用户名: 密码: 验证码:
红层路堑边坡稳定性与防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中、西部省区高等级公路建设得到了快速发展,不同程度的穿越红层分布地区。由于红层强度低、抗风化能力差、红层边坡的自稳能力差,从而造成施工期间和施工后路堑边坡不断出现滑坡等地质灾害,红层路堑边坡的稳定性及防治已成为工程界研究的一个热点。研究合理有效地分析红层边坡岩体性质、评价边坡的稳定性及提出合适的治理方案具有重要的理论意义与应用价值。
     在国家“863计划”项目“山区公路路基边坡地质灾害监测与预警系统研究”的资助下,本文从现场调查、室内试验、理论分析、数值模拟和现场监测五个方面展开工作。主要取得了如下研究成果:
     (1)通过室内试验,研究不同含水量条件下泥化夹层强度特征,表明:含水量对红砂岩泥化夹层抗剪强度的影响很大,当大于临界含水量后,内摩擦角和粘结力随含水量的增大而减小。水岩相互作用导致泥化夹层强度降低。
     (2)利用FLAC3D数值分析软件建立三维结构面试样模型,研究不同表面形态、不同边界条件下的结构面强度和变形特征,建立了结构面起伏角与抗剪强度参数之间的关系。结果表明:结构面起伏角较小时,剪切强度与正应力之间符合线性关系,起伏角对内摩擦角的影响程度大于对粘结力的影响程度;随着起伏角的增大,两者之间逐渐呈现非线性抛物线关系特征,结构面的破坏模式从滑移破坏转变为沿结构面滑移和锯齿剪碎的复合破坏。
     (3)结构面与桩单元之间的耦合作用研究表明:结构面加入桩单元后,剪切强度得到提高,并且等效粘结力的提高幅度较大;无桩和有桩状态对应的剪应力和剪位移关系曲线在峰值前,均表现为显著的弹性特征;而曲线达到峰值后,无桩状态表现为应变软化特征,有桩状态表现为应变强化特征。
     (4)利用数值模拟方法,分析红层岩体在单轴、常规三轴、以及真三轴压缩情况下的强度和变形特征,研究了红层岩体的单轴压缩条件下的变形特征、应力-位移关系以及倾角对强度的影响规律;研究了红层岩体的常规三轴压缩条件下围压对强度的影响、围压对应力变形特征的影响、围压对抗剪强度参数的影响以及不同结构面倾角下的岩体破坏等规律;研究了真三轴压缩条件下,不同最小主应力方向时,压缩强度与中问主应力之间的关系。
     (5)利用曲线拟合技术对岩体强度特征进行了拟合,研究结果表明:岩体的压缩强度可以用特定的模型来描述。随着加载速率的增大,岩体的压缩强度逐渐增大,二者之间的关系基本符合线性关系;在试验模拟过程中,须根据实际情况,来选择相应加载速率。
     (6)采用遍布节理模型(Ubiquitous-Joint特征,建立了基于Ubiquitous-Joint准则的边坡稳定系强度折减分析方法,采用所建立的方法计算安全系数,确立了红层边坡结构面倾角、倾向与边坡稳定性之间的关系;对于顺层边坡,根据岩层倾向与坡面倾向的夹角α的大小将顺层边坡划归为两类:当α≤45°时,为严格顺层边坡;当45°<α<90°时,划归斜向层状边坡。
     以某公路边坡为工程背景,针对不同边坡体渗透性和水位升降速率,研究水位变化条件下边坡体内孔隙水压力的动态响应,得到:水位升降时,在相同的入渗条件下,饱和渗透系数对初始地下水位有明显的影响;增大饱和渗透系数能降低地下水位,使地下水位线变得平缓,边坡体的动、静水压力减小,有利于稳定;增加水位升降速率,地下水位响应滞后变得显著,地下水位线形态整体变陡,边坡体的动水压力增大,不利于边坡稳定性。
     (7)利用FLAC3D数值分析软件,研究抗滑桩在红层岩体边坡中的加固效果,分析了抗滑桩设置位置和桩长对于边坡变形、应力的影响,结果表明:抗滑桩设置的位置对于边坡的水平位移影响较大,当抗滑桩设置于边坡坡面的中下部时(但需保证抗滑桩穿过了最危险滑动面),对于岩土体变形的效果最佳;抗滑桩加固后,边坡的剪应变增量得到限制;随着桩长的增大,边坡水平位移突变情况逐渐减少;最大位移值也逐渐减小。但存在一临界桩长Lcr,当桩长超过Lcr后,继续增大桩长对位移的控制效果明显减低。
     利用FLAC3D建立层状边坡的计算模型,分析注浆加固前后岩土体应力、变形响应,结果表明:当坡体结构面注浆后,边坡中的位移和应力云图变得较为均匀,在边坡中无明显的位移或者应力的突变现象,有利于边坡的稳定性,但是,出于注浆加固区域的有限性,导致了边坡的整体位移仍较大。通过注浆加固后,边坡的拉剪塑性区明显减少,可见注浆能够较好改善岩土体自身性能,提高其承担拉伸和剪切应力的能力。
     (8)通过对某公路红层坡的现场调查,表明:滑坡体已经历多次滑动破坏,即已发生超过峰值强度的剪切破坏,目前复活变形是在克服残余强度过程中产生的滑动变形。通过滑坡及潜在不稳定边坡的稳定性评价,设计采用抗滑桩支护红层边坡。通过现场监测分析表明:抗滑桩加固后,各个测量点都是稳定的,地表没有发生大的位移,边坡处于稳定状态。
     同时,将文中所研究得到的规律与前人已有的室内试验结果相对照,验证了数值分析结果的可靠性与正确性;数值模拟技术可部分取代室内试验,可快速指导边坡稳定性评价及防治实际;将抗滑桩加固边坡的研究成果用于常吉高速公路红层滑坡治理的实际中,对原方案进行了大规模的优化设计,减少了工作量、缩短了工期,节约了建设成本,取得了良好的经济和社会效益。
In recent years, the rapid development have made in the high standard road in central and west province of China, whose roads more or less pass the red bedded rock mass area. Due to the special geological mechanical characteristic, with low strength, weak wind weather resistance capacity, easy soften and collapsed water. The slope with red bedded rock mass has bad self-stable capacity, which makes the high cutting slope in red bedded area easy to slip, collapse, weathering et al during and after construction, whose slope stability has already become a hot subject in engineering field. So it is important to study the characteristic of red bedded rock mass, stability characteristic of red bedded slope and its reinforcement technique.
     The project named "The geological monitoring and its predicting system for the road foundation slope in mountain area" from National "863 Plan" is taken as the engineering background, the studies are done by five methods:insitu-investigation, laboratory test, analytical analysis, numerical simulation and insitu-monitoring. The main contents and result are as following,
     (1) According to the laboratory test, the strength characteristic of mudded intercalation with different water content is studied, showing that the water content has great effect to the shear strength of mudded intercalation of red bedded rock mass. If the water content is larger than the critical water content, the internal friction angle decreases with the increase of water content. The interaction of water and rock mass leads to the strength decrease of mudded intercalation.
     (2) The three dimensional model for rock sample with structure plane is founded by the numerical analysis software FLAC3D. The surface of structure plane, boundary condition and reinforcement with pile are changed during calculation, to study the variation of strength and deformation characteristic of structure plane. The effect of the undulating angle to the internal friction angle and cohesion of structure plane are analyzed, showing that, when the undulating angle of joint plane is small, the effect of the undulating angle to cohesion is in larger magnitude than that of undulating angle to friction angle; with the increase of undulating angle, the failure mode of joint changes from slipping along joint plane to the compound failure model consists of slipping along joint plane and crushing through saw tooth.
     (3) The compound effect of structure plane and pile element shows that, after being reinforced by pile, the shear strength and cohesion of structure plane are highly increased. The relationship curve of shear stress and shear displacement for structure plane with and without bolt reinforcement shows the obvious characteristic of elastic before it reaches its peak value; but after it reaches its peak value, the curve for the structure plane without bolt reinforcement shows the characteristic of strain softening, while the curve for the structure plane with bolt reinforcement shows the characteristic of strain hardening.
     (4) Numerical simulations for bedded rock mass under compressive load are done to study the strength and deformation of bedded rock mass with load of axial compression, normal triaxial compression, and real triaxial compression. The deformation characteristic, stress-strain relationship, and effect of inclination of structure plane to the strength of the bedded rock mass under axial compression are obtained. The normal triaxial compression simulations are done to study the effect of surrounding stress to the strength, surrounding stress to the stress-deformation characteristic, surrounding stress to the shear strength parameters, as well as the inclination of structure plane to the failure modes of rock mass. The real triaxial compression simulations are done to study the relationship between compressive strengths and media principle stress for different minor principle stress.
     (5) The fitting description model is founded for the corresponding strength characteristic, showing that, the compressive strength of the rock mass can be described by the special model. The compressive strength of rock mass increases with increase of loading velocity, whose behavior is in the linear form. In the simulation tests, it is recommended to choose corresponding velocity according to the real situation.
     (6) The anisotropic characteristics of stratified rock mass are described by ubiquitous-joint model; the calculation method of safety factor based on ubiquitous-joint model is proposed; then the relationships between stratification dip angle a, inclination and slope stability are analyzed by FLAC3D. According to the value of a, the stratified rock slope can be divided into two types:a≤45°for strict bedding rock slope; 45°<α<90°for oblique stratified slope.
     One slope in reservoir area is chosen as the background engineering. The dynamic response of pore water pressure in the slope by the fluctuation of water level is studied when considering the infiltration characteristic and fluctuation velocity of water level, the analysis results show that, when the water level fluctuates, the saturated permeability coefficient has great impact on the initial water level under the same infiltration condition; with the increasing of the saturated permeability coefficient, the water level becomes lower with more smooth shape, which has smaller impact on the dynamic and static pore water pressure, and good to the stability of slope; with the increasing of fluctuation velocity of water level, the response of water level lag behind, while the shape of water level becomes steeper, which cause greater dynamic pore water pressure to the slope, and worse to the stability of slope.
     (7) The reinforcement effect of the pile in red bedded slope is studied by the numerical analysis software FLAC3D. The effects of the pile location, pile length to the deformation and stress of slope are analyzed. The analysis results show that, the location of pile has great influence to the horizontal displacement of slope. If the pile is driven at the mid-bottom place of slope surface, the effect of controlling deformation of rock mass is the best. With increase of the length of pile, the maximum displacement of slope is decreased gradually. There exists a limit pile length Lcr, if pile length is larger than Lcr, the effect of pile length to deformation control will reduce.
     Numerical calculation model is founded for stratified rock slope by FLAC3D, the stress and deformation response of the rock mass before and after grouting reinforcement have been analyzed. The analysis results show that, after grouting, the displacement and stress contour are more smooth, and there does not exist the stress and displacement mutation, which is good for the slope stability. But due to the limitation area of grouting, the whole displacement of the slope is still very large. After grouting, the tensile and shear plastic zones of the slope are reduced greatly, showing that, grouting can improve the mechanical characteristic of the rock mass, and it capacity to resist the tensile and shear stress.
     (8) According to the insitu-investigation to the red bedded slope, the failure of the slope has occured many times, showing that the shear strength of the rock mass has surpass its peak strength. The present deformation is the slip deformation due to the shear stress larger than the residual shear strength. The slope stability analysis is done to the unstable slope, the reinforcement of pile to the bedded slope is proposed. The insitu monitoring analysis shows that, each monitoring point is stable after pile reinforcement, there does not happen large displacement on the ground surface, the slope is in stable state.
     Meanwhile, the disciplines from the present paper are compared with the results of others'test, which validates the correctness of the results from the present paper. The numerical simulation techniques can partly replace laboratory tests, and give guidance for the slope estimation and reinforcement. The results from the slope with pile reinforcement are applied in the Changji highway slope reinforcement, the optimum designs are done to revise the initial design scheme, which reduce the construction cost, construction time, lead to great economical and social effect.
引文
[1]车用太等.岩体工程地质力学入门[M].北京:科学出版社,1983
    [2]王继光.岩体工程地质分析[M].重庆:西南交通大学出版社,1988
    [3]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994
    [4]孙广忠.岩体结构力学[M].北京:科学出版社,1988
    [5]谷德振.岩体工程地质力学基础[M]. 北京:科学技术出版社,1979
    [6]周维垣,孙钧.高等岩石力学[M].北京:水利电力出版社,1990
    [7]黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991
    [8]尹刚.对路堑顺向滑坡分段治理方案的探讨[J].贵州地质,2003,20 (2):111~114
    [9]孙玉科等.边坡岩体稳定性分析[M].北京:科学出版社,1988
    [10]王少东.四川暴雨滑坡的成因及其预报和防治[J].水土保持通报,1982,(2):12~17
    [11]夏元友,李梅.边坡稳定性评价方法研究及发展趋势[J].岩石力学与工程学报,2002,21(7):1087~1091
    [12]胡厚田,赵晓彦.中国红层边坡岩体结构类型的研究[J].岩土工程学报,2006,28(6):689~694
    [13]邱恩喜,谢强,石岳,等.修正 SMR法在红层软岩边坡中的应用[J].岩土力学,2009,30(7):2109~2113
    [14]冯启言,韩宝平,隋旺华.鲁西南地区红层软岩水岩作用特征与工程应用[J].工程地质学报,1999,7(3):266~271
    [15]钟凯,刘爱萍,谢强.红层边坡风化剥落过程的调查与试验研究[J].路基工程,2000,(4):53~56
    [16]郑贵州.沅麻盆地白垩系地层层序及盆地演化[J].湖南地质,1998,17(2):91~95
    [17]刘汝明,孙英勋,鲁志强,等.滇西红层的工程地质特征及工程对策[J].云南交通科技,2001,17(6):1~10
    [18]谢强.铁路岩石边坡研究[D]:[博士学位论文].成都:西南交通大学,1991
    [19]杨宗才,张俊云,周德培.红层泥岩边坡快速风化特性研究[J].岩石力学 与工程学报,2006,25(2):275~283
    [20]程强,周永江,黄绍槟.近水平红层开挖边坡变形破坏特征[J].岩土力学,2004,25(8):1311~1314
    [21]GOODMAN R E. The mechanical property of joints[C]//In Proc.3rd Cong ISRM, Denver, Part A,1974:127~140
    [22]BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,20:249~268
    [23]蔡美峰,何满潮,刘东燕,等.岩石力学与工程[M].北京:科学出版社,2002,82~111
    [24]BARTON N, BAKHTAR K. Description, Modelling of Rock Joint for the Hydro-thermo-mechanical Design of Nuclear Waste Vaults[R].[s.1.]:AECLTR-418,1987.
    [25]COOK. Natural joints in rock:mechanical, hydraulic and seismic behavior and properties under normal stress [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(3):198~223
    [26]JING L, STEPHANSSON O, NORLUND E. Study of rock joints under cyclic loading conditions[J]. International Journal of Rock Mechanics and Mining Sciences,1993,26(3):215~232
    [27]KANA D D, FOX D J, HSIUNG S M. Interlock/friction model for dynamic shear response in natural jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences,1996,33:371~386
    [28]LEE H S, PARK Y G, CHO T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J] International Journal of Rock Mechanics and Mining Sciences,2001,38: 967■980
    [29]HOMAND F, BELEM T, SOULEY M. Ffiction and degradation of rock joints surfaces under shear loads[J]. International Journal for Numerical and Analytical Method in Goomechanics,2001,25:973~999
    [30]FOX D J, KANA D D, HSIUNG SM. Influence roughness on dynamic shear behavior in jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):923 ~ 940
    [31]JAFARI M K, AMINI HOSSEINI K. PELLET F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading[J]. Soil Dynamic and Earthquake Engineering,2003,23:619~630
    [32]HUTSON R W, DOWDING C H. Joint asperity degradation during cyclic shear[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1990,27(2):109~119
    [33]BELEM T, HOMAND ETIENNE F, SOULEY M. Fractal analysis of shear joint roughness[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):130
    [34]HUANG X A. Laboratory study of the mechanical behavior of rock joints~ with particular interest to dilatancy and asperity surface damage mechanism[Ph. D]. University of Wisconsin-Madison, USA,1990.
    [35]PLESHA M E. Constitutive models for rock discontinuities with dilatancy and surface degradation[J]. International Journal for Numerical and Analytical Method in Goomechanics,1987,11:345~62
    [36]贺少辉,李中林.层状岩体弹塑性本构关系及其工程应用[J]南方冶金学院学报,1994,15(3):141~148
    [37]李海波,刘博,冯海鹏.模拟岩石节理试样剪切变形特征和破坏机制研究[J].岩土力学,2008,29(7):1741~1747
    [38]李海波,冯海鹏,刘博.不同剪切速率下岩石节理的强度特性研究[J].岩石力学与工程学报,2006,25(12):2435~2441
    [39]沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223~226
    [40]Goodman R E. Introduction to rock mechanics [M]. J Willey & Sons,1989.
    [41]T H Huang, C S Chang, C Y Chao. Experimental and mathematical modeling for fracture of rock joint with regular asperities [J]. Engineering Fracture Mechanics,2002,69:1977~1996
    [42]J G Wang, Y Ichikawa, C F Leung. A constitutive model for rock interfaces and jonts [J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40:41~53
    [43]G Grasselli, P Egger. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40:25~40
    [44]M Souley, F Homand, B Amadei. An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(2):101~109
    [45]M M Zaman, C S Desai, E C Drumm. Interface model for dynamic soil~ structure interaction [J]. Journal of Geotechnical Engineering,1984,110(9): 1257-1273
    [46]Jaeger JC. Shear failure of anisotropic rocks[J]. Geology Magazine,1960,97: 65~72
    [47]Duveau G, Shao JF. A modified single discontinuity theory for the failure of highly stratified rocks[J]. International Journals of Rock Mechanics & Mining Science,1998,35(6):807~13
    [48]Hoek E, Brown ET. Underground excavation in rock. London:Institution of Mining and Metallurgy,1980.62~157
    [49]Hill R. The mathematical theory of plasticity[M]. Oxford:Oxford University Press,1950.
    [50]Pariseau WG. Plasticity theory for anisotropic rocks and soils[A]. Proceedings of the 10th Symposium on Rock Mechanics (AIME)[C].1972,95~267
    [51]Cazacu O, Cristescu ND, Shao JF, Henry JP. A new failure criterion for transversely isotropic rocks[J]. International Journals of Rock Mechanics & Mining Science,1998,35(4-5):130
    [52]Nova R. The failure of transversely isotropic rocks in triaxial compression. International [J]. Journals of Rock Mechanics & Mining Science Geomechanics Abstract,1980,17:325~32
    [53]Tien YM, Kuo MC. A failure criterion for transversely isotropic rocks[J]. International Journals of Rock Mechanics & Mining Science,2001,38:399~ 412
    [54]Tien YM, Tsao PF. Preparation and mechanical properties of artificial transversely isotropic rock. International [J]. Journals of Rock Mechanics & Mining Science,2000,37(6):1001~1012
    [55]李同林.煤岩层水力压裂造缝机理分析[J].天然气工业,1997,17(4):53-56
    [56]何沛田,黄志鹏.层状岩石的强度和变形特性研究[J].岩土力学,2003,24(s1):1~5
    [57]梁正召,唐春安,李厚祥.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57~65
    [58]Adhikary, D.P.& Miihlhaus, H. B.. A numerical study of flexural buckling of foliated rock slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(9):871~884
    [59]Adhikary, D.P., Guo, H. An orthotropic Cosserat elasto~Plastic model for layered rocks[J]. Rock Mechanics and Rock Engineering,2002,35(3):161~ 170
    [60]Tao G, King M S. Shear-wave velocity and Q anisotropy in rocks:a laboratory study[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1990,27(5):353~361
    [61]Homand F, Morel E, Henry J P, et al. Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1993,30(5):527~535
    [62]Lerau J, Saint-Leu C, Sirieys P. Anisotropy of dilatancy of slates[J]. Rock Mechanics,1981,13(3):185-196(in French)
    [63]Attewell P B, Sandford M R. Intrinsic shear strength of a brittle, anisotropic rock—Ⅰ:Experimental and mechanical interpretation [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1974, 11(11):423~430
    [64]Attewell P B, Sandford M R. Intrinsic shear strength of a brittle, anisotropic rock—Ⅱ:Textural data acquisition and processing [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1974, 11(11):431~438
    [65]Attewell P B. Triaxial anisotropy of wave velocity and elastic moduli in slate and their axial concordance with fabric and tectonic symmetry [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1970,7(2):193~194
    [66]BIENIAWSKI Z T. Engineering classification of joint rock masses[J]. The Civil Engineer in South Africa,1973,15(12):335-343
    [67]张子新,孙均.分形块体理论及其在三峡高边坡稳定分析中的应用[J].自然灾害学报,1995,4(4):89~95
    [68]吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用[J].水利学报,1996,(4):79~82
    [69]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报,1993,1(1):65~73
    [70]殷坤龙,晏同珍.滑坡预测及其相关模型[J].岩石力学与工程学报,1996,15(1):1~8
    [71]李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色突变建模[J].岩石力学与工程学报,1997,16(3):252~257
    [72]孙东亚,陈祖煜,杜伯辉,等.边坡稳定评价方法RMR-SMR体系及其修正[J].岩石力学与工程学报,1997,16(4):297~304
    [73]王亮清,唐辉明,刘佑荣,等.VJC-RMR法在岩体变形模量确定中的应用[J].岩土力学,2004,25(5):811~813
    [74]孙玉科,杨志法,姚宝魁,等.中国露天矿边坡稳定性研究[M].北京:中国科学技术出版社,1999
    [75]沈明荣.岩体力学[M].上海:同济大学出版社,1999,3
    [76]中国科学院武汉岩土力学所.岩质边坡稳定性的实验研究与计算方法[M].北京:科学出版社,1981
    [77]李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490~495
    [78]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638~641
    [79]夏元友,朱瑞赓.边坡稳定性分析专家系统研制[J].灾害学,1997,12(4):10~14
    [80]林丽,杨明成,郑颖人.基于力平衡的安全系数统一求解格式[J].岩土力学,2005,26(增):279~282
    [81]杨明成.基于力平衡求解安全系数的一般条分法[J].岩石力学与工程学报,2005,24(7):1216~1221
    [82]张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报,2005,24(3):496~501
    [83]杨明成.一般条分法的安全系数显示解[J].岩土力学,2004,25(增):258~273
    [84]陈昌富,杨宁.边坡稳定性分析水平条分法及其进化计算[J].湖南大学学报,2004,31(3):72~75
    [85]邹广电,蒋婉莹.边坡稳定性分析的一个改建条分法[J].岩石力学与工程学报,2003,22(12):1953~1959
    [86]邹广电.边坡稳定分析条分法的一个全局优化算法[J].岩土工程学报,2002,24(3):309~312
    [87]陈友根,朱大勇.土压力计算中条间力函数的选取[J].金属矿山,2001, (11):12~13
    [88]宋飞,闫彭旺,孙万禾,等.土坡稳定及地基承载力的精确解的工程力学推导方法[J].中国港湾建设,2004,(4):28~31
    [89]郑颖人,时卫民.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,2004,23(17):3030~3026
    [90]朱大勇,李焯芬.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2):183-194
    [91]徐青,陈士军,陈胜宏.滑坡稳定分析剩余推力法的改进研究[J].岩土力学,2005,26(3):465~470
    [92]边树兴,李克民,朱玉生.Sarma法中稳定性检验的分析及改进[J].矿冶,2004,13(2):14~16
    [93]简文彬,姚环,焦述强,等.漳州—龙岩高速公路石崆山高边坡稳定性评价[J].岩石力学与工程学报,2002,21(1):43~47
    [94]张奇华,邬爱清,石根华.关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J].岩石力学与工程学报,2004,23(15):2609~2614
    [95]谢全敏,朱瑞赓,程康.可疑关键块体成为真正关键块体的概率分析[J].武汉工业大学学报,1998,20(3):98~100
    [96]肖诗荣.三峡工程地下厂房围岩关键块体研究[J].水文地质工程地质,2005,(3):15~18
    [97]张思俊,张广健.隧洞三维最大关键块体边界的求解[J].河海大学学报,1994,22(4):111~113
    [98]李育超,凌道盛,陈云敏,等.蒙特卡洛法与有限元相结合分析边坡稳定性[J].岩石力学与工程学报,2005,24(11):1933~1941
    [99]王均星,王汉辉,吴雅峰.土坡稳定的有限元塑性极限分析上限法研究[J].岩石力学与工程学报,2004,23(11):1867~1873
    [100]王汉辉,王均星,王开治.边坡稳定的有限元塑性极限分析[J].岩土力学,2003,24(5):733~738
    [101]李爱兵.边坡中地下水渗流的边界元分析[J].矿业研究与开发,1994,14(1):29~35
    [102]孙秀山,黄立新,刘应华,等.二维正交各向异性结构弹塑性问题的边界元分析[J].复合材料学报,2005,22(3):156~161
    [103]周焕林,牛忠荣,王秀喜,等.正交各向异性位势问题边界元法中几乎奇异积分的解析算法[J].应用力学学报,2005,22(2):193~197
    [104]郑书彦,李占斌,李甲平,等.滑坡侵蚀离散元分析研究[J].岩石力学与 工程学报,2005,24(12):2124~2128
    [105]王涛,盛谦,陈晓玲.基于直接法节理网络模拟的三维离散单元法计算[J].岩石力学与工程学报,2005,24(10):1649~1653
    [106]鲍鹏,姜忻良,崔奕.可变形体离散元模型[J].天津大学学报,2005,38(6):552~555
    [107]Belytschko T, Lu Y Y, Gu L. Element~free Galerkin method[J]. Int J Num Meth Eng,1994,37:229~56
    [108]Belytschko T,Krongauz Y,Organ D. Meshless methods:An overview and recent developments [J]. Comput Meth Appl Mech Eng,1996,139:3~7
    [109]Sukumar N, Moran, Belytschko T. The nature element method in solid mechanics[J]. Int J Num Meth Eng,1998,43:9~887
    [110]Cueto E, Doblare M, Gracia L. Imposing essential boundary conditions in the natural element method by means of density-scaled-Shapes [J]. Int J Num Meth Eng,2000,49:9~546
    [111]Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids[J]. Nature,1995,376:5~660
    [112]T.G.Sitharam,G.Madhavi Latha.Simulation of excavations in jointed rock masses using a practical equivalent continuum approach [J]. International Journal of Rock Mechanics and Mining Sciences,2002,9:17~25
    [113]李仲奎,戴荣,姜逸明.FLAC-(3D)分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].石力学与工程学报,2002,21(2):2387~2392
    [114]朱继良,黄润秋.水电站坝前堆积体稳定性的三维数值模拟分析[J].土力学,2005,26(8):1318~1322
    [115]华渊,朱赞成,周太全,等.基于有限差分法的隧道新型支护结构稳定性分析[J].岩石力学与工程学报,2005,24(15):2718~2722
    [116]F.Kirzhner, G.Rosenhouse. Numerical Analysis of Tunnel Dynamic Response to Earth Motions[J]. SEISMIC ANALYSIS,2000,15(3):249~258
    [117]H.Hakami. Rock characterisation facility (RCF) shaft sinking-numerical computations using FL AC [J].International Journal of Rock Mechanics and Mining Sciences,2001,38:59~65
    [118]李维光,张继春.基于弹性理论的顺层边坡失稳破坏力学模型分析[J].工程地质学报,2005,13(2):218~221
    [119]Fellenius W. Erdstatisch Berechnungen [M]. Berlin W. Ernst und Sohn revised edition,1939.
    [120]Janbu, N. Earth pressures and bearing capacity calculations by generalized procedure of slices[J]. Proceedings of the fourth international conference on soil mechanics and foundation engineering,1957,2.
    [121]Janbu, N. Slope stability computions[M]. Soil Mech. and Found. Engrg. Rep., The technical university of Norway, Trondheim, Norway,1968.
    [122]Janbu, N. Slope stability computation, Embankment Dam Engineering, John Wiely and Sons, New York,1973.
    [123]Bishop A.W. The use of the slip circle in the stability analysis of slopes. Geotechnique,1955.
    [124]Bishop A.W. The stability of earth dames. PhD Thesis, University of London, 1952
    [125]Bishop A.W., Green G.E., Garga V.K.. A new ring shear appratus and its application to the measurement of residual shear strength [J]. Geotechnique, 1971, (21):273~328
    [126]Lowe.J. Karaflath. L. Stability of earth dams upon drawdown. Proc.1st Panamer. Conf. Soil Mech. Mexico City,1960,537~552
    [127]Morgenstern, N.R. Price,V. The analysis of the stability of general slip surface [J]. Geotechnique,1965, (15):79~93
    [128]Spencer, E. A method of analysis of embankments assuming parallel inter-stice forces [J]. Geotechnique, (17):11~26.
    [129]U.S.Army, Corps of Engineers. Stability of slopes and foundations, Engineering Manual, Visckburg, Miss.1967.
    [130]Sarma S.K. Stability analysis of embankments and slopes [J]. Geotech. Engrg. Div.,ASCE,1979,105(12):1511~1524
    [131]Hoek E., Bray J. W, Boyd J.M. The stability of a rock slope containing a wedge resting on two intersecting discontinuities Quarterly [J]. Engineering Geology, 973,6(1):17~28
    [132]Revilla J, Castillo E. The calculus of variation applied to stability of slope[J]. Geotech,1977,27(1):1~11
    [133]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980
    [134]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J1.清华大学学报(自然科学版),1993,38(1):1~4
    [135]Leshchinsky D. Slope stability analysis Generalized approach[J]. Geotech. Eng.,1990,116(5):851~867
    [136]Li K.S. and White W. Rapid evaluation of the critical surface in slope stability problems[J]. International for Numerical and Analytical Methods in Geomechanics,1987,11(5):449~473
    [137]Clough A.K. Variable factor of safety in slopes stability analysis by limit equilibrium method[J]. lst Eng.,1988,69(3):149~155
    [138]Milutin M Srbalov. Limit equilibrium method with local factors of safety for slope stability[J]. Can. Geotech.,1987,24(4):652~656
    [139]Chen Z.-Y. and Shao C.-M. Evaluation of minimum factor of safety in slope stability analysis[J]. Can. Geotech.,1988,25(4):735~748
    [140]Greco V.R. Efficient Monte Carlo technique for locating critical slip surface[J]. Geotech. Eng,1996,122(7):517~525
    [141]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique,1975,25(4): 671-689
    [142]Matsui T and San K C. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique[J]. Soils and foundations, JSSMFE,1992,32(1): 59-70
    [143]李育超.基于实际应力状态的土质边坡稳定性分析研究[D]:博士学位论文.杭州:浙江大学,2006
    [144]Duncan J M. State of the art:limit equilibrium and finite element analysis of slopes [J]. J Geotech Engrg Div, ASCE,1996,122(7):577~596
    [145]Griffiths D V and Lane P A. Slope Stability Analysis by Finite Elements[J]. Geotechnique,1999,49(3):387~403
    [146]Jie Han, Dov Leshchinsky. Limit equilibrium and continuum mechanics~ based numerical methods for analyzing stability of MSE walls [C].17th ASCE Engineering Mechanics Conference,2004,1~8
    [147]Dawson E M, Roth W H and Drescher A. Slope Stability Analysis by Strength Reduction[J]. Geotechnique,1999,49(6):835~840
    [148]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1~7
    [149]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性[J].岩土工程学报,2001,23(4):407~411
    [150]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报, 2002,24(5):626-628
    [151]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343~346
    [152]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报,2005,38(1):91~99
    [153]郑颖人,赵尚毅,孔位学,等.岩土工程极限分析有限元法[J].岩土力学,2005,26(1):163~168
    [154]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,10(4):57~61
    [155]赵尚毅,郑颖人,唐树名.深挖路堑边坡施工顺序对边坡稳定性影响有限元数值模拟分析[J].地下空间,2003,23(4):370~375
    [156]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332~336
    [157]时卫民,郑颖人.摩尔-库仑屈服准则的等效变换及其在边坡分析中的应用[J].岩土工程技术,2003,(3):155~159
    [158]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,(6):735~739
    [159]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487~490
    [160]赵尚毅,郑颖人.基于Drucker-Prager准则的边坡安全系数转换[J].岩石力学与工程学报,2006,(增1):270~273
    [161]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21~27
    [162]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381~3388
    [163]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,21(3):1~6
    [164]唐晓松,郑颖人,邬爱清,等.应用PLAXIS有限元程序进行渗流作用下的边坡稳定性分析[J].长江科学院院报,2006,5485(4):8~11
    [165]宋雅坤,郑颖人,赵尚毅.有限元强度折减法在三维边坡中的应用与研究[J].地下空间与工程学报,2006,(5):822~827
    [166]刘明维,郑颖人.基于有限元强度折减法确定多滑面方法研究[J].岩石力学与工程学报,2006,25(8):1544~1549
    [167]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性 分析[J].岩石力学与工程学报,2003,22(2):254~260
    [168]郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J].岩石力学与工程学报,2003,22(12):1943~1952
    [169]郑颖人,赵尚毅.用有限元强度折减法求滑(边)坡支挡结构的内力[J].岩石力学与工程学报,2004,23 (20):3552~3558
    [170]张培文,陈祖煜.弹性模量和泊松比对边坡稳定安全系数的影响[J].岩土力学,2006,27(2):299~303
    [171]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345~1348
    [172]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1~8
    [173]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42~46
    [174]吕擎峰.土坡稳定性分析方法研究[D]:博士学位论文.南京:河海大学,2005
    [175]林杭,曹平,李江腾,等.基于广义Hoek-Brown准则的边坡安全系数间接解法[J].煤炭学报,2008,33(10):1147~1151
    [176]林杭,曹平,宫凤强.位移突变判据中监测点的位置和位移方式分析[J].岩土工程学报,2007,29(9):1433~1438
    [177]吴顺川,金爱兵,高永涛.基于遍布节理模型的边坡稳定性强度折减法分析[J].岩土力学,2006,27(4):537~542
    [178]Husein M.A.L, Hassan W. F and Abdulla F.A. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety,2000,22:161~178
    [179]郑明新,王恭先,王兰生.分形理论在滑坡预报中的应用研究[J].地质灾害与环境保护,1998,9(2):18~26
    [180]Hencher. Engineering geological aspects of landslides [C]. Proceedings of the Conference on Engineering Geology HK 2000, Institution of Mining and Metallurgy, Hong Kong Branch,2000,93 ~ 115
    [181]程强,寇小兵,黄绍槟,等.中国红层的分布及地质环境特征[J].工程地质学报,2004,(1):34~40
    [182]程强,黄绍槟,张辉等.红层软岩地区公路工程环境特性及公路病害调查研究[R].成都:四川省交通厅公路规划勘察设计研究院,2003
    [183]成昆铁路技术总结委员会.成昆铁路—第二册(线路、工程地质及路基)[M].北京:人民铁道出版社,1980
    [184]陈从新,黄平路,卢增木.岩层倾角影响顺层岩石边坡稳定性的模型试验研究[J].岩土力学,2007,28(3):476~481
    [185]冯文凯,石豫川,柴贺军,等.缓倾角层状高边坡变形破坏机制物理模拟研究[J].中国公路学报,2004,17(2):32~36
    [186]卢增木,陈从新,左保成,等.对影响逆倾层状边坡稳定性因素的模型试验研究[J].岩土力学,2006,27(4):629~647
    [187]朱晗迓,马美玲,尚岳全.顺倾向层状岩质边坡溃曲破坏分析[J].浙江大学学报,2004,38(9):1144~1149
    [188]邓荣贵,周德培,李安洪,等.顺层岩质边坡不稳定岩层临界长度分析[J].岩土工程学报,2002,24(2):178~182
    [189]蔡永昌,朱合华,李晓军.一种用于锚杆支护数值模拟的单元处理方法[J].岩石力学与工程学报,2003,22(7):1137-1140
    [190]冯光明,冯俊伟,谢文兵,等.锚杆初锚力锚固效应的数值模拟分析[J].煤炭工程,2005,(7):46-47
    [191]漆泰岳,陆士良,高波.FLAC锚杆单元模型的修正及其应用[J].岩石力学与工程学报,2004,23(13):2197~2200
    [192]曹文贵,速宝玉.岩体锚固支护的数值流形方法模拟及其应用[J].岩石力学与工程学报,2001,23(5):581~583
    [193]薛亚东,张世平,康天合.回采巷道锚杆动载响应的数值分析[J].岩石力学与工程学报,2003,22(11):1903~1906
    [194]张宏,马光.胶结锚杆的二维有限元分析[J].矿冶工程,1990,10(1):6~10
    [195]刘波,李先炜,陶龙光.锚拉支架中锚杆横向效应分析[J].岩土工程学报,1998,20(4):36~39
    [196]韦立德,杨春和,高长胜.基于三维强度折减有限元的抗滑桩优化探讨[J].岩土工程学报,2005,27(11):1350~1352.
    [197]邱恩喜,谢强,赵文,等.红层软岩边坡岩体工程特性研究[J].地质与勘探,2007,43(5):96~100
    [198]姚环.红砂岩强度的试验研究[J].福州大学学报(自然科学版),1994,22(5):112~117
    [199]林鲁生,蒋刚,白世伟,等.土体抗剪强度参数取值的统计分析方法[J].岩土力学,2003,24(2):277~280
    [200]江学良,詹国辉.岩质边坡稳定性分析中岩石强度测试与试验数据的工程处理[J].湖南城市学院学报(自然科学版),2005,14 (3):5~9
    [201]肖泽林.泥质红砂岩原岩强度指标的统计数字特征[J].湖南交通科技,2004,30(2):17~18
    [202]陶志坚,孙英学.裂隙岩体力学参数的弱化处理[J].江苏地质,2000,24(1):36~38
    [203]地质矿产部.岩石物理力学性质试验规程[S].北京:地质出版社,1988
    [204]夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002
    [205]松尾埝.地基工程学可靠性设计理论和实际[M].北京:人民交通出版社,1990
    [206]蒋爵光,李镌蓬.红砂岩工程性质的研究.西南交通大学学报,1984,19(4):25~27
    [207]Chowdhuny R N. Slope Analysis. New York:Elsesvier Scientific Publishing Company,1978
    [208]徐建平,胡厚田,张安松等.边坡岩体物理力学参数的统计特征研究[J].岩石力学与工程学报,1999,18(4):382~386.
    [209]石明生,张永雨.电测深法和钻探相结合在山区地质勘察中的应用[J].地质与勘探,2005,41(5):92~95
    [210]李澎,王山山.变电站场地岩土电阻率测试及层位划分解释的快速方法[J].成都理工大学学报(自然科学版),2004,31(4):309~401
    [211]Itasca Consulting Group. Theory and Background [Z].Minnesota:Itasce Consulting Group,2002
    [212]Itasca Consulting Group. User's Mannal [Z]. Minnesota:Itasce Consulting Group,2002
    [213]Itasca Consulting Group. Command Reference [Z]. Minne-sota:Itasce Consulting group,2002
    [214]苏志敏,江春雷,M. Ghafoori.页岩强度准则的一种模式[J].岩土工程学报,1999,21(3):311~314
    [215]冒海军,杨春和.结构面对板岩力学特性影响研究[J].岩石力学与工程学报,2005,24(20):3651~3656
    [216]熊诗湖,邬爱清,周火明.层状软岩力学特性现场试验研究[J].地下空间与工程学报,2006,2(6):887~890
    [217]McLamore R, Gray KE. The mechanical behavior of anisotropic sedimentary rocks [J]. J Eng Ind Trans of the ASME,1967,89(2):62-73
    [218]蒋良潍,黄润秋.层状结构岩体顺层斜坡滑移—弯曲失稳计算探讨[J]山地学报,2006,24(1):88~94
    [219]杨治林.层状边坡岩体结构的后屈曲[J].长安大学学报(自然科学版),2005,25(2):73~76
    [220]李新坡,何思明,徐骏,等.层状岩质边坡临界高度极限分析上限解[J].四川大学学报(工程科学版),2007,39(1):44~47
    [221]SITHARAMA T G, SRIDEVIB J, SHIMIZU N. Practical equivalent continuum characterization of jointed rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38(3):437-448
    [222]SITHARAMA T G, LATHA G M. Simulation of excavations in jointed rock masses using a practical equivalent continuum approach[J]. International Journal of Rock Mechanics & Mining Sciences,2002,39(4):517~525
    [223]MIN KI-BOK, JING L R. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(6):795~816
    [224]SINGH B. Continuum characterization of jointed rock masses. Part Ⅰ—he constitutive equations[J]. International Journal of Rock Mechanics and Mining Sciences,1972,10(4):337-349
    [225]郑颖人,赵尚毅.边(滑)坡工程设计中安全系数的讨论[J].岩石力学与工程学报,2006,25(9):1937~1340
    [226]林杭,曹平,李江腾,等.边坡临界失稳状态的判定标准分析[J].煤炭学报,2008,33(6):643~647
    [227]卢增木,陈从新,左保成等.对影响逆倾层状边坡稳定性因素的模型试验研究[J].岩土力学,2006,27(4):629~647
    [228]刘新喜,夏元友,张显书,等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439-1444.
    [229]Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils [M]. New York:John Wiley & Sons, Inc,1993.
    [230]龚壁卫,周小文,周武华.干-湿循环过程中吸力与强度关系研究[J].岩土工程学报,2006,28(2):207-209.
    [231]包承纲,詹良通.非饱和土性状及其与工程问题的联系[J].岩土工程学报,2006,28(2):129-136.
    [232]Jeong S, Kim B, Won J, Lee J Y.(2003). Uncoupled analysis of stabilizing piles in weathered slopes [J]. Computers and Geotechnics,30(8):671-682
    [233]Won J, You K, Jeong S, Kim S. (2005). Coupled effects in stability analysis of pile-slope systems [J]. Computers and Geotechnics,32(4):304~315
    [234]Chow, Y. K. Analysis of piles used for slope stabilization [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(9): 635-646
    [235]Poulos H G, Chen L T. Pile response due to excavation-induced lateral soil movement [J]. J Geotech Geoenviron Eng, ASCE,1997,123(2):94~99
    [236]朱自强,柳群义,鲁光银,李华.边坡岩体质量分级的模糊层次分析,工程地质学报,2007,15(3):350~355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700