用户名: 密码: 验证码:
五强溪库岸滑坡稳定性特征与信息系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速公路面临的主要是安全问题,目前研究较多的是公路上的滑坡安全,而研究库岸公路滑坡安全问题的几乎没有。在课题“极端雨水条件下软岩边坡稳定性研究”资助下,本文以库区滑坡群稳定性特征与监测信息系统为研究内容,从现场调查、室内试验、理论分析和数值模拟四个方面展开研究工作,主要取得了如下研究成果。
     (1)在通过现场调查的基础上,分析库区滑坡群、崩塌堆积体、变形体的分布规律和形成机制,研究滑坡的发生规律,将库区滑坡分为不同类型。研究了岸坡变形活动类型与特点及现今变形活动的诱发因素,分析了该库区崩滑堆积体现今活动特点。对崩塌滑坡体、基岩变形体进行了稳定性评价,并预测了库岸失稳造成的危害。
     (2)对滑带土的剪切特性及软弱夹层的强度参数进行评价,表明:随着剪切速率的增加,残余摩擦角逐渐增大,滑带土的残余强度具有剪切速率正效应特征。随着含水量的变化夹泥的强度也随之变化,含水量的减小将导致粘结力和内摩擦角上升。随着干密度的增高,夹泥的摩擦系数、内聚力均呈现对应的增大,当粘粒含量一定时,夹泥的强度受自身的密度的影响。
     (3)以库岸边坡为工程背景,针对不同滑坡体内渗透性和水位升降速率,研究水位变化条件下边坡体内孔隙水压力的动态响应,表明:a)水位升降时,在相同的入渗条件下,饱和渗透系数越大,地下水位越低,地下水位线越平缓,对边坡体的动、静水压力作用越小;b)水位上升速率越大,地下水位变化越具有明显的滞后特点,水位下降速率越大,地下水响应滞后越显著,地下水位线形态整体越陡,对边坡体作用的动水压力越大。
     (4)选取典型库岸边坡作为研究对象,分析了边坡整体的主要工况与荷载条件及影响边坡整体稳定性的因素敏感性,探讨了库水位变化情况下,库岸边坡整体稳定性和局部稳定性的变化特征,建立了边坡稳定安全系数(k)与各影响因素:水平地震力系数(q)、后缘裂隙充水深度(H1)、地下水浸泡深度(H2)、底滑面的综合抗剪强度(f和c)之间的关系模型。表明:水库未蓄水时,a)高边坡的整体稳定性对水平地震力系数(q)很敏感,尤其当q<0.3时,二者的相关性更为显著;b)暴雨条件下坡顶后缘裂缝的充水深度(H1)对高边坡整体稳定性影响相对较弱;c)整体稳定性对泥化夹层的内摩擦系数f很敏感,但内聚力c的影响则较弱。水库蓄水时,蓄水条件下的k值明显低于未蓄水条件下的k值,是否蓄水是影响边坡整体稳定的较敏感因素。
     (5)研究了上部边坡稳定性安全系数与响应因素之间的关系,表明:影响上部边坡稳定的最敏感因素应是后缘裂缝充水深度(H),敏感因素有水平地震力系数q和底滑面的摩擦系数f,较不敏感因素是底滑面的内聚力c。探讨了边坡浅表层岩体的变形破坏型式及其稳定状况,将浅表层危岩体的主要变形破坏型式分为4种:座滑变形、倾倒变形、崩塌、崩滑。边坡浅表层的变形破坏型式是分级式的由表及里、逐层失稳破坏的后退型式。
     (6)以该库区滑坡、崩坡堆积体、变形体为研究对象,在信息系统理论和计算机技术支持下,结合库区的实际情况,建立库区滑坡灾害信息管理系统,包括:a)构建了基于GIS的库岸滑坡信息系统,完成该平台的总体设计,包括硬件、软件平台建设和系统结构功能设计;b)针对地质灾害数据量大、来源多的特点,提出了库岸滑坡地质灾害数据标准,保证数据的规范性;c)在地质灾害数据标准的基础上开发了工程项目数据库管理系统;d)开发了灾害数据输入、存储和查询修改子系统。
The safety problem is the most important thing in highway construction. The slipping safety problem is the main subject for study, but seldom studies have been done on the landslide in reservoir area. In the present paper, the stabilty characteristic of slope group in reservoir area and its monitoring information system are taken as the study subject, with the funding of the project "Study on the soft rock slope stability with serious heavy rainfall". The studies are done by four methods: insitu-investigation, laboratory test, analytical analysis, and numerical simulation. The main contents and result are as following,
     (1) The insitu-investigation is taken to analyze the distribution and mechanism of reservoir slope groups, falling accumulation, and deformation body. The discipline for these slope occurring is studied, the slides at the reservoir areas are divided into different types. Type and characteristic of the reservoir slides deformation are studied as well as the induced factors, the falling accumulation active characteristic is analyzed. The stability evaluation is done to the falling slope and foundation deformation to predict the reservoir slides.
     (2) The strength parameters are estimated to the shear characteristic and weak interlayer of the slide soil, showing that, with increase of the shear velocity, the residual friction angle increase gradually, the residual shear strength of the slide soil has the positive effect. With increase of the water content, the strength of the interlayer increases as well, the decrease of the water content will lead to the increase of the friction angle and cohesion. With increase of the dry density, the friction coefficient, cohesion of the interlayer will increase correspondingly. If the grain of the soil remains the same value, the strength of the interlayer will influenced by its own density.
     (3) One landslide in reservoir area is chosen as the background engineering. According to the saturated-unsaturated seepage equation, the dynamic response of pore water pressure in the landslide by the fluctuation of water level is studied when considering the infiltration characteristic and fluctuation velocity of water level, the analysis results show that,(1) when the water level fluctuates, the saturated permeability coefficient has great impact on the initial water level under the same infiltration condition; with the increasing of the saturated permeability coefficient, the water level becomes lower with more smooth shape, which has smaller impact on the dynamic and static pore water pressure, and good to the stability of slope;(2) with the increasing of fluctuation velocity of water level, the response of water level lag behind, while the shape of water level becomes steeper, which cause greater dynamic pore water pressure to the slope, and worse to the stability of slope.
     (4) One reservoir slope is taken as the study background, the slope stability with different engineering condition and loading conditions is studied as well as the influential factor, the whole stability and local stability of the reservoir slope are analyzed to build the relationship among factor of safety of slope with the influential factors like, horizontal seismic force(q), water height at the behind joint(Hi), the height of the underground(H2), and the shear strength parameters (f and c). The results show that, if the water is not storage in the reservoir, a) the whole stability of the high slope is great influence by the horizontal seismic force(q), especially if q<0.3, whole has close relationship; b) under the condition of heavy raining, the water height at the behind joint(H1) has smaller impact on the stability of the high slope; c) the whole stability is great influenced by the internal friction coefficient f, while cohesion c has little impact. If the water is storage, the k value is obvious lower than the condition with storage of water in reservoir, so the storage of water has great impact on the stability of slope.
     (5) The relationship of the factor of safety of upper slope and the corresponding influential factors shows that, the most influential factor to the stability of upper slope is the water height at the behind joint(H1), while the other influential factors contains the horizontal seismic force(q), and friction coefficient f, while the factors has little impact is cohesion c of the slide plane. The deformation failure and stability of the rock mass at shallow place of slope are analyzed, to divide the deformation failure into4types, including, slip deformation, trip deformation, and falling deformation. The deformation failure of the rock mass at shallow place of slope is formed from the surface of slope to the internal, then lead to the failure mode of each layer.
     (6) Slides and falling accumulation and deformation body are taken as the study background, the disaster information management system at the reservoir slides is founded under the support of the information system theory and computer techniques according to the real situation of the reservoir areas. a) the slide information system is founded based on the GIS, the whole design to the platform is finished, including structure design to the hardware and software platform; b) the criterion of the geological disaster of the reservoir slides are proposed to make sure the standardization of operation; c)the database management is developed based on the criterion of the geological disaster; d) the subsystem is developed for the disaster data.
引文
[1]王志旺,杨健,张保军,等.水库库岸滑坡稳定性研究[J].岩土力学,2004,25(11):1837—1840.
    [2]陈祖煜.土质边坡稳定分析——原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [3]陈祖煜,汪小刚,杨健,等.岩质边坡稳定分析——原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [4]He KQ, Yu GM, Li XR. The regional distribution regularity of landslides and their effects on the environments in the Three Gorges Reservoir Region, China [J]. ENVIRONMENTAL GEOLOGY,2009,57(8):1925-1931.
    [5]Jiang JW, Ehret D, Xiang W. Numerical simulation of Qiaotou Landslide deformation caused by drawdown of the Three Gorges Reservoir, China [J]. ENVIRONMENTAL EARTH SCIENCES,2011,62(2):411-419.
    [6]Riemer W. Keynote paper:Landslides and reservoirs. In:Bell (ed.), Landslide, 1995,1973-2004.
    [7]Hendron AJ, Patton FD. The Vajont Slide-a geotechnical analysis based on new geologic observations of the failure surface. Technical Report GL-85-5, Department of the Army US Corps of Engineers, Washington DC, vol.1,104pp, 1985.
    [8]金德镰,王耕夫.柘溪水库塘岩光滑坡.中国典型滑坡.科学出版社,1988,301-307.
    [9]李庆普.黄龙滩水电站的水库滑坡.水力发电,1989,1:35-39.
    [10]钟光熙,吴玉华,刘世凯.水库移民安置中的滑坡问题:以黄龙滩水库为例.人民长江,1992,23(10):31-33.
    [11]罗先启,刘德富,吴剑,等.雨水及库水作用下滑坡模型试验研究[J].岩石力学与工程学报,2005,24(14):2476-2483.
    [12]胡修文,唐辉明,刘佑荣.三峡库区赵树岭滑坡稳定性物理模拟试验研究[J].岩石力学与工程学报,2005,24(12):2089-2095.
    [13]张均锋,孟祥跃,朱而千.水位变化引起分层边坡滑坡的实验研究[J].岩石力学与工程学报,2004,23(16):2676-2680.
    [14]汪斌,唐辉明,朱杰兵,等.考虑流固耦合作用的库岸滑坡变形失稳机制 [J].岩石力学与工程学报,2007,26(增2):44844-489.
    [15]Zhang TT, Yan EC, Cheng JT. Mechanism of reservoir water in the deformation of Hefeng landslide [J]. JOURNAL OF EARTH SCIENCE,2010, 21(6):870-875.
    [16]Polag D, Scholz D, Muhlinghaus C, et al. Stable isotope fractionation in speleothems:Laboratory experiments [J]. CHEMICAL GEOLOGY,279(1): 31-39.
    [17]何启标,赵定成.李家峡坝前岩质滑坡的特征与稳定性研究.中国典型滑坡.1988,科学出版社,256-266.
    [18]韩建设.李家峡水电站坝前滑坡体的变形特征及处理措施.水力发电,1997,6:34-36.
    [19]余仁福.黄河龙羊峡工程近坝库岸滑坡涌浪及滑坡预警研究.水力发电1995,3:14-16.
    [20]吕贵芳.黄口石滑坡.中国典型滑坡.科学出版社,1988,272-277.
    [21]李玉生.鸡扒子滑坡——长江三峡地区老滑坡复活的一个实例.中国典型滑坡.科学出版社,1988,323-328.
    [22]张文杰,詹良通,凌道盛,等.水位升降对库区非饱和土质岸坡稳定性的影响[J].浙江大学学报(工学版),2006,40(8):1365-1370.
    [23]王士天.四川某水库大坝左坝肩边坡变形破坏机制及整治对策探讨[J].地质灾害与环境保护,1999,10(3):1-5.
    [24]Hodge RAL, Freeze RA. Groundwater flow systems and slope stability. Canadian Geotechnical Journal,1977,14:466-476.
    [25]Iversion RM, Major JJ. Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization. Water Resources Research,1986, 22(11):1543-1548.
    [26]Nieto AS, Brarany I,1988. Catastrophic rain-induced landslides in Rio de Janier, Brazil:Mechanisms and contributing factors. Geological Society of America Abstracts with Programs,1988,20(7):PA144.
    [27]Krahn J, Fredlund DG., Klassen MJ. Effects of soil suction on slope stability at North Hill. Canadian Geotechnical Journal,1989,26:269-278.
    [28]Harp EL, Wells II WG, Sarmiento JE, Pore Pressure responses during failure in soils. Bulletin of Geological Society of America,1990,102:428-438.
    [29]廖红建,盛谦,高石夯,等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3458.
    [30]王锦国,周云,黄勇.三峡库区猴子石滑坡地下水动力场分析[J].岩石力学与工程学报,2006,25(增1):2757-2762.
    [31]李邵军,KNAPPETT J A,冯夏庭.库水位升降条件下边坡失稳离心模型试验研究[J].岩石力学与工程学报,2008,27(8):1586-1593.
    [32]张文杰,陈云敏,凌道盛.库岸边坡渗流及稳定性分析[J].水利学报,2005,36(12):1510-1516.
    [33]李晓,张年学,廖秋林,等.库水位涨落与降雨联合作用下滑坡地下水动力场分析[J].岩石力学与工程学报,2004,23(21):3714-3720.
    [34]丁秀丽,付敬,张奇华.三峡水库涨落条件下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913-2919.
    [35]刘新喜,夏元友,张显书,等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1440-1444.
    [36]Caine N. The rainfall intensity-duration control of shallow landslide and debris flows. Geografiska Annaler,1980,62 A:23-27.
    [37]Wilson RC, Wieczorek GF. Rainfall thresholds for the initiation of debris flows at La Honda, California. Environmental & Engineering Science,1995, 1:11-27.
    [38]Keefer DK et al., Real-time landslide warning during heavy rainfall. Science, 1987,238:921-925.
    [39]Dai FC, Lee CF. Frequency-volume relation and prediction of rainfall-induced landslides. Engineering Geology,2001,59:253-366.
    [40]Michiue M,1985. A method for predicting slope failures on cliff and mountain due to heavy rain. Natural Disaster Science,1-12.
    [41]文宝萍.滑坡预测预报研究现状与发展趋势.地学前缘,1996,3(1-2):86-92.
    [42]蔡耀军,郭麒麟,余永志.水库诱发岸坡失稳的机理及其预侧[J],湖北地矿,2002,16(4):4-8.
    [43]徐峻龄,廖小平,李何生.黄茨滑坡的预报及其理论和方法[J],铁道工程学报,192(50):199-204.
    [44]王尚庆.长江三峡滑坡监测预报[M].北京:地质出版社,1998.
    [45]殷坤龙.滑坡灾害预测预报[M].北京:中国地质大学出版社,2004.
    [46]BIENIAWSKI Z T. Engineering classification of joint rock masses[J]. The Civil Engineer in South Africa,1973,15(12):335-343
    [47]张子新,孙均.分形块体理论及其在三峡高边坡稳定分析中的应用[J].自 然灾害学报,1995,4(4):89-95
    [48]吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用[J].水利学报,1996,(4):79-82
    [49]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报,1993,1(1):65-73
    [50]殷坤龙,晏同珍.滑坡预测及其相关模型[J].岩石力学与工程学报,1996,15(1):1-8
    [51]李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色突变建模[J].岩石力学与工程学报,1997,16(3):252-257
    [52]孙东亚,陈祖煜,杜伯辉,等.边坡稳定评价方法RMR-SMR体系及其修正[J].岩石力学与工程学报,1997,16(4):297-304
    [53]王亮清,唐辉明,刘佑荣,等.VJC-RMR法在岩体变形模量确定中的应用[J].岩土力学,2004,25(5):811-813
    [54]孙玉科,杨志法,姚宝魁,等.中国露天矿边坡稳定性研究[M].北京:中国科学技术出版社,1999
    [55]沈明荣.岩体力学[M].上海:同济大学出版社,1999,3
    [56]中国科学院武汉岩土力学所.岩质边坡稳定性的实验研究与计算方法[M].北京:科学出版社,1981
    [57]李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490-495
    [58]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638-641
    [59]夏元友,朱瑞赓.边坡稳定性分析专家系统研制[J].灾害学,1997,12(4):10-14
    [60]林丽,杨明成,郑颖人.基于力平衡的安全系数统一求解格式[J].岩土力学,2005,26(增):279-282
    [61]杨明成.基于力平衡求解安全系数的一般条分法[J].岩石力学与工程学报,2005,24(7):1216-1221
    [62]张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报,2005,24(3):496-501
    [63]杨明成.一般条分法的安全系数显示解[J].岩土力学,2004,25(增):258-273
    [64]陈昌富,杨宁.边坡稳定性分析水平条分法及其进化计算[J].湖南大学学报,2004,31(3):72-75
    [65]邹广电,蒋婉莹.边坡稳定性分析的一个改建条分法[J].岩石力学与工程学报,2003,22(12):1953-1959
    [66]邹广电.边坡稳定分析条分法的一个全局优化算法[J].岩土工程学报,2002,24(3):309-312
    [67]陈友根,朱大勇.土压力计算中条间力函数的选取[J].金属矿山,2001,(11):12-13
    [68]宋飞,闫彭旺,孙万禾,等.土坡稳定及地基承载力的精确解的工程力学推导方法[J].中国港湾建设,2004,(4):28-31
    [69]郑颖人,时卫民.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,2004,23(17):3030-3026
    [70]朱大勇,李焯芬.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2):183-194
    [71]徐青,陈士军,陈胜宏.滑坡稳定分析剩余推力法的改进研究[J].岩土力学,2005,26(3):465-470
    [72]边树兴,李克民,朱玉生.Sarma法中稳定性检验的分析及改进[J].矿冶,2004,13(2):14-16
    [73]简文彬,姚环,焦述强,等.漳州—龙岩高速公路石崆山高边坡稳定性评价[J].岩石力学与工程学报,2002,21(1):43-47
    [74]张奇华,邬爱清,石根华.关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J].岩石力学与工程学报,2004,23(15):2609-2614
    [75]谢全敏,朱瑞赓,程康.可疑关键块体成为真正关键块体的概率分析[J].武汉工业大学学报,1998,20(3):98-100
    [76]肖诗荣.三峡工程地下厂房围岩关键块体研究[J].水文地质工程地质,2005,(3):15-18
    [77]Fellenius W. Erdstatisch Berechnungen [M]. Berlin W. Ernst und Sohn revised edition,1939.
    [78]Janbu, N. Earth pressures and bearing capacity calculations by generalized procedure of slices[J]. Proceedings of the fourth international conference on soil mechanics and foundation engineering,1957,2.
    [79]Janbu, N. Slope stability computions[M]. Soil Mech. and Found. Engrg. Rep., The technical university of Norway, Trondheim, Norway,1968.
    [80]Janbu, N. Slope stability computation, Embankment Dam Engineering, John Wiely and Sons, New York,1973.
    [81]Bishop A.W. The use of the slip circle in the stability analysis of slopes. Geotechnique,1955.
    [82]Bishop A.W. The stability of earth dames. PhD Thesis, University of London, 1952
    [83]Bishop A.W., Green G.E., Garga V.K.. A new ring shear appratus and its application to the measurement of residual shear strength [J]. Geotechnique, 1971, (21):273-328
    [84]Lowe.J. Karaflath. L. Stability of earth dams upon drawdown. Proc.1st Panamer. Conf. Soil Mech. Mexico City,1960,537-552
    [85]Morgenstern, N.R. Price, V. The analysis of the stability of general slip surface [J]. Geotechnique,1965, (15):79-93
    [86]Spencer, E. A method of analysis of embankments assuming parallel inter~ slice forces [J]. Geotechnique, (17):11-26.
    [87]U.S.Army, Corps of Engineers. Stability of slopes and foundations, Engineering Manual, Visckburg, Miss.1967.
    [88]Sarma S.K. Stability analysis of embankments and slopes[J]. Geotech. Engrg. Div.,ASCE,1979,105(12):1511-1524
    [89]Hoek E., Bray J.W, Boyd J.M. The stability of a rock slope containing a wedge resting on two intersecting discontinuities Quarterly[J]. Engineering Geology, 973,6(1):17-28
    [90]Revilla J, Castillo E. The calculus of variation applied to stability of slope[J]. Geotech,1977,27(1):1-11
    [91]张思俊,张广健.隧洞三维最大关键块体边界的求解[J].河海大学学报,1994,22(4):111-113
    [92]李育超,凌道盛,陈云敏,等.蒙特卡洛法与有限元相结合分析边坡稳定性[J].岩石力学与工程学报,2005,24(11):1933-1941
    [93]王均星,王汉辉,吴雅峰.土坡稳定的有限元塑性极限分析上限法研究[J].岩石力学与工程学报,2004,23(11):1867-1873
    [94]王汉辉,王均星,王开治.边坡稳定的有限元塑性极限分析[J].岩土力学,2003,24(5):733-738
    [95]李爱兵.边坡中地下水渗流的边界元分析[J].矿业研究与开发,1994,14(1):29-35
    [96]孙秀山,黄立新,刘应华,等.二维正交各向异性结构弹塑性问题的边界元分析[J].复合材料学报,2005,22(3):156-161
    [97]周焕林,牛忠荣,王秀喜,等.正交各向异性位势问题边界元法中几乎奇 异积分的解析算法[J].应用力学学报,2005,22(2):193-197
    [98]郑书彦,李占斌,李甲平,等.滑坡侵蚀离散元分析研究[J].岩石力学与工程学报,2005,24(12):2124-2128
    [99]王涛,盛谦,陈晓玲.基于直接法节理网络模拟的三维离散单元法计算[J].岩石力学与工程学报,2005,24(10):1649-1653
    [100]鲍鹏,姜忻良,崔奕.可变形体离散元模型[J].天津大学学报,2005,38(6):552-555
    [101]Belytschko T, Lu Y Y, Gu L. Element~free Galerkin method[J]. Int J Num Meth Eng,1994,37:229-56
    [102]Belytschko T,Krongauz Y,Organ D. Meshless methods:An overview and recent developments[J]. Comput Meth Appl Mech Eng,1996,139:3-7
    [103]Sukumar N, Moran, Belytschko T. The nature element method in solid mechanics[J]. Int J Num Meth Eng,1998,43:9-887
    [104]Cueto E, Doblare M, Gracia L. Imposing essential boundary conditions in the natural element method by means of density-scaled -Shapes [J]. Int J Num Meth Eng,2000,49:9-546
    [105]Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids[J]. Nature,1995,376:5-660
    [106]T.G.Sitharam,G.Madhavi Latha.Simulation of excavations in jointed rock masses using a practical equivalent continuum approach[J]. International Journal of Rock Mechanics and Mining Sciences,2002,9:17-25
    [107]李仲奎,戴荣,姜逸明.FLAC-(3D)分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].石力学与工程学报,2002,21(2):2387-2392
    [108]朱继良,黄润秋.水电站坝前堆积体稳定性的三维数值模拟分析[J].土力学,2005,26(8):1318-1322
    [109]华渊,朱赞成,周太全,等.基于有限差分法的隧道新型支护结构稳定性分析[J].岩石力学与工程学报,2005,24(15):2718-2722
    [110]F.Kirzhner, G.Rosenhouse. Numerical Analysis of Tunnel Dynamic Response to Earth Motions[J]. SEISMIC ANALYSIS,2000,15(3):249-258
    [111]H.Hakami. Rock characterisation facility (RCF) shaft sinking-numerical computations using FLAC[J].International Journal of Rock Mechanics and Mining Sciences,2001,38:59-65
    [112]李维光,张继春.基于弹性理论的顺层边坡失稳破坏力学模型分析[J].工 程地质学报,2005,13(2):218-221
    [113]李育超.基于实际应力状态的土质边坡稳定性分析研究[D]:博士学位论文.杭州:浙江大学,2006
    [114]Duncan J M. State of the art:limit equilibrium and finite element analysis of slopes [J]. J Geotech Engrg Div, ASCE,1996,122(7):577-596
    [115]Griffiths D V and Lane P A. Slope Stability Analysis by Finite Elements[J]. Geotechnique,1999,49(3):387-403
    [116]Jie Han, Dov Leshchinsky. Limit equilibrium and continuum mechanics~ based numerical methods for analyzing stability of MSE walls [C].17th ASCE Engineering Mechanics Conference,2004,1-8
    [117]Dawson E M, Roth W H and Drescher A. Slope Stability Analysis by Strength Reduction[J]. Geotechnique,1999,49(6):835-840
    [118]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7
    [119]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性[J].岩土工程学报,2001,23(4):407-411
    [120]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626-628
    [121]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346
    [122]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报,2005,38(1):91-99
    [123]郑颖人,赵尚毅,孔位学,等.岩土工程极限分析有限元法[J].岩土力学,2005,26(1):163-168
    [124]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,10(4):57-61
    [125]赵尚毅,郑颖人,唐树名.深挖路堑边坡施工顺序对边坡稳定性影响有限元数值模拟分析[J].地下空间,2003,23(4):370-375
    [126]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336
    [127]时卫民,郑颖人.摩尔-库仑屈服准则的等效变换及其在边坡分析中的应用[J].岩土工程技术,2003,(3):155-159
    [128]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,(6):735-739
    [129]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487-490
    [130]刘传正.三峡库区的地质灾害[J].岩土工程界,2003,6(6):23-24.
    [131]田陵君,王兰生,刘世凯.长江三峡工程库岸稳定性.中国科学技术出版社,1992,135.
    [132]张年学等.长江三峡工程库区顺层岸坡研究.地震出版社,1993,1-226.
    [133]张业明,刘广润,常宏,等.三峡库区千将坪滑坡构造解析及启示[J].人民长江,2004,35(9):24-26.
    [134]肖诗荣,刘德富,胡志宇.三峡库区千将坪滑坡地质力学模型研究[J].岩土力学,2007:117-120.
    [135]Li YC, Liu CX, Zhang H, et al.Evaluation on the human settlements environment suitability in the Three Gorges Reservoir Area of Chongqing based on RS and GIS [J]. JOURNAL OF GEOGRAPHICAL SCIENCES, 2011,21(2):346-358.
    [136]Liu DF, Xie BT, Li HJ. Design Flood Volume of the Three Gorges Dam Project [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2011,16(1):71-80.
    [137]Meifeng Cai, Mowen Xie, Chunlei Li. GIS-based 3D limit equilibrium analysis for design optimization of a 600 m high slope in an open pit mine [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2007,14(1):1-5.
    [138]Lucia Luzi, Floriana Pergalani. Applications of statistical and GIS techniques to slope instability zonation (1:50.000 Fabriano geological map sheet) [J]. Soil Dynamics and Earthquake Engineering,1996,15(2):83-94.
    [139]F. C. Dai, C. F. Lee. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong [J]. Geomorphology,2002,42(3): 213-228.
    [140]A. Zolfaghari, A.C. Heath. A GIS application for assessing landslide hazard over a large area [J]. Computers and Geotechnics,2008,35(2):278-285.
    [141]Bhoj Raj Pantha, Ryuichi Yatabe, Netra Prakash Bhandary. GIS-based highway maintenance prioritization model:an integrated approach for highway maintenance in Nepal mountains [J]. Journal of Transport Geography,2010, 18(3):426-433.
    [142]Mandy Lineback Gritzner, W. Andrew Marcus, Richard Aspinall, Stephan G. Custer. Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho [J]. Geomorphology,2001,37(1): 149-165.
    [143]Mowen Xie, Tetsuro Esaki, Meifeng Cai. A GIS-based method for locating the critical 3D slip surface in a slope[J]. Computers and Geotechnics,2004,31(4): 267-277.
    [144]Salah Sadek, Isam Kaysi, Mounia Bedran. Geotechnical and environmental considerations in highway layouts:an integrated GIS assessment approach[J]. International Journal of Applied Earth Observation and Geoinformation,2000, 2(3):190-198.
    [145]Matthew C. Larsen, Angel J. Torres-Sanchez. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico [J]. Geomorphology,1998,24(4):309-331.
    [146]Gui-juan Gao, Jian-gang Yuan, Rui-hong Han, Guo-rong Xin, Zhong-yi Yang. Characteristics of the optimum combination of synthetic soils by plant and soil properties used for rock slope restoration [J]. Ecological Engineering,2007, 30(4):303-311.
    [147]Carrara, A. Multivariate models for landslide hazard evaluation[J]. Math. Geology 1983,15 (3),403-426.
    [148]R.P. Gupta, B.C. Joshi. Landslide hazard zoning using the GIS approach-A case study from the Ramganga catchment, Himalayas [J]. Engineering Geology,1990,28(1):119-131.
    [149]P. M. Atkinson, R. Massari. GENERALISED LINEAR MODELLING OF SUSCEPTIBILITY TO LANDSLIDING IN THE CENTRAL APENNINES, ITALY [J]. Computers & Geosciences,1998,24(4):373-385.
    [150]Mark T.J. Terlien. Hydrological landslide triggering in ash-covered slopes of Manizales (Columbia) [J]. Geomorphology,1997,20(1):165-175.
    [151]Chun-Hung Wu, Su-Chin Chen. Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method [J]. Geomorphology,2009,112(3):190-204.
    [152]Van Asch, J. Buma, L. P. H. Van Beek. A view on some hydrological triggering systems in landslides [J]. Geomorphology,1999,30(1):25-32.
    [153]于沭.向家坝水电站两个坝段坝基深层抗滑稳定分析[D].中国地质大学硕士学位论文,北京,2007.
    [154]S. Tzamos, A.I. Sofianos. A correlation of four rock mass classification systems through their fabric indices [J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(4):477-495.
    [155]S.H. Hoseinie, H. Aghababaei, Y. Pourrahimian. Development of a new classification system for assessing of rock mass drillability index (RDi) [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(1): 1-10.
    [156]Ya-Ching Liu, Chao-Shi Chen. A new approach for application of rock mass classification on rock slope stability assessment[J]. Engineering Geology,2007, 89(1):129-143.
    [157]Vicki Moon, Geoff Russell, Meagan Stewart. The value of rock mass classification systems for weak rock masses:a case example from Huntly, New Zealand [J]. Engineering Geology,2001,61 (1):53-67.
    [158]Zekai en, Bahaaeldin H. Sadagah. Modified rock mass classification system by continuous rating [J]. Engineering Geology,2003,67(3):269-280.
    [159]Chao-Shi Chen, Ya-Ching Liu. A methodology for evaluation and classification of rock mass quality on tunnel engineering [J]. Tunnelling and Underground Space Technology,2007,22(4):377-387.
    [160]Yosoon Choi, Seo-Youn Yoon, Hyeong-Dong Park. Tunneling Analyst:A 3D GIS extension for rock mass classification and fault zone analysis in tunneling [J]. Computers & Geosciences,2009,35(6):1322-1333.
    [161]GOODMAN R E. The mechanical property of joints[C]//In Proc.3rd Cong ISRM, Denver, Part A,1974:127-140
    [162]BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,20:249-268
    [163]蔡美峰,何满潮,刘东燕,等.岩石力学与工程[M].北京:科学出版社,2002,82-111
    [164]BARTON N, BAKHTAR K. Description, Modelling of Rock Joint for the Hydro-thermo-mechanical Design of Nuclear Waste Vaults[R].[s.1.]:AECLTR-418,1987.
    [165]COOK. Natural joints in rock:mechanical, hydraulic and seismic behavior and properties under normal stress[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(3):198-223
    [166]JING L, STEPHANSSON O, NORLUND E. Study of rock joints under cyclic loading conditions[J]. International Journal of Rock Mechanics and Mining Sciences,1993,26(3):215-232
    [167]KANA D D, FOX D J, HSIUNG S M. Interlock/friction model for dynamic shear response in natural jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences,1996,33:371-386
    [168]LEE H S, PARK Y G, CHO T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J] International Journal of Rock Mechanics and Mining Sciences,2001,38: 967-980
    [169]HOMAND F, BELEM T, SOULEY M. Ffiction and degradation of rock joints surfaces under shear loads[J]. International Journal for Numerical and Analytical Method in Goomechanics,2001,25:973-999
    [170]FOX D J, KANA D D, HSIUNG SM. Influence roughness on dynamic shear behavior in jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):923-940
    [171]JAFARI M K, AMINI HOSSEINI K. PELLET F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading[J]. Soil Dynamic and Earthquake Engineering,2003,23:619-630
    [172]HUTSON R W, DOWDING C H. Joint asperity degradation during cyclic shear[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1990,27(2):109-119
    [173]BELEM T, HOMAND ETIENNE F, SOULEY M. Fractal analysis of shear joint roughness[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):130
    [174]HUANG X A. Laboratory study of the mechanical behavior of rock joints~ with particular interest to dilatancy and asperity surface damage mechanism[Ph. D]. University of Wisconsin- Madison, USA,1990.
    [175]PLESHA M E. Constitutive models for rock discontinuities with dilatancy and surface degradation [J]. International Journal for Numerical and Analytical Method in Goomechanics,1987,11:345-62
    [176]贺少辉,李中林.层状岩体弹塑性本构关系及其工程应用[J]南方冶金学院学报,1994,15(3):141-148
    [177]李海波,刘博,冯海鹏.模拟岩石节理试样剪切变形特征和破坏机制研究[J].岩土力学,2008,29(7):1741-1747
    [178]李海波,冯海鹏,刘博.不同剪切速率下岩石节理的强度特性研究[J].岩石力学与工程学报,2006,25(12):2435-2441
    [179]沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223-226
    [180]Goodman R E. Introduction to rock mechanics [M]. J Willey & Sons,1989.
    [181]T H Huang, C S Chang, C Y Chao. Experimental and mathematical modeling for fracture of rock joint with regular asperities [J]. Engineering Fracture Mechanics,2002,69:1977-1996
    [182]J G Wang, Y Ichikawa, C F Leung. A constitutive model for rock interfaces and jonts [J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40:41-53
    [183]G Grasselli, P Egger. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40:25-40
    [184]M Souley, F Homand, B Amadei. An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(2):101-109
    [185]M M Zaman, C S Desai, E C Drumm. Interface model for dynamic soil~ structure interaction [J]. Journal of Geotechnical Engineering,1984,110(9): 1257-1273
    [186]Jeong S, Kim B, Won J, Lee J Y.(2003). Uncoupled analysis of stabilizing piles in weathered slopes [J]. Computers and Geotechnics,30(8):671-682
    [187]Won J, You K, Jeong S, Kim S. (2005). Coupled effects in stability analysis of pile-slope systems [J]. Computers and Geotechnics,32(4):304-315
    [188]Chow, Y. K. Analysis of piles used for slope stabilization [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(9): 635-646
    [189]黄志全,刘希林.南水北调西线一期工程滑坡崩塌体稳定性评价[J].山地学报,2005,23(5):579-584.
    [190]林杭,曹平,李江腾,等.边坡临界失稳状态的判定标准分析[J].煤炭学报,2008,33(6):643-647
    [191]卢增木,陈从新,左保成等.对影响逆倾层状边坡稳定性因素的模型试验研究[J].岩土力学,2006,27(4):629-647
    [192]刘新喜,夏元友,张显书,等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439-1444.
    [193]Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils [M]. New York:John Wiley & Sons, Inc,1993.
    [194]Riemer. Landslides and reservoirs[A].In:Proc.of the 6th Int.Symp.Landslides[C]. Rotterdam A.A.Balkema,1995,1973-2004.
    [195]崔政权,曾新平.长江三峡工程库区库岸稳态及崩、滑体专论[R].武汉:水利部长江水利委员会综合勘测局,1996.
    [196]刘新喜,夏元友,张显书,等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439-1444.
    [197]王明华,晏鄂川.水库蓄水对库岸滑坡的影响研究[J].岩土力学,2007,28(12):2722-2725.
    [198]时卫民,郑颖人.库水位下降情况下滑坡的稳定性分析[J].水利学报,2004(3):67-71.
    [199]Dai F C, Lee C F, Wang S J. Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong[J]. Engineering Geology, 1999,51(4):279-290.
    [200]Fiorillo F, Guadagno F M, Aquino S, et al.The December 1999 Cervinara landslides:further debris flows in the pyroclastic deposits of Campania(Southern Italy)[J].Bulletin of Engineering Geology and the Environment,2001,60(3):171-184.
    [201]朱冬林,任光明,聂德新等.库水位变化对水库滑坡稳定性影响的预测[J].水文地质工程地质,2002,(3):6-9.
    [202]雷志栋等.土壤水动力学[M].北京:清华大学出版社,1998.
    [203]Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils [M]. New York:John Wiley & Sons, Inc,1993.
    [204]C W W, Zhan L T, Bao C G, et al. Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration[J].Geotechnique,2003,53(2):143-157.
    [205]吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学,1999,20(1):1-14.
    [206]左巍然,杨和平.确定膨胀土残余强度的试验研究[J].长沙交通学院学报,2007,23(1):23-27.
    [207]谬林昌,崔颖,等.非饱和重塑膨胀土的强度试验研究[J].岩土工程学报, 2006,2(2):274—276.
    [208]车承国.残余强度试验方法探讨[M].郑州:黄河水利出版社,2005.
    [209]Dov Leshchinsky. Design Dilemma:Use peak or residual strength of soil [J]. Geotextiles and Geomembranes,2001,19(2):111-125.
    [210]B.P. Wen, A. Aydin, N.S. Duzgoren-Aydin. Residual strength of slip zones of large landslides in the Three Gorges area, China [J]. Engineering Geology, 2007,93(3):82-98.
    [211]W. J. Busscher, J. H. Edwards, M. J. Vepraskas, D. L. Karlen. Residual effects of slit tillage and subsoiling in a hardpan soil [J]. Soil and Tillage Research, 1995,35(3):115-123.
    [212]C. D. Grant, A. R. Dexter, J. M. Oades. Residual effects of additions of calcium compounds on soil structure and strength [J]. Soil and Tillage Research,1992,22(3):283-297.
    [213]S. A. Tan, S. H. Chew, C. C. Ng, S. L. Loh, G. P. Karunaratne, Ph. Delmas, K. H. Loke. Large-scale drainage behaviour of composite geotextile and geogrid in residual soil [J]. Geotextiles and Geomembranes,2001,19(3):163-176.
    [214]Moore R, Brunsden D,1996. Physico-chemical effects on the behaviour of a coastal mudslide. Geotechnique 46(2),259-278.
    [215]Tika TE, Vaughan PR, Lemos LJLJ. Fast shearing of pre-existing shear zones in soil. Geotechnique 1996,46(2),197-233.
    [216]Tika TE and Hutchinson JN. Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique,1999,49(1),59-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700