用户名: 密码: 验证码:
基于掺铒光纤和光纤拉曼放大机理的光纤激光器实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通讯技术和光纤传感技术的发展,能够与光纤兼容的光纤器件得到了广泛而深入地研究,其中光纤激光器由于其成本低、结构简单、配置灵活和光纤兼容等方面的优点,以及在光纤通讯系统、光纤传感、光谱分析、微波信号产生等领域的潜在应用前景,吸引了广大研究者的兴趣。然而,由于目前用于光纤激光器的许多增益机制在功率转换效率、输出稳定性或者输出谱宽等方面都有各自不同的内在缺点,限制了它们的性能和应用。
     本文针对用于光纤激光器的两种不同增益介质——掺铒光纤和拉曼光纤,以掺铒光纤放大器为切入点,在深入研究了这两种光纤放大器的基础上,重点对以多波长为主的光纤激光器做了较为系统、深入的理论和实验研究。
     具体而言,从实验和理论两个方面系统地研究了掺铒光纤放大器;研究了多波长激光原理和多波长滤波器;研究了光纤拉曼多波长激光器;分析了它们各自的优缺点和存在的问题。在此基础上,提出了一种新型的、应用于多波长光纤激光器的掺铒光纤和光纤拉曼的混合增益机制。理论上预期,该机制能够使室温下掺铒光纤放大内在的增益竞争得到很好的抑制,因而可以获得稳定多波长运行,并且同时具有掺铒光纤的高功率转换效率、低激光器阈值的优点。最终通过实验实现了基于该增益机制的、室温下能够高稳定性、高信噪比、功率均衡运行的多波长光纤激光器。并在理论上进一步分析和模拟了该混合机制的实现机理,理论结论与实验结果一致。实验表明,该混合机制并不同于两种增益机制简单的组合。基于相同的原理,本文也实验研究了我们所提出的混合增益机制在主动锁模脉冲光纤激光器中的应用,实验结果说明该混合增益机制同样能够有效的抑制模式噪声。另外也介绍了与本文课题关系密切的一些实验研究和设备制作过程,如基于铋基掺铒光纤的宽带ASE(放大自发辐射)光源的制作。主要内容如下:
     首先在绪论中分别简要介绍了激光器、光纤激光器的历史和现状;重点介绍了多波长光纤激光器的发展历史和研究现状,特别对于掺铒光纤、拉曼光纤、半导体泵浦光源、谱滤波器等关键器件的研究现状作了综述;介绍了基于掺铒光纤放大、光纤拉曼散射、光纤布里渊散射和半导体光放大器等不同的增益机制的优点和缺点;最后讨论了多波长光纤激光器面临的问题。
     第二,系统地介绍了掺铒光纤放大器的基本理论;介绍和推导了掺铒光纤放大器的基本理论模型;介绍了掺铒光纤基本参数的测量测试方法;提出并实验研究了一种新型结构的低噪声、高增益掺铒光纤放大器;研究了铋基掺铒光纤的特性,实验研究了一种基于铋基掺铒光纤的宽带ASE光源。
     第三,对影响激光器多模振荡稳定的介质增益和损耗属性,如谱线展宽机制、增益饱和、模式竞争等概念,作了系统地分析;介绍了激光器多模振荡的速率方程;以Sagnac环形滤波器为代表,理论和实验分析了F-P谐振腔、谱滤波器等构成多波长光纤激光器的关键器件。
     第四,系统地从理论上介绍了光纤拉曼受激散射的增益机制,以及四波混频等非线性效应的影响,从半经典电磁理论出发,推导了它们的基本耦合方程,对一些重要的基本参数的测量方法和测试过程作了介绍,提出并实验研究了基于光子晶体光纤Sagnac环形滤波器的光纤拉曼多波长激光器。
     第五,该部分包括了本文的主要工作内容和主要创新点。实验比较了掺铒光纤和拉曼光纤增益特性的不同和对多波长激光器输出的影响;进而提出了基于掺铒光纤和光纤拉曼混合增益机制,进行了针对基于该混合增益机制的多波长光纤激光器实验研究,实验表明,该混合机制并不是两种放大器简单的组合,掺铒光纤在增益中起主导作用,而拉曼光纤对输出光功率的贡献要小很多;以已经获得的实验证据为基础,理论分析和模拟了该混合增益机制支持稳定多波长运行的机理,获得了与实验结果一致的结论;介绍了不同实验装置的设计和研究过程,并进一步提出了波长间隔可调、输出波长范围可控的的实验改进方法。
     第六、介绍了掺铒光纤和光纤拉曼混合增益机制在主动锁模光纤激光器的应用研究,实验证明该混合增益机制同样能够有效抑制掺铒光纤主动锁模激光器的超模噪声。
     最后,对本文的内容作了总结,分析了多波长光纤激光器的趋势,提出了展望,指出在拉曼增益特性等方面可能的研究方向。
     总之,本论文围绕多波长光纤激光器的研究热点问题,从理论和实验上研究了基于光纤拉曼和掺铒光纤混合增益机制、室温下稳定的多波长光纤激光器,我们相信这一成果能对科研生产起一定的指导作用。
With the development of the fiber communication technology and fiber-optical sensor technology, the optical devices which are compatible with optical fibers have been studied widely and in depth. Because of their advantages such as low cost, high reliability, flexible configuration and compatibility with fibers, and the potential applications in e.g. fiber communication systems, fiber sensors, optical spectrum analysis and RF generation, fiber lasers have attracted great interests. However, the intrinsic shortcomings in various current fiber lasers including multi-wavelength fiber lasers (MWFLs) such as power conversion efficiency gains, output stability and output spectral width, have influenced the performance and limited their applications.
    In this dissertation, we started with the studying of two different gain mechanisms used in fiber lasers — fiber Raman amplification and Erbium-doped fiber (EDF) amplification. By comparing the advantages and disadvantages between them, we focused the attention on MWFLs and proposed a novel hybrid gain mechanism which was used in MWFLs to suppress the intrinsic gain competition in Erbium-doped fiber amplifiers (EDFAs). Finally, a set of stable and uniform MWFLs in room temperature were obtained in our experiments.
    The theoretical analysis and numerical simulation on this hybrid gain mechanism were also proposed and the results showed that it can support stable operation of the fiber lasers.
    Another experiment was shown that this hybrid gain mechanism can also be applied in active mode-locked EDF lasers (AML-EDFLs) to suppress the supermode noise due to the gain competition in EDFA.
    This dissertation is organized as follows:
    In the introduction chapter, the history and present status of lasers and fiber lasers were introduced, and more attention was focused on the development process and current situation of MWFLs. In particular, the status of some key devices such as erbium-doped fibers, Raman fibers, pump sources and spectral filters were reviewed. The advantages and disadvantages of EDFAs, fiber Raman amplifiers (FRAs) and Semiconductor optical amplifiers (SOAs) were also introduced. At the end of this chapter, the main problems faced by MWFLs were presented.
    In chapter 2, the basic theory of EDFAs was studied, and the basic theoretical model was introduced and derived. Then, methods and processes of test and measurement on some important basic parameters of EDF were introduced. And then, an L-band EDFA with low noise and high gain was proposed and studied. Additionally, an ultra-broadband amplified spontaneous emission (ASE) source based on Bi-EDF was also studied and demonstrated.
    In chapter 3, characteristics of the medium gains and losses that impact the stability of multi-mode laser resonator, such as line broadening, gain saturation and mode competition were analyzed systemically. The rate equation of a multi-mode resonator was also studied.
    Then, taken the Sagnac loop filter as a main example, some key devices such as the resonators and spectral filters were analyzed theoretically and experimentally.
    In chapter 4, the stimulated Raman scattering (SRS) in fiber including some other nonlinear effects such as four-wave mixing (FWM) was studied theoretically. Then, the basic rate equations and coupled equations were derived from the semi-classical electromagnetic theory. And then, methods and processes of test and measurement on some important basic parameters for FRA were introduced. Finally, a Sagnac loop filter employed a section of photonic crystal fiber (PCF) was presented and a Raman MWFL was demonstrated in experiments.
    In chapter 5, the main tasks and major innovations of this dissertation were contained in this part. The different characteristics between EDF and fiber Raman gains were first compared experimentally, and then the hybrid gain mechanism based on EDFA and FRA was proposed. Furthermore, several MWFLs with various structures utilizing this hybrid gain mechanism were designed and studied. Since the gain of EDFA was much greater than the one of FRA, the hybrid gain mechanism can not be regarded as a simple combination of FRA and EDFA. With the experimental evidence on the absence of cross-saturation effects in fiber Raman, theoretical analysis and numerical simulation on the operation principle of this hybrid gain were proposed and the experimental results can be explained very well. Then, two novel methods of channel-spacing tunable and output wavelength range controllable MWFLs utilizing were proposed respectively.
    In chapter 6, the hybrid gain was used in AML-EDFLs, and the experimental results also show it can suppress the supermode noise in AML-EDFLs.
    In summary, this dissertation focused on the hot point of MWFLs, a novel method to obtain stable and uniform MWFLs in room temperature was proposed, and several important problems of MWFLs were studied theoretically and experimentally. Both theoretical and experimental results can play a role in guiding study on MWFLs.
引文
[1] F. P. Kapron, D. B. K., and R. D. Maurer, Radiation loss in glass optical waveguide. Appl. Phys. Lett., 1970. 17.
    [2] Agrawal, P. G., Nonlinear Fiber Optics. Third ed. 2001, San Diego: Academic Press. 315-316.
    [3] Maiman, T. H., Stamulated optical radiation in ruby masers. Nature, 1960. 187.
    [4] 周炳琨等,激光原理,2007,北京:国防工业出版社.
    [5] Hayashi, I., et al., Junction Lasers which Operate Continuously at Room Temperature. Appl. Physics Lett., 1970. 17.
    [6] 李福利,高等激光物理学.2006,北京:高等教育出版社.
    [7] Numai, T., Fundamentals of semiconductor lasers. 2004, New York: Springer.
    [8] Garbuzov, D., et al. 1400-1480nm ridge-waveguide pump lasers with 1 watt CW output power for EDFA and Raman amplification. in Optical Fiber Communication Conference and Exhibit. 2001.
    [9] Bellemare, A., Continuous-wave silica-based erbium-doped fibre lasers Progress in Quantum Electronics 2003. 27(4): p. 211-266
    [10] Codemard, C. A., et al., High-power continuous-wave cladding-pumped Raman fiber laser. Optics Letters, 2006. 31(15): p. 2290-2292
    [11] Soh, D. B. S., et al., Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-/spl mu/m wavelength range. Quantum Electronics, IEEE Journal of, 2004. 40(9): p. 1275-1282.
    [12] Saharudin, S., M. K. Abdullah, and M. A. Mahdi, Enhancement of brillouin stokes powers in multiwavelength fiber laser utilizing band-pass filter. Microwave and Optical Technology Letters, 2004. 40(5): p. 408-410.
    [13] Yu, X., et al., Temperature stability improvement of a multiwavelength Sagnac loop fiber laser using a high-birefringent photonic crystal fiber as a birefringent component. Optical Engineering, 2006. 45(4): p. 044201-1-4.
    [14] Pan, S. L., C. Y. Lou, and Y. Z. Gao, Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter. Optics Express, 2006. 14(3): p. 1113-1118.
    [15] Dong, X. P., et al., Multiwavelength erbium-doped fiber laser based on a high-birefringence fiber loop mirror. Electron. Lett., 2000. 36(19): p. 1609-1610.
    [16] Polynkin, P., et al., Single-frequency laser oscillator with watts-level output power at 1.5 mu m by use of a twisted-mode technique. Optics Letters, 2005. 30(20): p. 2745-2747.
    [17] Yao, J., et al., Active mode locking of tunable multi-wavelength fiber ring laser. Optics Communications, 2001. 191(3-6): p. 341-345.
    [18] Hardin, R. W., Quantum cascade laser lights a fire at Photonics West. Photonics Spectra, 1998. 32(4): p. 38-38.
    [19] Simpson, T. B. and F. Doft, Double-locked laser diode for microwave photonics applications. IEEE Photonics Technology Letters, 1999. 11(11): p. 1476-1478.
    [20] Rong, H. S., et al., A continuous-wave Raman silicon laser. Nature, 2005. 433(7027): p. 725-728.
    [21] Rong, H. S., et al., An all-silicon Raman laser. Nature, 2005. 433(7023): p. 292-294.
    [22] Rong, H. S., et al., Monolithic integrated Raman silicon laser. Optics Express, 2006. 14(15): p. 6705-6712.
    [23] SNITZER., E. Neodymium glass laser in Proceedings of the Third International Conference on Solid State Lasers. 1963. Paris, France: p. 21.
    [24] Koester, C. J. and E. Snitzer, Amplification in a fiber laser. Appl. Opt., 1964. 3
    [25] TIPPETT, J. T., BERKOWITZ, D. A., CLAPP, L. C., KOESTER, C. J., and VANDERBURGH, A., Optical and electro-optical information processing. 1965, Cambridge, Massachusetts,: Massachusetts Institute of Technology Press,.
    [26] Kao, K.C. and G.A. Hockham, Dielectric-fibre Surface Waveguides for Optical Frequencies. Proc. I. E. E., 1966. 113(7).
    [27] Whitley, T. J., Laser-diode pumped operation of Er3+ -doped fiber amplifier. Electron. Lett., 1988. 24(25): p. 1538-1539.
    [28] Nakazawa, M., Y. Kimura, and K. Suzuki, Efficient Er3+ optical fiber amplifier pumped by a 1.48um InGaAsP laser diode. Appl. Phys. Lett., 1989. 54.
    [29] odhanel, R. S. V., et al., Highly efficient 978nm diode-pumped erbium-doped fibre amplifier with 24dB gain. Electron. Lett., 1989. 24.
    [30] Mears, R. J., et al., Low-noise erbium-doped fibre amplifier operating at 1.54um. Electron. Lett., 1987. 23.
    [31] 刘颂豪,光纤激光器的新进展.光电子技术与信息,2003.16(1):p.1-8.
    [32] Ippen, E. P. and R. H. Stolen, Stimulated Brillouin scattering in optical fibers. Applied Physics Letters 1972. 21(11): p. 539-541.
    [33] Stolen, R. H., E. P. Ippen, and A. R. Tynes, Raman Oscillation in Glass Optical Waveguide. Applied Physics Letters 1972. 20(2): p. 62-64.
    [34] Stolen, R. H., C. Lee, and R. K. Jain, Development of the stimulated Raman spectrum in single-mode silica fibers. J. Opt. Soc. Am. B, 1984. 1: p. 652-657.
    [35] AuYeung, J. and A. Yariv, Spontaneous and stimulated Raman scattering in long low loss fibers. IEEE Journal of Quantum Electronics, 1978. 14(5): p. 347-352.
    [36] Smith, R. G., Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Applied Optics, 1972. 11(11): p. 2489-2494.
    [37] Ikeda, M., Stimulated Raman amplification characteristics in long span single-mode silica fibers. Optics Communications, 1981. 39(3): p. 148-152.
    [38] Lin, C. and R. H. Stolen, Backward Raman amplification and pulse steepening in silica fibers. Applied Physics Letters, 1976. 29(7): p. 428-431.
    [39] Minhui, Y., et al., Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps. Photonics Technology Letters, 2001. 13(9): p. 948-950.
    [40] Agrawal, G. P., Fiber-Optic Communication Systems. 2002: Wiley-Interscience.
    [41] Islam, M. N., X. C. Inc, and T. X. Allen, Raman amplifiers for telecommunications. IEEE J. of Selected Topics in Quantum Electron., 2002. 8(3): p. 548-559.
    [42] Bromage, J., Raman amplification for fiber communications systems. Journal of Lightwave Technology, 2004. 22(1): p. 79-93.
    [43] Olsson, N. A. and J. P. van der Ziel, Cancellation of fiber loss by semiconductor laser pumped Brillouin amplification at 1.5μm. Applied Physics Letters, 1986. 48(20): p. 1329-1330.
    [44] Kawasaki, B. S., et al., Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator. Applied Physics Letters, 1978. 32(7): p. 429-431.
    [45] Hill, K. O., B. S. Kawasaki, and D. C. Johnson, Low-threshold cw Raman laser. Applied Physics Letters, 1976. 29(3): p. 181-183.
    [46] Stolen, R. H., C. Lin, and R. K. Jain, A time-dispersion-tuned fiber Raman oscillator. Applied Physics Letters, 1977. 30(7): p. 340-342.
    [47] Lin, C. and R. H. Stolen, A cw tunable near-infrared (1.085-1.175-gm) Raman oscillator Opt. Lett., 1977. 1: p. 96-97.
    [48] Lin, C., R. H. Stolen, and L. G. Cohen, A tunable 1.1-mu m fiber Raman oscillator. Applied Physics Letters, 1977. 31(2): p. 97-99.
    [49] Karpov, V. I., et al., Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48μm. Opt. Lett., 1999. 24(13): p. 887-889.
    [50] Kafka, J. D. and T. Baer, Fiber Raman soliton laser pumped by a Nd: YAG laser. Optics Letters, 1987. 12: p. 181-183.
    [51] Stolen, R. H., Polarization Effects in Fiber Raman and Brillouin Lasers. IEEE Journal of Quantum Electronics, 1979. 15(10): p. 1157.
    [52] Boyraz, O. and B. Jalali, Demonstration of a silicon Raman laser. Optics Express, 2004. 12(21): p. 5269-5273.
    [53] Dianov, E. M., et al., Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber. Opt. Lett., 2000. 25(6): p. 402-404.
    [54] Chang, D. I. L. and H. Y. Kim, Optical fiber raman laser. 2000, US Patents.
    [55] Ilev, I. K., H. Kumagai, and K. Toyoda, A widely tunable (0.54--1.01mu m) double-pass fiber Raman laser. Applied Physics Letters, 1996. 69(13): p. 1846-1848.
    [56] Hill, K. O., B. S. Kawasaki, and D. C. Johnson, cw Brillouin laser. Applied Physics Letters, 1976. 28(10): p. 608-609.
    [57] Al-Mansoori, M. H., et al., Characterization of a multiwavelength Brillouin-erbium fiber laser based on a linear cavity configuration. Applied Optics, 2005. 44(14): p. 2827-2831.
    [58] Al-Mansoori, M. H., et al., 35-channel multiwavelength Brillouin-Erbium fiber laser utilizing fiber loop mirrors. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2005. 44(1-7): p. L190-L192.
    [59] Song, Y. J., et al., Self-seeded multiwavelength Brillouin-erbium fiber laser. Optics Letters, 2005. 30(5): p. 486-488.
    [60] Song, Y. J., et al., Tunable multiwavelength Brillouin-Erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter. IEEE Photon. Technol. Lett., 2004. 16(9): p. 2015-2017.
    [61] Al-Mansoori, M. H., et al., Low-threshold characteristics of a linear-cavity multiwavelength Brillouin/Erbium fiber laser. Microwave and Optical Technology Letters, 2004. 41(2): p. 114-117.
    [62] Cowle, G. J. and D. Y. Stepanov, Multiple wavelength generation with Brillouin/erbium fiber lasers. IEEE Photon. Technol. Lett., 1996. 8(11): p. 1465-1467.
    [63] Abd-Rahman, M. K., M. K. Abdullah, and H. Ahmad, Multiwavelength generation of dual-cavity Brillouin/erbium fiber laser. Journal of Nonlinear Optical Physics & Materials, 2000. 9(2): p. 235-241.
    [64] Harun, S. W. and H. Ahmad, Multiwavelength laser comb in L-band region with dual-cavity Brillouin/erbium fiber laser. Japanese Journal of Applied Physics Part 2-Letters, 2002. 41(11A): p. L1234-L1236.
    [65] Mohammed, N. I., Raman Amplifiers for Telecommunications. Journal of Selected Topics in Qantum Electronics, 2002. 8(3): p. 548~559.
    [66] Naito, T., et al. A broadband distributed Raman amplifier for bandwidths beyond 100nm. in Optical Fiber Communication Conference and Exhibit. 2002. Anaheim, CA: p. 116-117.
    [67] Stokes, L. F., M. Chodorow, and H. J. Shaw, All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold. Opt. Lett., 1982. 7(10): p. 509-511.
    [68] Jeong, Y., et al., Ytterbium-doped large-core fiber laser with 1 kW of continuous-wave output power. ELECTRONICS LETTERS, 2004. 40(8): p. 3.
    [69] Nilsson, J., et al. High-power fiber lasers: new developments, in Advances in Fiber Lasers. 2003. San Jose, CA, USA: SPIE: p. 50-59. Available from: http://link.aip.org/link/?PSI/4974/50/1
    [70] Nilsson, J., et al. High Power Fiber Lasers. in Optical Fiber Communication Conference. 2005. Southampton Univ., UK: p. 3 pp.
    [71] Zyskind, J. L., et al., Short single frequency erbium-doped fibre laser. Electronics Letters, 1992. 28(15): p. 1385-1387.
    [72] Kee, H. H., G. P. Lee, and T. P. Newson, Narrow linewidth CW and Q-switched erbium-doped fibre loop laser. Electronics Letters, 1998. 34(13): p. 1318-1319.
    [73] Paschotta, R., et al., Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning. Opt. Lett., 1997. 22(1): p. 40-42.
    [74] Zyskind, J. L. and e. al.. Short single frequency erbium-doped fibre laser. Electron. Lett., 1992. 28.
    [75] Sejka, M., et al., Distributed feedback Er3+-doped fibre laser. Electronics Letters, 1995. 31(17): p. 1445-1446.
    [76] Cheng, Y., et al., Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter Opt. Lett., 1995. 20(8): p. 875-877.
    [77] 陈淑芬,et al.,30Hz单模超窄线宽光纤激光器.北京理工大学学报,2006.26(8).p.721-724.
    [78] Schmuck, H., T. Pfeiffer, and G. Veith, Widely tunable narrow linewidth erbium doped fibre ring laser. Electronics Letters, 1991. 27(23): p. 2117-2119.
    [79] Ilday, F., J. Chen, and E Kartner, Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser Opt. Express, 2005. 13: p. 2716-2721.
    [80] OIlday, F., et al., Generation of 50-fs, 5-nJ pulses at 1.03μm from a wave-breaking-free fiber laser. Opt. Lett., 2003. 28: p. 1365-1367.
    [81] Ding, G., et al., Ultra-short pulsed ytterbium-doped fiber laser and amplifier Chinese Optics Letters, 2005. 4(4): p. 222-224
    [82] Sun, J. Q., J. L. Qiu, and D. X. Huang, Multiwavelength erbium-doped fiber laser exploiting intracavity polarization inhomogeneity. Science in China Series E-Technological Sciences, 2000. 43(2): p. 194-198.
    [83] De Matos, C. J. S., et al., Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55μm. Electron. Lett., 2001. 37(13): p. 825-826.
    [84] Shan Qin, D. C., Yongbo Tang, and Sailing He, Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains. Opt. Express, 2006. 14(22): p. 6.
    [85] Hayashi, R., S. Yamashita, and T. Saida. Multiwavelength, actively mode-locked polarization maintaining fiber laser at 10 GHz. in Optical Fiber Communications Conference (OFC). 2003: p. 239-240.
    [86] Yang, J. L., et al., Double-ring cavity configuration of actively mode-locked multi-wavelength fiber laser with equally tunable wavelength spacing. Applied Physics B: Lasers and Optics, 2005. 80(4): p. 445-448.
    [87] Spiegelberg, C., et al., Low-noise narrow-linewidth fiber laser at 1550nm. Journal of Lightwave Technology, 2004. 22(1): p. 57-62.
    [88] Spiegelberg, C., et al. Compact 100 mW fiber laser with 2 kHz linewidth, in Optical Fiber Communications Conference. 2003. Tuscon, AZ, USA: p. PD45-P1-3.
    [89] Kaneda, Y., et al. Single-frequency, all-fiber Q-switched laser at 1550-nm. in OSA Topical Meeting Advanced Solid-State Photonics 2004. Available from: http://citeseer.ist.psu.edu/677107.html.
    [90] Geng, J., C. Spiegelberg, and S. Jiang, Narrow Linewidth Fiber Laser for 100-km Optical Frequency Domain Reflectometry. Photonics Technology Letters, IEEE, 2005. 17(9): p. 1827-1829.
    [91] Hu, Y., et al. High power single-frequency narrow-linewidth erbium-doped fiber laser. in Lasers and Electro-Optics Society (LEOS). 2003: p. 794-795.
    [92] Yoshida, E., Y. Kimura, and M. Nakazawa, Laser diode-pumped femtasecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control. Applied Physics Letters, 1992. 60(8): p. 932-934.
    [93] Dianov, E. M., et al., CW high power 1.24_m and 1.48_m Raman lasers based on low loss phosphosilicate fiber. Electron. Lett., 1997. 33: p. 1542-1544.
    [94] Vallee, R., et al., Highly Efficient and High-Power Raman Fiber Laser Based on Broadband Chirped Fiber Bragg Gratings. Journal of Lightwave Technology, 2006. 24(12): p. 5039-5043.
    [95] Zirngibl, M., et al., LARnet, a local access router network. Photonies Technology Letters, IEEE, 1995. 7(2): p. 215-217.
    [96] Yang, J. L., et al., Photonics true-time-delay unit for phased-array antenna using multiwavelength fiber laser based on a Sagnac interferemetric filter. International Journal of Infrared and Millimeter Waves, 2002. 23(6): p. 891-897.
    [97] Han, Y. G., et al., Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. Optics Letters, 2005. 30(11): p. 1282-1284.
    [98] 田大伟,et al.,多波长掺铒光纤激光器技术研究.激光与光电子学进展,2005.42(9):p.6-9.
    [99] 孙国勇,et al.,多波长掺铒光纤激光器的研究进展.激光与光电子学进展,2004.41(9):p.19-22.
    [100] 孙文风 and 姚勇,多波长掺铒光纤激光器的研究进展.光电子技术与信息,2004.17(5):p.10-14.
    [101] Han, Y. G., et al., Development of a multiwavelength Raman fiber laser based on phase-shifted fiber Bragg gratings for long-distance remote-sensing applications. Optics Letters, 2005. 30(10): p. 1114-1116.
    [102] Maran, J. N., et al., Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser. IEEE Transactions on Instrumentation and Measurement, 2004. 53(1): p. 67-71.
    [103] Yamashita, S., T. Baba, and Y. Namihira, Measurement of polarization mode dispersion (PMD) with a multiwavelength fiber laser. Ieice Transactions on Electronics, 2003. E86C(1): p. 59-62.
    [104] Yao, Y., et al., Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation. Photonics Technology Letters, IEEE, 2006. 15(1): p. 187-189.
    [105] Park, N. and P.F. Wysocki, 24-line multiwavelength operation of erbium-doped fiber-ring laser. IEEE Photon. Technol. Lett., 1996. 8(11): p. 1459-1461.
    [106] Staring, A. A. M., et al., A compact nine-channel multiwavelength laser. IEEE Photon. Technol. Lett., 1996. 8: p. 1139-1141.
    [107] Zirngibl, M., et al., An 18-channel multifrequency laser. IEEE Photon. Technol. Lett., 1996. 8: p. 870-872.
    [108] Yu, J. J., K. J. Guan, and B. J. Yang, Multiwavelength generation in an erbium-doped fiber laser using a Fabry-Perot filter. Microwave and Optical Technology Letters, 1998. 19(1): p. 51-54.
    [109] An, H. L., et al., Multiwavelength erbium-doped fiber laser incorporating a double-pass Mach-Zehnder interferometer. Microwave and Optical Technology Letters, 1999. 20(4): p. 270-272.
    [110] Yoon, I., et al., Tunable multiwavelength fiber laser employing a comb filter based on a polarization-diversity loop configuration. Journal of Lightwave Technology, 2006. 24(4): p. 1805-1811.
    [111] Peng, P. C., et al., Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier. Optics Communications, 2006. 259(1): p. 200-203.
    [112] Dong, X. Y., et al., Multiwavelength Raman fiber laser with a continuously-tunable spacing. Optics Express, 2006. 14(8): p. 3288-3293.
    [113] Ding, L., et al., A four-wavelength all-fiber laser for wavelength division multiplexing system. Chin. Phys. Lett., 2001. 18: p. 376-378
    [114] Takahashi, H., H. Toba, and Y. Inoue, Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer. Electronics Letters, 1994. 30.
    [115] Miyazaki, T., et al., A multiwavelength fiber ring-laser employing a pair of silica-based arrayed-waveguide-gratings. Photonics Technology Letters, IEEE, 1997. 9(7): p. 910-912.
    [116] Park, N., J. W. Dawson, and K. J. Vahala, Multiple wavelength operation of an erbium-doped fiber laser. Photonics Technology Letters, IEEE, 1992. 4(6): p. 540-541.
    [117] Desurvire, E., J. L. Zyskind, and J. R. Simpson, Spectral gain hole-burning at 1.53um in erbium-doped fiber amplifiers. Photonics Technology Letters, IEEE, 1990. 2(4): p. 246-248.
    [118] Desurvire, E., et al., Study of spectral dependence of gain saturation and effect of inhomogeneous broadening in erbium-doped aluminosilicate fiber amplifiers. Photonics Technology Letters, IEEE, 1990. 2(9): p. 653-655.
    [119] Okamura, H., Automatic optical-loss compensation with Er-doped fibre amplifier. Electronics Letters, 1991. 27(23): p. 2155-2156.
    [120] Dawson, J. W., N. Park, and K. J. Vahala, Co-lasing in an electrically tunable erbium-doped fiber laser. Applied Physics Letters, 1992. 60(25): p. 3090-3092.
    [121] Park, N. and P. F. Wysocki, 24-line multiwavelength operation of erbium-doped fiber-ring laser. Phntonics Technology Letters, IEEE, 1996. 8(11): p. 1459-1461.
    [122] Yamashita, S. and K. Hotate, Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen. Electronics Letters, 1996. 32(14): p. 1298-1299.
    [123] Kim, S. K., M. J. Chu, and J. H. Lee, Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback. Optics Communications, 2001. 190(1-6): p. 291-302.
    [124] Bellemare, A., et al., Room Temperature Multifrequency Erbium-Doped Fiber Lasers Anchored on the ITU Frequency Grid. J. Lightwave Technol., 2000. 18: p. 825-.
    [125] Maran, J.-N., S. LaRochelle, and P. Besnard, C-band multi-wavelength frequency-shifted erbium-doped fiber laser. Optics Communications, 2003. 218(1-3): p. 81-86.
    [126] Zhou, K., et al., Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback Optics Letters, 2003. 28(11): p. 893-895
    [127] Yao, J., et al., Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase Modulator. Photonics Technology Letters, IEEE, 2005. 17(4): p. 756-758.
    [128] 孙军强,丘军林,and 黄德修,应用偏振非均匀性实现多波长振荡的掺铒光纤激光器.中国科学(E辑),2000.30(5):p.391-394.
    [129] Liu, X. and C. Lu, Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers. Photonics Technology Letters, IEEE, 2005. 17(12): p. 2541-2543.
    [130] Han, Y.-G., T.V.A. Tran, and S. B. Lee, Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shift fiber. Opt. Lett., 2006. 31: p. 697-699
    [131] Wang, Q., et al., Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers. Optics Letters, 2005. 30(9): p. 952-954
    [132] Wang, Q., et al., Experimental investigation of an inhomogeneous loss and its influence on multiwavelength fiber lasers. Opt. Lett., 2005. 30: p. 3033-3035.
    [133] Roy, V., et al., Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser. Opt. Express, 2005. 13: p. 6791-6797
    [134] Yamashita, S. and Y. Inoue. Multiwavelength Er-doped fiber ring laser incorporating highly nonlinear fiber. in Lasers and Electro-Optics (CLEO) 2004. Tokyo Univ., Japan: p. 3 pp.
    [135] Wang, D. N., et al., Multiwavelength fiber laser source with a hybrid gain medium. Proc. CLEO 2003, 2003: p. CThM35.
    [136] Evans, I. and M. J. Connelly. Multiwavelength Mode-locked Fiber Ring Laser with a Lyot Filter and a Hybrid Gain Medium. 2005. Available from: http://www.ece.ul.ie/research/ocrg/WD6.pdf.
    [137] Wang, D. N., et al., Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium. Optics Communications, 2003. 228(4-6): p. 295-301.
    [138] Graydon, O., et al., Triple-frequency operation of an Er-doped twincore fiber loop laser. Photonics Technology Letters, IEEE, 1996. 8(1): p. 63-65.
    [139] Das, G. and J.W.Y. Lit, Multiwavelength fiber laser using a multimode elliptical-core erbium-doped fiber. Microwave and Optical Technology Letters, 2004. 42(2): p. 124-128.
    [140] Laming, R. I., et al., Twincore erbium-doped fibre amplifier with passive spectral gain equalisation. Electronics Letters, 1993. 29(6): p. 509-510.
    [141] Chen, H., Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier," Opt. Lett., 2005. 30: p. 619-621.
    [142] Zhao, C.-L., et al., Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber Bragg grating. Optics Communications, 2005. 252(1-3): p. 52-57.
    [143] Han, Y.G., et al., Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method. Optics Express, 2005. 13(17): p. 6330-6335.
    [144] Wang, Z. Y., et al., Multiwavelength generation in a Raman fiber laser with sampled Bragg grating. IEEE Photon. Technol. Lett., 2005. 17(10): p. 2044-2046.
    [145] Han, Y. G., et al., Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings. Optics Letters, 2005. 30(17): p. 2200-2202.
    [146] Zhan, L., et al., 160-line multiwavelength generation of linear-cavity self-seeded Brillouin-Erbium fiber laser. Opt. Express, 2006. 14(22): p. 10233-10238.
    [147] Wang, Q., et al., 47-wavelength flat erbium-doped fiber ring laser with reduced operation power. Chinese Optics Letters, 2005. 3(7): p. 405-406
    [148] Xiang, Z., et al., A simplified model and optimal design of a multiwavelength backward-pumped fiber Raman amplifier. Photonics Technology Letters, IEEE, 2001. 13(9): p. 945-947.
    [149] Dong, X., et al. Spacing-tunable multiwavelength fiber laser with a fiber grating-based Fabry-Perot filter. in Lasers and Electro-Optics Society. 2005: p. 814-815.
    [150] Lam, H. Q., et al., Polarization-Dependent Locking in SOA Harmonic Mode-Locked Fiber Laser. Photonics Technology Letters, IEEE, 2006. 18(22): p. 2404-2406.
    [151] Feng, X., et al., Multiwavelength fiber lasers based on multimode fiber Bragg gratings using offset launch technique. Optics Communications, 2006. 263(2): p. 295-299.
    [152] Zhang, A., M. S. Demokan, and H. Y. Tam, Room temperature multiwavelength erbium-doped fiber ring laser using a highly nonlinear photonic crystal fiber. Optics Communications, 2006. 260(2): p. 670-674.
    [153] Feng, X., H.-Y. Tam, and P. K. A. Wai, Switchable multiwavelength erbium-doped fiber laser with a multimode fiber Bragg grating and photonic crystal fiber. Photonics Technology Letters, IEEE, 2006. 18(9): p. 1088-1090.
    [154] Lee, Y. W., et al., Polarization-independent tunable fiber comb filter. Photonics Technology Letters, IEEE, 2004. 16(9): p. 2066-2068.
    [155] Alcock, I. P., et al., M ode-lockingof a neodymium-doped monomodefibre laser. Electron. Lett., 1986. 22(5): p. 268-269.
    [156] 杨祥林,光放大器及其应用.2000,北京:电子工业出版社.
    [157] Siegman, A. E., Lasers. 1986, University Science Books: Mill Valley, California. p. 158, 992.
    [158] Miniscalco, W. J., Erbium-doped glasses for fiber amplifiers at 1500nm. Lightwave Technology, Journal of, 1991. 9(2): p. 234-250.
    [159] Mears, R. J. and S. R. Baker, Erbium fibre amplifiers and lasers. Optical and Quantum Electronics, 1992. 24(5): p. 517-538.
    [160] Desurvire, E., Eribium-doped fiber amolifiers: principles and Applications. 1994, New York: John Wuley & Sons.
    [161] 强则宣,低噪声、高增益、高平坦掺铒光纤放大器的实验研究及分析设计.2004:浙江大学博士毕业论文.
    [162] Yariv, A., Quantum Electronics. second edition ed. 1975, New York: John Wiley.
    [163] Zyskind, J. L. Advances in Erbium-doped fiber amplifiers for optical communications. in Fiber Laser Sources and Amplifiers Ⅱ. 1991. San Jose, USA: SPIE: p. 80-92. Available from: http://link.aip.org/link/?PSI/1373/80/1
    [164] Giles, C. R. and E. Desurvire, Modeling erbium doped fiber amplifiers. J. of Lightwave Technol., 1991. 9(2): p. 271-283.
    [165] Desurvire, E., J. R. Simpson, and P. C. Becker, High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett., 1987. 12: p. 888.
    [166] Sandoe, J. N. and e. al, Variation of Er3+ cross section for stimulated emission with glass composition. J. Phys. D: Appl. Phys., 1972. 5: p. 1788-1799
    [167] McCumber, D. E., Theory of Phonon-Terminated Optical Masers. Physical Review, 1964. 134(2A): p. A299.
    [168] Giles, C. R., et al., Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers. Photonics Technology Letters, IEEE, 1991. 3(4): p. 363-365.
    [169] di Muro, R., The Er3+-fiber gain coefficient derived from a dynamic gain tilt technique. Lightwave Technology, Journal of, 2000. 18(3): p. 343-347.
    [170] Marcerou, J.-F., et al. General theoretical approach describing the complete behavior of the erbium-dopedfiber amplifier, in Fiber Laser Sources and Amplifiers Ⅱ. 1991. San Jose, USA: SPIE: p. 168-186. Available from: http://link.aip.org/link/?PSI/1373/168/1
    [171] Tench, R. E. and M. Shimizu, Fluorescence-based measurement of g *(λ) for erbium-doped fluoride fiber amplifiers. Lightwave Technology, Journal of, 1997. 15(8): p. 1559-1564.
    [172] Saleh, A. A. M., et al., Modeling of gain in erbium-doped fiber amplifiers. Photonics Technology Letters, IEEE, 1990. 2(10): p. 714-717.
    [173] Di Muro, R., et al., Experimental correlation of the extended-band EDFA with an optimized numerical model using a dynamic gain tilt technique. Photonics Technology Letters, IEEE, 2000. 12(9): p. 1159-1161.
    [174] Di Muro, R., et al. A new method to determine the Er-fibre gain coefficient from dynamic gain tilt technique. in Optical Fiber Communication Conference. 1999: p. 108-110 vol.2.
    [175] Becket, P. C., N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology. 1999: Academic Press.
    [176] Derickson, D., Fiber optic test and measurement. 1997, San Diego: ACADEMIC Press.
    [177] Flood, F. A. and C. C. Wang, 980-nm pump-band wavelengths for long-wavelength-band erbium-doped fiber amplifiers. Photonics Technology Letters, IEEE, 1999. 11(10): p. 1232-1234.
    [178] Mahdi, M. A., et al., Long-wavelength EDFA gain enhancement through 1550nm band signal injection. Optics Communications, 2000. 176(1-3): p. 125-129.
    [179] Lee, J., et al., Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section. Photonics Technology Letters, IEEE, 1999. 11(1): p. 42-44.
    [180] Harum, S. W., P. Poopalan, and H. Ahmad, Gain enhancement in L-band EDFA through a double-pass technique. Photonics Technology Letters, IEEE, 2002. 14(3): p. 296-297.
    [181] 强则煊,et al.,L-波段掺铒光纤放大器的优化设计.光电子·激光,2003.32(12):p.1284-.
    [182] Tanabe, S., et al., Broad-band 1.5[mu]m emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier. Journal of Luminescence, 2000. 87-89: p. 670-672.
    [183] Sugimoto, N., et al. Broad-band 1.5[mu]m emission of Er3+ ions in bismuth-based oxide glasses for WDM amplifier. in LEOS. 1999: p. 814-815.
    [184] Wang, Y., et al., An 88-nm broadband ASE source with bismuth-based erbium-doped fiber. Chin. Opt. Lett., 2005. 3(1): p. 4-5.
    [185] Ohara, S., et al., Ultra-wideband amplifiers based on Bi2O3-EDFAs. Optical Fiber Technology, 2004. 10(4): p. 283-295.
    [186] Liu, H. L., et al., La-codoped bismuth-based erbium-doped fiber ring laser with 106-nm tuning range. Photonics Technology Letters, IEEE, 2005. 17(2): p. 297-299.
    [187] Liu, H. L., et al., Wavelength-switchable La-codoped bismuth-based erbium-doped fiber ring laser. Photonics Technology Letters, IEEE, 2005. 17(5): p. 986-988.
    [188] Huang, W. C., et al., One-stage erbium ASE source with 80nm bandwidth and low ripples. Electronics Letters, 2002. 38(17): p. 956-957.
    [189] Digonnet, M. J. F., Rare-earth-doped fiber lasers and amplifiers. 2nd ed. 2001, New York: Marcel Dekker.
    [190] Hodgson, N. and H. Weber, Laser Resonators and Beam Propagation. 2nd ed. 2005: Springer.
    [191] Desurvire, E., C. R. Giles, and J. R. Simpson, Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at λ=1.53 μm. Lightwave Technology, Journal of, 1989. 7(12): p. 2095-2104.
    [192] Yariv, A., Quantum Electronics. 3rd ed. 1989, New York: John Wiley & Sons.
    [193] Srivastava, A. K., et al. Room temperature spectral hole-burning in erbium-doped fiber amplifiers, in Optical Fiber Communications. 1996: p. 33-34.
    [194] Taylor, M. G., Observation of new polarization dependence effect in long haul optically amplified system. Photonics Technology Letters, IEEE, 1993. 5(10): p. 1244-1246.
    [195] Mazurczyk, V. J. and J. L. Zyskind, Polarization dependent gain in erbium doped-fiber amplifiers. Photonics Technology Letters, IEEE, 1994. 6(5): p. 616-618.
    [196] Han, Y. G., et al., Multiwavelength Raman fiber ring laser based on tunable cascaded long-period fiber gratings. IEEE Photon. Technol. Lett., 2003. 15(3): p. 383-385.
    [197] Chun-Liu, Z., et al., Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber. Optics Communications, 2004. 230(4-6): p. 313-317.
    [198] Ngo, N. Q., et al., Spacing-tunable multiwavelength fiber laser source using a Sagnac loop filter. Optical Engineering, 2005. 44(1): p. -.
    [199] Hu, S. Z., L.; Song, Y. J.; Li, W.; Luo, S. Y.; Xia, Y. X.;, Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror. Photonics Technology Letters, IEEE, 2005. 17(7): p. 1387-1389
    [200] Han, Y.G., et al., Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620nm. IEEE Photon. Technol. Lett., 2005. 17(5): p. 989-991.
    [201] Fang, X. and R. O. Claus, Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer. Opt. Lett., 1995. 20.
    [202] Dang, H., et al., Multiwavelength fiber ring laser source based on a delayed interferometer. Photonics Technology Letters, IEEE, 2005. 17(2): p. 303-305.
    [203] Slavik, R., et al., Short multiwavelength fiber laser made of a large-band distributed Fabry-Perot structure. IEEE Photon. Technol, Lett., 2004. 16(4): p. 1017-1019.
    [204] Brochu, G., S. LaRochelle, and R. Slavik, Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pe/spl acute/rot fiber lasers. Lightwave Technology, Journal of, 2005. 23(1): p. 44-53.
    [205] Andy, L. Y. L., S. F. Chien, and W. M. Wang, Multi-wavelength generation of L-band brillouin/erbium fibre laser. Optical and Quantum Electronics, 2003. 35(11): p. 1055-1063.
    [206] Al-Mansoori, M. H., et al. L-band Brillouin-erbium comb fiber laser with intra-cavity pre-amplified Brillouin pump. in Lasers and Electro-Optics Society. 2005: p. 931-932.
    [207] Haddud, T. A., et al., 24-line of Brillouin-Erbium fiber laser utilizing a Fabry-Pérot cavity in L-band. Microwave and Optical Technology Letters, 2005. 45(2): p. 165-167.
    [208] Pan, S. and C. Lou, Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation. Photonics Technology Letters, IEEE, 2006. 18(13): p. 1451-1453
    [209] Wang, Y., et al., Theoretical and experimental study on multimode optical fiber grating. Optics Communications, 2005. 250(1-3): p. 54-62.
    [210] Yu, H.-G, et al., Oscillation wavelength selection of semiconductor lasers using a multimode fiber Bragg grating. Opt. Express, 2005. 13,: p. 1660-1665.
    [211] Nasu, Y. and S. Yamashita, Densification of sampled fiber Bragg gratings using multiple-phase-shift(MPS) technique. Lightwave Technology, Journal of, 2005. 23(4): p. 1808-1817.
    [212] Nasu, Y. and S. Yamashita, Multiple phase-shifi superstructure fibre Bragg grating for DWDM systems. Electronics Letters, 2001. 37(24): p. 1471-1472.
    [213] Orsila, L., et al., Thin-Film Fabry-Perot Dispersion Compensator for Mode-Locked Fiber Lasers. Photonics Technology Letters, IEEE, 2007. 19(1): p. 6-8.
    [214] Zhang, A., et al., Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystalfiber Photonics Technology Letters, IEEE, 2005. 17(12): p. 2535-2537.
    [215] Liu, X. M., et al., Switchable and tunable multiwavelength erbium-doped fiber laser with fiber bragg gratings and photonic crystal fiber. IEEE Photon. Technol. Lett., 2005. 17(8): p. 1626-1628.
    [216] Liu, X., et al., Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber. Opt. Express, 2005. 13(1): p. 142-147.
    [217] Yang, X. F., et al., Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber. IEEE Photon. Technol. Lett., 2005. 17(12): p. 2538-2540.
    [218] Yamashita, S. and M. Yokooji, Channel spacing-tunable sampled fiber Bragg grating by linear chirp and its application to multiwavelength fiber laser. Optics Communications, 2006. 263(1): p. 42-46.
    [219] Xiang-Fei, C., et al., Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating. Photonics Technology Letters, IEEE, 2000. 12(11): p. 1501-1503.
    [220] Wang, C., J. Azana, and L. R. Chen, Efficient technique for increasing the channel density in multiwavelength sampled fiber Bragg grating filters. Photonics Technology Letters, IEEE, 2004. 16(8): p. 1867-1869.
    [221] Zou, X.-H., et al., Accurate analytical expression for reflection-peak wavelengths of sampled Bragg grating. Photonics Technology Letters, IEEE, 2006. 18(3): p. 529-531.
    [222] Dai, Y., et al., High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift. Photonies Technology Letters, IEEE, 2005. 17(5): p. 1040-1042.
    [223] Wei, D., et al., Multiwavelength erbium-doped fiber ring lasers with overlap-written fiber Bragg gratings. Opt. Lett., 2000. 25(16): p. 1150-1152.
    [224] Moon, D., U.-C. Paek, and Y. Chung, Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core. Opt. Express 2005. 13: p. 5574-5579.
    [225] Chung, S. and B. Lee, Variable wavelength-spacing tunable filter using polarization differential delay line. Optical Engineering, 2005. 44(2): p. 020501-2.
    [226] MORTIMORE, D. B., Fiber Loop Reflectors. J. Lightwave Technol., 1988. 6(7): p. 1217-1224.
    [227] Dong, X. P., et al., Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror. Electronics Letters, 2000. 36(19): p. 1609-1610.
    [228] 蒙红云,et al.,Sagnac型环形镜理论研究 南开大学学报(自然科学版),2003.36(3):p.81-.
    [229] 郁道银 and 谈恒英,工程光学.1999,北京:机械工业出版社.
    [230] Boyd, R. W., Nonlinear Optics. 3rd ed. 2003, San Diego: Academic Press.
    [231] Raman, C., A new radiation. Indian J. Phys, 1928. 2: p. 387-.
    [232] Oppenhein, A. V. and A. S. Willsky, Signals and Systems. 2nd ed. 1998, Boijing: Prentice Hall & Tsinghua.
    [233] Mamyshev, P. V. and S. V. Chernikov, Ultrashort-pulse propagation in optical fibers. Opt. Lett., 1990. 15(19): p. 1076-1078.
    [234] 陈军,非线性光学课堂讲义(浙江大学).2005.
    [235] Shen, Y. R., The principles of nonlinear optics. 1984, New York: Wiley.
    [236] van Deventer, M. O. and A. J. Boot, Polarization properties of stimulated Brillouin scattering in single-mode fibers. Lightwave Technology, Journal of, 1994. 12(4): p. 585-590.
    [237] 钱士雄 and 王恭明,非线性光学原理与进展.2001,上海:复旦大学出版社.
    [238] Valley, G., A review of stimulated Brillouin scattering excited with a broad-band pump laser. Quantum Electronics, IEEE Journal of, 1986. 22(5): p. 704-712.
    [239] Narum, P., M. Skeldon, and R. Boyd, Effect of laser mode structure on stimulated Brillouin scattering. Quantum Electronics, IEEE Journal of, 1986. 22(11): p. 2161-2167.
    [240] Lichtman, E., et al., Stimulated Brillouin scattering excited by two pump waves in single-mode fibers. JOSA B. 4(9): p. 1397-
    [241] A Penzkofer, A. L., W Kaiser, High Intensity Raman Interactions. 1979: Pergamon Press.
    [242] Sutherland, R. L., Handbook of nonolinear optics. 1996, New York: Marcel Dekker.
    [243] 张徐亮,分布式光纤拉曼放大器的理论和实验研究.2006,杭州:浙江大学博士毕业论文.
    [244] Stolen, R. H. and E. P. Ippen, Raman gain in glass optical waveguides. Applied Physics Letters, 1973. 22(6): p. 276-278.
    [245] Urquhart, W. P. and P. J. R. Laybourn, Stimulated Raman scattering in optical fibers with nonconstant losses-A two-wavelength model. Applied Optics, 1986. 25: p. 1746-1753.
    [246] Urquhart, W. P. and P. J. R. Layboum, Stimulated Raman scattering in optical fibers with nonconstant losses: a multiwavelength model. Appl. Opt., 1986. 25.
    [247] Perlin, V. E. and H. G. Winful, Optimal design of flat-gain wide-band fiber Raman amplifiers. Lightwave Technology, Journal of, 2002. 20(2): p. 250-254.
    [248] Mandelbanm, I. and M. Bolshtyansky, Raman amplifier model in single-mode optical fiber. Photonics Technology Letters, IEEE, 2003. 15(12): p. 1704-1706.
    [249] Sang, X., P. L. Chu, and C. Yu, Applications of Nonlinear Effects in Highly Nonlinear Photonic Crystal Fiber to Optical Communications Optical and Quantum Electronics, 2005. 37: p. 965-994.
    [250] Bouteiller, J. C., Spectral modeling of Raman fiber lasers. Photonics Technology Letters, IEEE, 2003. 15(12): p. 1698-1700.
    [251] Hill, K. O., et al., cw three-wave mixing in single-mode optical fibers. Journal of Applied Physics, 1978. 49(10): p. 5098-5106.
    [252] Shibata, N., R. Braun, and R. Waarts, Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber. Quantum Electronics, IEEE Journal of, 1987. 23(7): p. 1205-1210.
    [253] Babin, S. A., et al., Homogeneous Raman gain saturation at high pump and Stokes powers. J. Opt. Soc. Am. B, 2006. 23(8): p. 1524-1530.
    [254] 崔晟,光纤拉曼放大器的性能优化理论与设计方法研究.2004:西安电子科技大学博士毕业论文.
    [255] Russell, P., Photonic Crystal Fibers. 2003. p. 358-362.
    [256] Rob, S., I. Yoon, and B. Lee. SOA based multiwavelength fiber ring laser with tunability of both channel spacing and wavelength. in Passive Components and Fiber-based Devices Ⅲ. 2006. Gwangiu, South Korea: SPIE: p. 635110-9. Available from: http://link.aip.org/link/?PSI/6351/635110/1
    [257] Agrawal, G. P., Fiber-optic Communication Systems. Vol. Ch 8. 1997: John Willey and Sons.
    [258] Ryan, J. C. and N. M. Lawandy, Multiple relaxation and inhomogeneous broadening in resonance enhanced Raman scattering: Application to tunable infrared generation. Applied Physics B: Lasers and Optics, 1989. 48(2): p. 173-182.
    [259] Hollenbeck, D. and C. D. Cantrell, Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. JOSA B, 2002. 19(12): p. 2886-2892.
    [260] Kim, C. -S., R. M. Sova, and J. U. Kang, Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter. Optics Communications, 2003. 218(4-6): p. 291-295.
    [261] Peng-Chun, P., T. Hong-Yih, and C. Sien, Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme. Photonics Technology Letters, IEEE, 2004. 16(2): p. 575-577.
    [262] Takushima, Y. and K. Kikuchi, Spectral gain hole burning and modulation instability in a Brillouin fiber amplifer. Optics Letters, 1995. 20(1): p. 34-.
    [263] Babin, S., et al., Raman gain saturation at high pump and Stokes powers. Optics Express, 2005. 13(16): p. 6079-6084.
    [264] Suret, P. and S. Randoux, Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models. Optics Communications, 2004. 237(1-3): p. 201-212.
    [265] Lamb, W. E., Theory of an Optical Maser Physical Review, 1964. 134(6A): p. A1429-A1450.
    [266] Yamashita, S. and T. Baba, Spacing-tunable multiwavelength fibre laser. Electronics Letters, 2001. 37(16): p. 1015-1017.
    [267] Pan, S. and C. Lou, Stable multiwavelength erbium-doped fiber laser at room temperature with tunable wavelength, wavelength spacing, and channel number. Optical Engineering, 2006. 45(11): p. 114203-4.
    [268] Luo, T., et al., Tunable wavelength spacing multi-wavelength ring laser using programmable DGD module as intra-cavity filter. Electronics Letters, 2004. 40(25): p. 1578-1579.
    [269] Yan, L., et al., Programmable group-delay module using binary polarization switching. Lightwave Technology, Journal of, 2003. 21(7): p. 1676-1684.
    [270] Lee, K., et al., Optically controlled Sagnac loop comb filter. Opt. Express, 2004. 12: p. 6335-6340
    [271] Lee, Y., et al., Polarization-independent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration. Opt. Express, 2003. 11: p. 3359-3364.
    [272] Nelson, L. E., et al., Ultrashort-pulsefiber ring lasers. Applied Physics B: Lasers and Optics, 1997. 65(2): p. 277-294.
    [273]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700