor A, Kahane I, et al. Altered structural and functional properties of myosins, from platelets of idiopathic scoliosis patients. J Orthop Res 1989;7:260-5.
    103.Sabato S, Rotman A, Robin GC, et al. Platelet aggregation abnormalities in idiopathic scoliosis. J Pediatr Orthop 1985;5:558-63.
    104.Yarom R, Blatt J, Gorodetsky R, et al. Microanalysis and X-ray fluorescence spectrometry of platelets in diseases with elevated muscle calcium.Eur J Clin Invest 1980; 10:143-7.
    105.Lowe TG, Edgar M, Margulies JY, et al. Etiology of idiopathic scoliosis:current trends in research. J Bone Joint Surg Am 2000;82-A:1157-68.
    106.Kindsfater K, Lowe T, Lawellin D, et al. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis.J Bone Joint Surg Am 1994;76:1186-92.
    107.Lowe T, Lawellin D, Smith D, et al. Platelet calmodulin levels in adolescent idiopathic scoliosis:do the levels correlate with curve progression and severity? Spine 2002;27:768-75.
    108.Coue M, Landon F, Olomucki A. Comparison of the properties of two kinds of preparations of human blood platelet actin with sarcomeric actin. Biochimie 1982;64:219-26.
    109.Landon F, Huc C, Thome F, et al. Human platelet actin. Evidence of beta and gamma forms and similarity of properties with sarcomeric actin. Eur J Biochem 1977;81:571-7.
    110.Lowe TG, Burwell RG, Dangerfield PH. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS):can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J 2004; 13:257-65.
    111.Cotterill PC, Kostuik JP, D'Angelo G, et al. An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res 1986;4:298-303.
    112.Smit TH. The use of a quadruped as an in vivo model for the study of the spine biomechanical considerations. Eur Spine J 2002;11:137-44.
    113.Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 1997;247:542-55.
    114.Naique SB, Porter R, Cunningham AA, et al. Scoliosis in an Orangutan.Spine 2003;28:E143-5.
    115.D'Aout K, Aerts P, De Clercq D, et al. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am J Phys Anthropol 2002; 119:37-51.
    116.Machida M, Murai I, Miyashita Y, et al. Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 1999;24:1985-9.
    117.Machida M, Saito M, Dubousset J, et al. Pathological mechanism of idiopathic scoliosis:experimental scoliosis in pinealectomized rats. Eur Spine J 2005; 14:843-8.
    118.White AA III, Panjabi MM. Clinical biomechanics of the spine. Philadelphia,PA: Lipincott; 1991.
    119.Castelein RM, van Dieen JH, Smit TH. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis-a hypothesis. Med Hypotheses 2005;65:501-8.
    120.Adams MA, Hutton WC. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 1981;6:241-8.
    121.Adams MA, Hutton WC. The mechanical function of the lumbar apophyseal joints. Spine 1983;8:327-30.
    122.Oda I, Abumi K, Cunningham BW, et al. An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 2002;27:E64-70.
    123.Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 1986; 11:914-27.
    124.Takeuchi T, Abumi K, Shono Y, et al. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study. Spine 1999;24:1414-20.
    125.Wilke HJ, Krischak ST, Wenger KH, et al. Load-displacement properties of the thoracolumbar calf spine:experimental results and comparison to known human data. Eur Spine J 1997;6:129-37.
    126.Zander T, Rohlmann A, Klockner C, et al. Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J 2003;12:427-34.
    127.Kouwenhoven JW, Vincken KL, Bartels LW, et al. Analysis of preexistent vertebral rotation in the normal spine. Spine 2006;31:1467-72.
    128.Kouwenhoven JW, Vincken KL, Bartels LW, et al. Analysis of preexistent vertebral rotation in the normal quadruped spine. Spine 2006;31:E754-8.
    129.Kouwenhoven JW, Bartels LW, Vincken KL, et al. The relation between organ anatomy and pre-existent vertebral rotation in the normal spine:magnetic resonance imaging study in humans with situs inversus totalis.Spine 2007;32:1123-8.
    130.Castelein RM, Veraart B. Idiopathic scoliosis:prognostic value of the profile.Eur Spine J 1992;1:167-9.
    131.James JI. Paralytic scoliosis. J Bone Joint Surg Br.1956;38-B:660-85.
    132.Aprin H, Bowen JR, MacEwen GD, et al. Spine fusion in patients with spinal muscular atrophy. J Bone Joint Surg Am.1982;64:1179-87.
    133.Colonna PC, Vom Saal F. A study of paralytic scoliosis based on five hundred cases of poliomyelitis. J Bone Joint Surg Am 1941;335-353.
    134.Hsu JD. The natural history of spine curvature progression in the nonambulatory Duchenne muscular dystrophy patient. Spine 1983;8:771-5.
    135.MacEwen GD. Cerebral palsy and scoliosis. In:Spinal Deformity in Neurological and Muscular Disorders. New York, NY:Mosby; 1974:191-9.
    136.Madigan RR, Wallace SL. Scoliosis in the institutionalized cerebral palsy population. Spine 1981;6:583-90.
    137.Piggott H. The natural history of scoliosis in myelodysplasia. J Bone Joint Surg Br 1980;62-B:54-8.
    138.Robin GC. Scoliosis of spina bifida and infantile paraplegia. Isr J Med Sci 1972;8:1823-9.
    139.Pincott JR., Taffs LF. Experimental scoliosis in primates:a neurological cause. J Bone Joint Surg Br 1982;64:503-7.
    140.Alexander MA, Bunch WH, Ebbesson SO. Can experimental dorsal rhizotomy produce scoliosis? J Bone Joint Surg Am 1972;54:1509-13.
    141.Liszka O. Spinal cord mechanisms leading to scoliosis in animal experiments. Acta Med Pol 1961;2:45-63.
    142.MacEwen GD. Experimental scoliosis. IsrJ Med Sci 1973;9:714-8.
    143.Pincott JR. Davies JS, Taffs LF. Scoliosis caused by section of dorsal spinal nerve roots. J Bone Joint Surg Br 1984;66:27-9.
    144.Suk SI, Song HS, Lee CK. Scoliosis induced by anterior and posterior rhizotomy. Spine 1989;14:692-7.
    145.Cheng JC, Guo X, Sher AH, et al. Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescent idiopathic scoliosis. Spine 1999;24:1679-84.
    146.Guo X, Chau WW, Hui-Chan CW, et al. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine 2006;31:E437-40.
    147.Petersen 1, Sahlstrand T, Sellden U. Electroencephalographic investigation of patients with adolescent idiopathic scoliosis. Acta Orthop Scand 1979;50:283-93.
    148.Sahlstrand T, Ortengren R, Nachemson A. Postural equilibrium in adolescent idiopathic scoliosis. Acta Orthop Scand 1978;49:354-65.
    149.Sahlstrand T, Petruson B, Ortengren R. Vestibulospinal reflex activity in patients with adolescent idiopathic scoliosis. Postural effects during caloric labyrinthine stimulation recorded by stabilometry. Acta Orthop Scand 1979;50:275-81.
    150.Sahlstrand T, Petruson B. A study of labyrinthine function in patients with adolescent idiopathic scoliosis. I. An electro-nystagmographic study. Acta Orthop Scand 1979;50:759-69.
    151.Liu T, Chu WC, Young G, et al. MR analysis of regional brain volume in adolescent idiopathic scoliosis:neurological manifestation of a systemic disease. J Magn Reson Imaging 2008;27:732-6.
    152.Lucas DB, Bresler B. Stability of the ligamentous spine. Vol 40. San Francisco,CA: University of California, Biomechanics Laboratory; 1961.
    153.Duval-Beaupere G, Lespargot A, Grossiord A. Scoliosis and trunk muscles. J Pediatr Orthop 1984;4:195-200.
    154.Fidler MW, Jowett RL. Muscle imbalance in the aetiology of scoliosis.J Bone Joint Surg Br 1976;58:200-1.
    155.Ford DM, Bagnall KM, McFadden K D, et al. Paraspinal muscle imbalance in adolescent idiopathic scoliosis. Spine 1984;9:373-6.
    156.Riddle HF, Roaf R. Muscle imbalance in the causation of scoliosis. Lancet 1955;268:1245-7.
    157.Spencer GS, Eccles MJ.Spinal muscle in scoliosis.Part 2.The propotion and size of type 2 skeletal muscle fibres measured using a computer-controlled microscope. Neurol Sci.1976,30(1):143-154.
    158.Albert Y, Whitehead J, Eldredge L,et al.Transcriptional regulation of myotube fate specification and intrafusal muscle fiber morphogenesis.J Cell Biol.2005,169(2): 257-268.
    159.Alexander MA, Season EH. Idiopathic scoliosis:an electromyographic study. Arch Phys Med Rehabil 1978;59:314-5.
    160.Cheung J. Prediction of Curve Progression in Idiopathic Scoliosis.2004.
    161.Cheung J, Halbertsma JP, Veldhuizen AG, et al. A preliminary study on electromyographic analysis of the paraspinal musculature in idiopathic scoliosis. Eur Spine J 2005; 14:130-7.
    162.Zetterberg C, Bjork R, Ortengren R, et al. Electromyography of the paravertebral muscles in idiopathic scoliosis. Measurements of amplitude and spectral changes under load. Acta Orthop Scand 1984;55:304-9.
    163.Lu WW, Hu Y, Luk KD,et al.Paraspinal muscle activities of patients with scoliosis after spine fusion:an electromyographic study.Spine.2002,27(11):1180-1185.
    164.Kouwenhoven JW, Van Ommeren PM, Pruijs HE, et al. Spinal decompensation in neuromuscular disease. Spine 2006;31:E188-91.
    165.Burner WL III, Badger VM, Sherman FC. Osteoporosis and acquired back deformities. J Pediatr Orthop 1982;2:383-5.
    166.Runge H, Fengler F, Franke J, et al. [Evaluation of the mineral content of peripheral bones (radius) by photon-absorption technique in normals as well as in patients with various types of bone diseases (author's transl)].Radiologe 1980;20:505-14.
    167.Sevastik JA. Right convex thoracic female adolescent scoliosis in the light of the thoracospinal concept. Stud Health Technol Inform 2006; 123:552-8.
    168.Thomas KA, Cook SD, Skalley TC, et al. Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis:a follow-up study. J Pediatr Orthop 1992; 12:235-40.
    169.Cheng JC, Guo X. Osteopenia in adolescent idiopathic scoliosis. A primary problem or secondary to the spinal deformity? Spine 1997;22:1716-21.
    170.Hung VW, Qin L, Cheung CS, et al. Osteopenia:a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 2005;87:2709-16.
    171.Lee WT, Cheung CS, Tse YK, et al. Association of osteopenia with curve severity in adolescent idiopathic scoliosis:a study of 919 girls. Osteoporos Int 2005; 16: 1924-32.
    172.Lee WT, Cheung CS, Tse YK, et al. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int 2005;16:1024-35.
    173.Cheung CS, Lee WT, Tse YK, et al. Generalized osteopenia in adolescent idiopathic scoliosis-association with abnormal pubertal growth, bone turnover, and calcium intake? Spine 2006;31:330-8.
    174.Cheng JC, Tang SP, Guo X, et al. Osteopenia in adolescent idiopathic scoliosis:a histomorphometric study. Spine 2001;26:E19-23.
    175.Cheng JC, Hung VW, Lee WT, et al. Persistent osteopenia in adolescent idiopathic scoliosis-longitudinal monitoring of bone mineral density until skeletal maturity. Stud Health Technol Inform 2006; 123:47-51.
    176.Cheng JC, Guo X, Sher AH. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow-up study. Spine 1999;24:1218-22.
    177.Thillard M.I. Deformation de la colonne vertebrale consecutives a l'epiphysectomie chez le poussin. Extrait des Comptes Rendus de l'Association des Anatomistes XLVI. 1959:22-6.
    178.Dubousset.1, Queneau P, Thillard MJ. Experimental scoliosis induced by pineal and diecephalic lesions in young chickens:its relation with clinical findings in idiopathic scoliosis. Orthop Trans 1983;7:7.
    179.Machida M, Dubousset J, Imamura Y, et al. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 1993;18:1609-15.
    180.Machida M, Dubousset J, Imamura Y, et al. Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens, J Bone Joint Surg Br 1995;77:134-8.
    181.Machida M, Dubousset J, Satoh T, et al. Pathologic mechanism of experimental scoliosis in pinealectomized chickens. Spine 2001;26:E385-91.
    182.Machida M, Dubousset J, Imamura Y, et al. Melatonin. A possible role in pathogenesis of adolescent idiopathic scoliosis. Spine 1996;21:1147-52.
    183.Bagnall KM, Raso VJ, Hill DL, et al. Melatonin levels in idiopathic scoliosis. Diurnal and nocturnal serum melatonin levels in girls with adolescent idiopathic scoliosis. Spine 1996;21:1974-8.
    184.Fagan AB, Kennaway DJ, Sutherland AD. Total 24-hour melatonin secretion in adolescent idiopathic scoliosis. A case-control study. Spine 1998;23:41-6.
    185.Hilibrand AS, Blakemore LC, Loder RT, et al. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis. Spine 1996;21:1140-6.
    186.Suh KT, Lee SS, Kim SJ, et al. Pineal gland metabolism in patients with adolescent idiopathic scoliosis. J Bone Joint Surg Br 2007;89:66-71.
    187.Poon AM, Cheung KM, Lu DS, et al. Changes in melatonin receptors in relation to the development of scoliosis in pinealectomized chickens. Spine 2006;31:2043-7.
    188.Qiu XS, Tang NL, Yeung HY, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 2007;32:1748-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700