用户名: 密码: 验证码:
鲁棒非线性导引与控制律一体化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确打击能力是现代国防对导弹武器的要求,飞行控制和制导算法是实现导弹精确打击目标的关键所在。导引与控制一体化设计可综合协调各个子系统之间的关系,确保级联系统整体上具有稳定性,从而能够充分挖掘导弹的潜力,提高导弹的精确打击能力。本文以寻的导弹打击机动或地面固定目标为背景,研究了不基于视线角速率测量信息的导引规律和末制导阶段的导引与控制一体化模型和设计方法,主要内容包括:
     首先,研究了导弹导引与控制一体化非线性模型。在导弹六自由度非线性模型和导弹与目标相对运动模型的基础上,通过坐标变换,以导弹在弹道坐标系和视线坐标系中的加速度分量为桥梁,考虑所拦截目标具有机动飞行的能力,建立了导引与控制一体化非线性模型。该模型不仅可反映导弹与目标的相对运动关系,也可体现导弹在飞行过程中姿态变量(攻角、俯仰角及其角速率等)的变化。
     其次,研究了不基于视线角速率测量信息的三维导引律设计问题。考虑机动目标拦截问题,首先在所有状态都可测的情况下,基于输入-状态稳定性(ISS)理论设计了一种使视线角速率对目标机动具有ISS稳定性的导引律(ISS导引律),理论分析表明这种导引律可通过调节系数使视线角速率收敛到零点的任意小邻域内,并通过数值仿真验证了该导引律的有效性。在实际空战中,测量得到的视线角速率可能混杂了导弹自身的姿态角速率,这使得视线角速率的测量值不准确,从而影响制导精度,因此本文在上述的ISS导引律的基础上引入高增益观测器对视线角速率进行估计,理论分析和数值仿真表明这种加入了观测器的导引律可重现ISS导引律的性能。
     然后,将导引与控制一体化模型简化为平面模型后,研究了俯仰平面内导引与控制律的一体化设计问题。针对俯仰平面内具有单控制输入(俯仰舵)的导弹打击高速机动目标问题,利用反步设计法设计了一体化导引-控制律,并结合自适应控制方法处理模型中的非线性。由于俯仰舵在攻角较大的情况下具有气动饱和特性,可能会使导弹的机动能力受到限制,特别是对于弹体较长的导弹,若同时使用俯仰舵和尾翼对导弹进行操控则可增强其机动能力,因此针对俯仰平面内具有俯仰舵和尾翼的导弹打击地面固定目标问题,在不忽略舵面对攻角直接影响的情况下,利用小增益定理设计了可使导弹以一定角度准确打击目标的导引与控制方案,并证明了将其与ISS导引律结合后,也可用于打击机动目标。本文所设计的一体化导引-控制律均不基于视线与导弹速度方向夹角很小的假设,理论分析和数值仿真表明,所设计的一体化导引-控制律在获得满意打击效果的同时可确保由导弹的导引系统和控制系统组成的综合系统具有稳定性。
     最后,本文在考虑导弹控制系统动态特性和不确定性的情况下,研究了近似的导引与控制系统一体化设计问题。由于三维的导引与控制一体化模型较为复杂,直接基于此模型设计三维的一体化导引-控制律比较困难,为了提高导弹的打击能力,可设计近似的一体化导引-控制律——在设计导引律时考虑导弹控制系统的动态特性和不确定性。本文在导弹控制系统可近似为一阶环节和二阶环节的情况下,分别利用分块反步设计法和小增益定理在弹道坐标系中研究了近似的三维导引与控制设计问题,所设计的控制方案可克服导弹控制系统的动态特性对制导效果的影响,并对导弹控制系统的不确定性和目标机动具有鲁棒性,数值仿真验证了其有效性。
The ability of getting an accurate interception is the requirement of modern nation-al defense for missile weapons, and flight control and guidance algorithms are the key to achieve successful interception. Integrated guidance and control can coordinate the relationship between subsystems, and guarantee the stability of the overall system, so as to fully explore the potential of missiles and improve accurate interception capability. This dissertation focuses on the problems of guidance law design without line-of-sight (LOS) rate measurement, and modeling and control design of integrated guidance and control for homing missile against maneuvering or ground fixed targets. The main re-sults consist of the following parts:
     First of all, the modeling problem of the missile nonlinear integrated guidance and control system is considered. On the basis of the missile6-DOF nonlinear model and the relative motion model between missile and target, by using the coordinate trans-formation and viewing the acceleration elements in the trajectory coordinates and LOS coordinates as intermediaries, the nonlinear integrated guidance and control (IGC) mod-el is formulated considering the target maneuverability. The IGC model can reflect not only the relative motion between the missile and target, but also the varies of missile attitude (attack angle, pitch angle, and angular rates, etc.) during the flight process.
     Then, a three-dimensional guidance law without LOS rate measurement is pro-posed. Considering the interception of maneuvering targets and supposing all the states are measurable, a guidance law is designed based on input-to-state stability (ISS) to en-sure that the LOS rate is ISS with respect to target maneuvers. It is proved that, under the proposed guidance law, the LOS rate can converges to an arbitrary small neighbor-hood of the zero by adjusting the coefficients. The simulation results are also provided to test the algorithm. In practice, the LOS rate is always combined with missile body rates, so it is difficult to measure LOS rate accurately, which will affect guidance pre-cision. Thus, a high-gain observer is introduced into the guidance law to estimate the LOS rate, and the theoretical analysis as well as simulation results show that the perfor-mance of the closed-loop system under the guidance law with LOS rate measurement can be recovered by using a high-gain observer.
     Sequentially, the IGC model in pitch plane is formulated from the3D model, and the IGC law design problem is studied. To design an IGC law for missiles with sin-gle control input (canard control) against high speed targets with maneuverability, the backstepping is introduced, and adaptive control method is also used to handle the influ-ence of the nonlinear term. Canard control has its limit due to aerodynamic saturation at high angles of attack, which may affect the maneuverability of the missile, especially for long fuselage missiles, and a tail control is often preferred. Therefore, an IGC de-sign approach, against ground fixed targets, is proposed using small-gain theorem for missiles controlled by canard and tail control, which can guarantee a successful inter-ception with a desired impact angle. It is shown that the IGC law combining with ISS guidance law can be used in the interception of a maneuvering target. It is worth to claim that the designed IGC approaches do not rely on the assumption that the angle between LOS and missile velocity is almost constant. A successful interception as well as the stability of the overall system can be guaranteed by our approaches, which can be seen from both theoretical analysis and simulation results.
     Finally, considering the missile control system dynamics and uncertainties, the problem of approximative IGC design is studied. Due to the complexity of the3D IGC model, it is difficult to design IGC law directly. In order to improve the accurate inter-ception capability of missiles, missile control system dynamics and uncertainties may be considered in the guidance law design, which can be regarded as approximative IGC design. Here, the missile control system is viewed as one-order model and second-order model, and block backstepping and small-gain theorem are respectively used to design approximative IGC scheme based on the trajectory coordinates. The designed control can compensate for the effects of the closed-loop system dynamics and are ro-bust against the missile control system uncertainties and target maneuvers. Simulation results show the effectiveness of the approaches.
引文
[1]程继红.飞行器控制导引一体化设计方法研究[J].海军航空工程学院学报,2006,21(2):227-230.
    [2]乌日娜,季海波,张保利.导弹有限时间三维非线性导引律[J].电光与控制.2009,16(3):22-24
    [3]侯明哲.寻的导弹导引与控制一体化设计[D].哈尔滨:哈尔滨工业大学,2011.
    [4]宋建梅,张天桥.变结构控制在导弹制导与控制中的应用综述[J].弹箭与制导学报,1999,(4):32-38.
    [5]王洪强,方洋旺,伍友利.滑模变结构控制在导弹制导中的应用综述[J].飞行力学,2009,27(2):11-15.
    [6]顾文锦,张汝川,于进勇.基于NBF网络的导弹航向平面滑模控制导引一体化[J].海军航空工程学院学报,2006,21(5):510-516.
    [7]顾文锦,张汝川,于进勇.反舰导弹航向平面模糊滑模控制导引一体化研究[C]//2007中国控制与决策学术年会论文集.威海,中国,2007:76-79.
    [8]于进勇,唐大全,顾文锦.基于滑模变结构理论的航向平面导引规律设计[J].飞行力学,2005,21(3):50-53.
    [9]苗吴春,马清华,陈韵,利冬.基于滑模控制的导弹制导控制一体化设计[J].弹箭与制导学报,2011,31(3):6-10.
    [10]张保群,宋申民.基于自适应滑模控制的导弹制导与控制一体化反演设计[J].弹箭与制导学报,2009,29(5):32-35.
    [11]段广仁,侯明哲,谭峰.基于滑模方法的自适应一体化导引与控制律设计.兵工学报,2010,31(2):191-198.
    [12]尹永鑫,杨明,王子才.导弹三维制导控制一体化设计[J].电机与控制学报,2010,14(3):87-91.
    [13]魏毅寅,梁冰,谭峰,等.导弹俯仰通道制导与控制一体化设计[J].黑龙江大学自然科学学报,2007,24(4):430-434.
    [14]梁冰,徐殿国,段广仁.导弹俯仰通道带有落角约束的制导与控制一体化设计[J].科学技术与工程,2008,8(1):70-75.
    [15]舒燕军,唐硕.轨控式复合控制导弹制导与控制一体化反步设计[J].宇航学报,2013,34(1):80-85.
    [16]俞斌峰,严晗,季海波.基于反步设计和高增益观测器的导引-控制律一体化设计[C]//第三十一届中国控制会议论文集.合肥,中国,2012:4739-4744.
    [17]毕胜.变结构飞行器的多刚体建模和姿态控制[D].合肥:中国科学技术大学,2011.
    [18]佘文学,周军,周凤岐.一种考虑自动驾驶仪动态特性的自适应变结构制导律[J].宇航学报,2003,23(3):245-249.
    [19]佘文学,周军,周凤岐.考虑自动驾驶仪动态鲁棒自适应变结构制导律[J].系统工程与电子技术,2003,25(12):2613-2616.
    [20]查旭,崔平远,常伯浚.攻击固定目标的飞行器制导控制一体化设计[J].宇航学报,2005,26(1):13-18.
    [21]王婷,周军.驾束制导导弹一体化制导控制系统设计[J].西北工业大学学报,2009,27(2):173-177.
    [22]孙胜,周荻.考虑自动驾驶仪动特性的三维非线性导引律[J].宇航学报,2009,30(3):1052-1056.
    [23]周荻.寻的导弹新型导引规律[M].北京,国防工业出版社,2002.
    [24]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京,北京理工大学出版社,2000.
    [25]孙胜.有限时间收敛的导引律[D].哈尔滨:哈尔滨工业大学,2010.
    [26]黄槐,齐润东,文树梁.制导雷达技术[M].北京,电子工业出版社,2006.
    [27]毕胜,季海波.基于分块反步设计的飞行器姿态稳定鲁棒控制[J].宇航学报,2008,29(6):1878-1882.
    [28]A. N. Atassi and H. K. Khalil. A separation principle for the stabilization of a class of nonlinear systems [J]. IEEE Trans. on Automatic Control,1999,4(9):1672-1687.
    [29]H. Buschek. Full envelope missile autopilot design using gain scheduled robust control [J]. Journal of Guidance Conrtol and Dynamics,1999,22(1):15-122.
    [30]D. Chwa and J. Y. Choi. Adaptive nonlinear guidance law considering control loop dynamics [J]. IEEE Trans, on Aerospace and Electronic Systems,2003,39(4):1134-1143.
    [31]D. Chwa, J. Y. Choi, and S. G. Anavatti. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics [J]. IEEE Trans, on Control Systems Technology,2006,14(1):112-123.
    [32]P. Das, C. Chawla, R. Padhi. Robust partial integrated guidance and control of interceptors in terminal phase [R], A1AA-2009-6275,2009.
    [33]F. Esfandiari and H. K. Khalil. Output feedback stabilization of fully linearizable systems [J]. International Journal of Control,1992,56(5):1007-1037.
    [34]L. C. Fu, W. D. Chang, J. H. Yang, and T. S. Kuo. Adaptive robust bank-to-turn autopilot des ign using neural networks [J]. Jounral of Guidance Conrtol and Dynamics,1997,20(2):346-354.
    [35]J. G. Guo and J. Zhou. Integrated guidance and control of homing missile with impact angular constraint [C]// Proceedings of International Conference on Measuring Technology and Mechatronics Automation. Changsha, China,2010:480-483.
    [36]P. Gurfil. Zero-miss-distance guidance law based on line-of-sight rate measurement only [J]. Control Engineer-ing Practice,2003, 11(7):819-832.
    [37]M. Z. Hou and G. Duan. Adaptive dynamic surface control for integrated missile guidance and autopilot [J]. International Journal of Automation and Computing.2011,8(1):122-127.
    [38]M. Z. Hou and G. R. Duan Integrated guidance and control for homing missiles against ground fixed targets [J]. Chinese Journal of Aeronautics,2008,21(2):162-168.
    [39]T. Hwang, M. Tahk. Integrated backstepping design of missile guidance and control with robust disturbance observer [C]//SICE-ICASE International Joint Conference. Busan, Korea,2006:4911-4915.
    [40]M. Idan and T. Shima. Integrated sliding mode guidance and control for a missile with on-off actuators[J]. Journal of Guidance, Control, and Dynamics,2007,30(4):1081-1089.
    [41]M. Idan, T. Shima, and O. M. Golan. Integrated sliding mode autopilot-guidance for dual-control missiles [J]. Journal of Guidance Control and Dynamics,2007,30(4):1081-1089.
    [42]Z. P. Jiang, A. R. Teel, and L. Praly. Small-gain theorem for ISS systems and applications [J]. Mathematics of Control, Signals, and Systems,1994,7(2):95-120.
    [43]H. K. Khalil. Nonlinear Systems,3rd ed., Prentice-Hall, Upper Saddle River, NJ,2002.
    [44]H. K. Khalil. Adaptive output feedback control of nonlinear systems represented by input-output models [J]. IEEE Trans, on Automatic Control,1996,41(2):177-188.
    [45]H. K. Khalil and E. G. Strangas. Robust speed control of induction motors using position and current measure-ments [J]. IEEE Trans, on Automatic Control,1996,41(8):1216-1220.
    [46]B. Kim, A. Calise, R. Sattigeri. Adaptive, integrated guidance and control design for line-of-sight based forma-tion flight [J]. Journal of Guidance, Control, and Dynamics,2007,30(5):1386-1398.
    [47]B. Kim, J. Kim, B. Kim, and C. Ha. Adaptive integrated guidance and control design for automatic landing of a fixed wing unmanned aerial vehicle [J]. Journal of Aerospace Engineering,2012,25(4):490-500.
    [48]P. K. Menon and E. J. Ohlmeyer. Integrated design of agile missile guidance and autopilot systems [J]. Control Engineering Practice,2001, (9):1095-1106.
    [49]P. K. Menon and E. J. Ohlmeyer. Integrated design of agile missile guidance and control systems [C]//Proceedings of the 7th Mediterranean Conference on Control and Automation. Haifa, Israel,1999:1469-1494.
    [50]P. K. Menon and E. J. Ohlmeyer. Nonlinear integrated guidance-control laws for homing missiles [R]. AIAA-2001-4160,2001.
    [51]P. K. Menon and E. J. Ohlmeyer. Optimal fixed-interval integrated guidance-control laws for hit-to-kill mis-siles[R]. AIAA-2003-5579,2003.
    [52]P. K. Menon and E. J. Ohlmeyer. Integrated guidance and control for moving-mass actuated kinetic warheads [J]. Journal of Guidance, Control, and Dynamics,2004,27(1):118-126.
    [53]P. K. Menon and E. J. Ohlmeyer. Finite-horizon robust guidance-control of a moving-mass actuated kinetic warhead [R]. AIAA-2006-6787,2006.
    [54]P. K. Menon and E. J. Ohlmeyer. Integrated design of agile missile guidance and autopilot systems [J]. Control Engineering Practice,2001,9(10):1095-1106.
    [55]Y. Ochi, K. Itoht, and K. Kanai. Application of h-infinity control to missile guidance and control [R]. AIAA-2000-4069,2000.
    [56]S. Oh, and H. K. Khalil. Output feedback stabilization using variable structure control [J]. International Journal of Control,1995,62(4):831-848.
    [57]R. Padhi, C. Chawla, P. Das, et al. Partial integrated guidance and control of surface-to-air interceptors for high speed targets [C]//Proceedings of the 2009 American Control Conference. St. Louis, USA,2009:4184-4189.
    [58]R. Padhi, P. Das, and C. Chawla, Time scale separated nonlinear partial integrated guidance and control of interceptors in the terminal phase [C]//Proceedings of the 18th IEEE International Conference on Control Ap-plications. Saint Petersburg, Russia,2009:1081-1086.
    [59]N. F. Palumbo and T. D. Jackson. Integrated missile guidance and control:a state dependent Riccati differ-ential equation approach [C]//Proceedings of International Conference on Control Applications. Hawaii, USA, 1999:243-248.
    [60]R. T. Reichert. Application of H∞ control to missile autopilot design [C]//Proceeding of the AIAA Guidance, Navigation and Control Conference,1989.
    [61]T. Shima, O. M. Golan. Linear quadratic differential games guidance law for dual controlled missiles [J]. IEEE Trans, on Aerospace and Electronic Systems,2007,43(3):834-842.
    [62]T. Shima, M. Idan, and O. M. Golan. Sliding-mode control for integrated missile autopilot guidance [J]. Journal of Guidance Control and Dynamics.2006,29(2):250-260.
    [63]M. Sharma, N. Richards. Adaptive, integrated guidance and control for missile interceptors [R]. AIAA-2004-4880,2004.
    [64]Y. B. Shtessel, I. A. Shkolnikov, and A. Levant. Guidance and control of missile interceptor using second-order sliding modes [J]. IEEE Tran. on Aerospace and Electronic Systems,2009,45(1):110-124.
    [65]Y. B. Shtessel, I. A. Shkolnikov, and A. Levant. Smooth second-order sliding modes:Missile guidance appli-cation [J]. Automatica,2007,43(8):1470-1476.
    [66]Y. B. Shtessel and C. Tournes. Integrated higher-order sliding mode guidance and autopilot for dual-control missiles [J]. Journal of Guidance, Control, and Dynamics,2009,45(2):110-124.
    [67]E. D. Sontag. Smooth stabilization implies coprime factorization [J], IEEE Trans, on Automatic Control,1989, 34(4):435-443.
    [68]M. Sharma and N. D. Richards. Adaptive, integrated guidance and control for missile interceptors [R]. AIAA paper 2004-4880,2004.
    [69]E. Slotine, W. Li. Applied Nonlinear Control [M]. New Jersey: Prentice Hall,1991.
    [70]E. D. Sontag. Smooth stabilization implies coprime factorization [J]. IEEE Trans, on Automatic Control,1989, 34(4):435-443.
    [71]E. D. Sontag. Input to state stability:basic concepts and results [R]. Lecture Notes in Mathematics (CIME Course, Cetraro), June 2004.
    [72]S. Sun, D. Zhou, W. Hou. A guidance law with finite time convergence accounting for autopilot lag [J]. Aerospace Science and Technology,2013,25(1):132-137.
    [73]D. Swaroop, J. Gerdes, P. Yip, et al. Dynamic surface control for a class of nonlinear systems [J]. IEEE Trans, on Automatic Control,2000,45(10):1893-1899.
    [74]C. Toumes, R. Frederick, T. Carroll, et al. Miniature interceptor guidance and control using second order sliding mode and adaptive control[R]. AIAA-2005-6158,2005.
    [75]C. Tournes and P. Wilkerson. Integrated terminal guidance and automatic pilot using subspace-stabilization [R]. AIAA paper 2001-4275,2001.
    [76]S. S. Vaddi, P. K. Menon, and E. J. Ohlmeyer. Numerical SDRE approach for missile integrated guidance control[J]. Journal of Guidance, Control, and Dynamics,2009,32(2):699-703.
    [77]Y. Y. Wei, M. Z. Hou, and G. R. Duan. Adaptive multiple sliding surface control for integrated missile guid-ance and autopilot with terminal angular constraint [C]//Proceedings of the 29th Chinese Control Conference, Beijing, China,2010:2162-2166.
    [78]D. E. Williams, J. Richman, and B. Friedland. Design of an integrated strapdown guidance and control system for a tactical missile[J]. AIAA paper 1983-2169,1983.
    [79]K. A. Wise and D. J. Broy. Agile missile dynamics and control [J]. Journal of Guidance, Control, and Dynamics, 1998,21(3):441-449.
    [80]M. Xin, S. N. Balakrishnan, and E. J. Ohlmeyer. Integrated guidance and control of missiles with θ-D method [J]. IEEE Trans. on Control Systems Technology,2006,14(6):981-992.
    [81]M. Xin, S. N. Balakrishnan, D. T. Stansbery, and E. J. Ohlmeyer. Nonlinear missile autopilot design with theta-D technique [J]. Journal of Guidance Conrtol and Dynamics,2004,27(3):406-417.
    [82]H. Yamasaki, S. Balakrishnan, and H. Takano. Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes [J]. Journal of the Franklin Institute,2012,349(2):531-558.
    [83]C. D. Yang and C. C. Yang. Nonlinear H∞ robust guidance law for homing missiles [J]. Journal of Guidance, Control, Dynamics,1998,21(6):882-890.
    [84]C. D. Yang and C. C. Yang. Optimal pure proportional navigation for maneuvering targets [J]. IEEE Trans. on Aerospace and Electronic Systems,1997,33(3):949-957.
    [85]J. Yu, Y. Zhao, Q. Xu, et al. A scheme of integrated guidance/autopilot design for UAV based on TSM con-trol [C]//Proceedings of 2007 IEEE International Conference on Control and Automation. Guangzhou, China, 2007:707-711.
    [86]Z. Zhao, Y. Shen, and Q. Wang. An integrated guide and control strategy to enhance the precision of guid-ance laws [C]//Proceeding of 2009 International Asia Conference on Informatics in Control, Automation and Robotics. Bangkok, Thailand,2009:85-89.
    [87]D. Zhou, C. D. Mu, and W. L. Xu. Adaptive sliding-mode guidance of a homing missile [J]. Journal of Guidance, Control, Dynamics,1999,22(4):589-594.
    [88]D. Zhou, S. Sun, and K. L. Teo. Guidance laws with finite time convergence [J]. Journal of Guidance, Control, Dynamics,2009,32(6):1838-1846.
    [89]J. Zhou, T. Wang. Integrated guidance-control system for beam-riding guidance missiles based on scecond order sliding mode control [J]. Journal of Astronautics,2007,28(6):1632-1637.
    [90]A. Zhurbal, M. Idan. Effect of estimation on the performance of an integrated missile guidance and control system [J]. IEEE Trans, on Aerospace and Electronic Systems,2011,47(4):2690-2678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700