用户名: 密码: 验证码:
应激条件下中枢胆碱能系统对颈动脉窦压力感受器反射的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨中枢胆碱能系统在应激条件下对颈动脉窦压力感受器反射(Carotid sinus baroreceptor reflex, CSR)的影响及其可能的调节机制。
     方法:
     选择SD大鼠于应激态(足底随机电击,每次2小时,一天二次,持续一周,经应激标准筛选后用于实验)和常态下(处理、环境与应激态相同,但装置不通电,进行假应激),分别孤离其双侧颈动脉窦区(保留窦神经,切断主动脉神经和迷走神经),使之独立于体循环,同时在胆碱能纤维投射、受体分布的脑区之一:孤束核(NTS)和侧脑室,分别微量注射各种药物:人工脑脊液(ACSF)或选择性胆碱能受体拮抗剂(M1受体拮抗剂pirenzepine, PRZ或M2受体拮抗剂methoctramine, MTR或N1受体拮抗剂hexamethonium, HEX),以非应激常态下侧脑室或NTS注射ACSF后的CSR水平和应激态下侧脑室或NTS注射ACSF后的CSR水平分别作为实验的阴性对照组和阳性对照组。将不同窦内压(ISP)与其对应的平均动脉压(MAP)值进行Logistic五参数曲线方程拟合,构建二者函数关系,根据所得ISP-MAP关系曲线、ISP-增益(Gain)关系曲线以及CSR系列特征参数(均为实验的观察指标),解析应激条件下中枢胆碱能系统对CSR的调制作用及其机制。
     结果:
     1.应激对CSR的影响
     在非应激组和应激组中,分别侧脑室或NTS内注射ACSF前、后,各自CSR水平和基础血压水平均无明显变化,实验以非应激常态下侧脑室或NTS注射ACSF后的CSR水平和应激态下侧脑室或NTS注射ACSF后的CSR水平分别作为实验的阴性对照组和阳性对照组。与非应激基础CSR水平及阴性对照组CSR水平相比,应激基础CSR水平及阳性对照组CSR水平共同表现为:ISP-MAP关系曲线显著全面右上移位(P<0.05),ISP-Gain关系曲线中部明显下移(P<0.05),CSR机能参数调定点(Set Point)、饱和压(SP)和最大增益时窦内压(ISPGmax)明显升高(P<0.05),而反射最大增益(Gmax)和平均动脉压反射变动范围(MAP range)显著减小(P<0.05)。
     2.侧脑室微量注射不同胆碱能受体拮抗剂对应激所致CSR变化的影响及其与非应激对照水平的比较
     2.1侧脑室微量注射不同胆碱能受体拮抗剂对非应激CSR的影响在非应激组分别侧脑室注射(intracerebroventricular injection, i. c. v.)M1受体拮抗剂PRZ或M2受体拮抗剂MTR或N1受体拮抗剂HEX,均不引起各自ISP-MAP、ISP-Gain关系曲线和反射系列参数明显改变(P>0.05)。
     2.2侧脑室微量注射不同胆碱能受体拮抗剂对应激所致CSR变化的影响在应激组i. c. v.同非应激组相应剂量的PRZ或MTR后,均能不同程度的减弱应激对CSR的抑制性重调定,表现为:与阳性对照组相比,应激PRZ、MTR组各自ISP-MAP关系曲线后半程显著下移(P<0.05),ISP-Gain关系曲线中部明显上移(P<0.05),饱和压SP和最大增益时的窦内压值ISPGmax下降(P<0.05),反射最大增益Gmax及MAP反射变动范围MAP range加大(MTR组)(P<0.05);就缓解应激对CSR抑制的程度而言,MTR的缓解作用强于PRZ的作用,表现为ISP-Gain关系曲线中部明显上移(P<0.05),饱和压SP和最大增益时的窦内压值ISPGmax下降(P<0.05),反射最大增益Gmax及MAP反射变动范围MAP range增多(P<0.05),上述反应一般出现在应激组i.c.v. PRZ或MTR后15至20 min,可维持15 min左右。但应激HEX组则对应激所致CSR的变化没有明显影响(P>0.05),却与PRZ组、MTR组的效应相比,有着不同程度的显著差异(P<0.05)。
     2.3侧脑室注射不同胆碱能受体拮抗剂对应激所致CSR变化的影响与非应激对照水平的比较侧脑室微量注射所给剂量的选择性胆碱能受体拮抗剂PRZ或MTR,均不能使应激的CSR水平完全恢复到相应的非应激对照水平(P<0.05)。
     3. NTS微量注射不同胆碱能受体拮抗剂对应激所致CSR变化的影响及其与非应激对照水平的比较
     3.1 NTS微量注射不同胆碱能受体拮抗剂对非应激CSR的影响在非应激组分别NTS注射M1受体拮抗剂PRZ或M2受体拮抗剂MTR或N1受体拮抗剂HEX,也均不引起各自ISP-MAP、ISP-Gain关系曲线和反射系列参数明显改变(P>0.05)。
     3.2 NTS微量注射不同胆碱能受体拮抗剂对应激所致CSR变化的影响在应激组NTS注射同非应激组相应剂量的PRZ或MTR后,同样均能不同程度的减弱应激对CSR的抑制性重调定,表现为:与阳性对照组相比,应激PRZ、MTR组各自ISP-MAP关系曲线后半程显著下移(P<0.05),ISP-Gain关系曲线中部明显上移(P<0.05),反射参数调定点Set Point(MTR组)、饱和压SP和最大增益时的窦内压值ISPGmax下降(P<0.05),反射最大增益Gmax及MAP反射变动范围MAP range加大(MTR组)(P<0.05);就缓解应激对CSR抑制的程度而言,MTR的缓解作用依然强于PRZ的作用,表现为其ISP-MAP关系曲线后半程显著下移(P<0.05),ISP-Gain关系曲线中部明显上移(P<0.05),反射最大增益Gmax及MAP反射变动范围MAP range加大(P<0.05),上述变化一般出现在应激组NTS注射PRZ或MTR后12 min,也可维持20 min左右。但应激HEX组则对应激所致CSR的变化没有明显影响(P>0.05),却与PRZ组、MTR组的效应相比,有着不同程度的显著差异(P<0.05)。
     3.3 NTS注射不同胆碱能受体拮抗剂对应激所致CSR变化的影响与非应激对照水平的比较NTS微量注射所给剂量的选择性胆碱能受体拮抗剂PRZ或MTR,均不能使应激的CSR水平完全恢复至相应的非应激对照水平(P<0.05)。
     结论:
     1.应激引起颈动脉窦压力感受器反射(CSR)重调定,反射敏感性下降,反射机能受抑。
     2.非应激常态下,在侧脑室或NTS分别微量注射所给剂量的选择性胆碱能受体拮抗剂(M1受体拮抗剂PRZ或M2受体拮抗剂MTR或N1受体拮抗剂HEX),均不引起各自基础动脉血压水平的明显改变,也不影响CSR反射的敏感性和机能。
     3.侧脑室微量注射所给剂量的选择性胆碱能受体拮抗剂PRZ(M1受体拮抗剂)或MTR(M2受体拮抗剂),可明显减弱应激对CSR的抑制性重调定;而M2受体拮抗剂的缓解作用大于M1受体拮抗剂;N1受体拮抗剂则无明显作用。提示室周核团的M1、M2受体尤为M2受体参与介导应激对CSR的抑制性重调定。
     4. NTS内微量注射所给剂量的选择性胆碱能受体拮抗剂PRZ(M1受体拮抗剂)或MTR(M2受体拮抗剂),对应激所致CSR重调定的影响与结论3类似,NTS处M2受体拮抗剂的缓解作用大于M1受体;N1受体拮抗剂则同样无明显作用。提示NTS的M1、M2受体尤为M2受体也参与介导应激对CSR的抑制性重调定,下丘脑-NTS的胆碱能通路可能是应激影响CSR机能的下行通路之一。
     5.侧脑室或NTS微量注射所给剂量的选择性胆碱能受体拮抗剂PRZ或MTR后,均不能使应激的CSR水平完全恢复到相应的非应激对照水平。表明除了中枢胆碱能系统参与应激对CSR的抑制机制外,尚有其他神经机制的参与作用。
Objective:
     To determine the roles of the central cholinergic system in the stress-induced carotid sinus baroreceptor reflex (CSR) resetting and its mechanism.
     Methods:
     Sprague?Dawley rats were divided into two groups at random: unstressed (n=48) and stressed groups (n=48). According to the site of microinjection of the selective cholinergic receptor antagonists, each group was subdivided into a group of intracerebroventricular injection (i.c.v.) and a group of microinjection into the nucleus tractus solitarius (NTS). Stressed groups were subjected to unavoidable electric foot-shock twice daily for a week, each session of foot-shock lasted 2 hours and unstressed groups followed by the same handling and environment but no electric stimulation for fake stresss. The left and right carotid sinus regions were isolated from the systemic circulation with the undamaged sinus nerve, cutting off the aortic nerve and off the vagus nerve under anesthesia with pentobarbital sodium in all rats. The artificial cerebrospinal fluid (ACSF), the selective muscarinic M1 cholinoceptor antagonist pirenzepine (PRZ), the selective M2 cholinoceptor antagonist methoctramine (MTR) and the selective nicotinic N1 cholinoceptor antagonist hexamethonium (HEX) was respectively administrated into the lateral ventricle or the NTS which is one of the brain regions of cholinergic fibers projection and cholinoceptors distribution in both stressed and unstressed groups. The ACSF into the lateral ventricle or the NTS in the stressed and unstressed groups was respectively served as a positive control (stressed) and a negative control (unstressed) in all experiment.
     After the isolated carotid sinus preparation wae conducted, the intracarotid sinus pressure (ISP) was altered in a stepwise manner to trigger CSR from 0 to 280 mmHg at every step of 40 mmHg and 4 sec, and then returned to 0 mmHg in similar steps. ISP and mean femoral arterial pressure (MAP) were recorded simultaneously. ISP-MAP and ISP-Gain relationship curves were constructed by fitting to the logistic function with five parameters. The CSR functional characteristic parameters, the ISP-MAP and the ISP-Gain relationship curves were separately examined and compared statistically in order to observe the effects of central cholinergic system on CSR and its mechanism in mammalian under the stress state.
     Results:
     1. The effects of stress on CSR function
     In the stressed and unstressed groups, the ACSF into the lateral ventricle or the NTS did not obviously change each CSR base level, which was respectively served as a positive control (stressed groups) and a negative control (unstressed groups) in all experiment. In comparison with the unstressed CSR baseline and the CSR level of the negative control, the stressed CSR baseline and the CSR level of the positive control showed significant changes that the ISP-MAP relationship curves were remarkably shifted upwards (P<0.05) and the middle parts of ISP-Gain relationship curves were moved downwards (P<0.05), and the value of the MAP range and maximum gain (Gmax) were decreased (P<0.05), but the set point, saturation pressure (SP) and ISP at Gmax (ISPGmax) were increased (P<0.05).
     2. Effects of the microinjection of different cholinergic receptor antagonists into the lateral cerebroventricle on the changes in CSR induced by stress and comparison between these effects and the corresponding control level of CSR in the unstressed group
     2.1 Effects of microinjection of different cholinergic receptor antagonists into the lateral ventricle on the CSR level in the unstressed groups.
     Microinjection of the selective cholinergic receptors antagonists, PRZ or MTR or HEX with given dose into the lateral ventricles in the unstressed groups, had no obvious effects on both ISP-MAP and ISP-Gain relationship curves and CSR functional parameters, respectively (P>0.05).
     2.2 Effects of the microinjection of different cholinergic receptor antagonists into the lateral cerebroventricle on the changes in CSR induced by stress
     Microinjection of the selective muscarinic M1 cholinoceptor antagonist PRZ or the selective M2 cholinoceptor antagonist MTR into the lateral cerebroventricle in the stressed groups with the corresponding doses used in the unstressed groups, significantly diminished the above-mentioned changes in CSR performance induced by stress, which remarkably moved the posterior semi-parts of ISP-MAP relationship curves downwards (P<0.05), shifted the middle parts of ISP-Gain relationship curves upwards (P<0.05), and increased parameters such as the MAP range (only for MTR) and Gmax (P<0.05), but decreased parameters like SP and ISPGmax (P<0.05), compared with the positive control. The alleviative effects of MTR were remarkably stronger than those of PRZ in the stressed group, which significantly shifted the middle parts of ISP-Gain relationship curves upwards (P<0.05), and decreased parameters SP and ISPGmax (P<0.05), but increased parameters Gmax and the MAP range (P<0.05), compared with the stressed group of PRZ. The responses of CSR level in stressed groups to M1 or M2 cholinoceptor antagonists generally occurred 20 min after the administration and lasted approximately for 15 min. Microinjection of the selective nicotinic N1 cholinoceptor antagonist HEX into the lateral cerebroventricle in the stressed group, however, displayed no significant effects on the stressed CSR baseline and the CSR level of the positive control (P>0.05) but exhibited significant difference from the CSR levels in the stressed groups of the MTR and PRZ (P<0.05).
     2.3 Comparison between the CSR levels treated by i.c.v. different cholinoceptor antagonists in stressed groups and the corresponding control level of CSR in the unstressed groups
     Microinjection of PRZ or MTR or HEX into the lateral cerebroventricle in the stressed groups could not completely abolish the stress-induced changes in CSR (P<0.05).
     3. Effects of the microinjection of different cholinergic receptor antagonists into the NTS on the changes in CSR induced by stress and comparison between these effects and the corresponding control level of CSR in the unstressed group
     3.1 Effects of microinjection of different cholinergic receptor antagonists into the NTS on the CSR level in the unstressed groups.
     Microinjection of the selective cholinergic receptors antagonists, PRZ or MTR or HEX with given dose into the NTS in the unstressed groups, had no obvious effects on both ISP-MAP and ISP-Gain relationship curves and CSR functional parameters, respectively (P>0.05).
     3.2 Effects of the microinjection of different cholinergic receptor antagonists into the NTS on the changes in CSR induced by stress
     Microinjection of the selective muscarinic M1 cholinoceptor antagonist PRZ or the selective M2 cholinoceptor antagonist MTR into the NTS in the stressed groups with the corresponding doses used in the unstressed groups, also significantly diminished the above-mentioned changes in CSR performance induced by stress, which remarkably moved the posterior semi-parts of ISP-MAP relationship curves downwards (P<0.05), shifted the middle parts of ISP-Gain relationship curves upwards (P<0.05), and increased parameters such as the MAP range (only for MTR) and Gmax (P<0.05), but decreased parameters like SP, ISPGmax and set point (only for MTR) (P<0.05), compared with the positive control. The alleviative effects of MTR were also remarkably stronger than those of PRZ in the stressed group, which significantly moved the posterior semi-parts of ISP-MAP relationship curves downwards (P<0.05), shifted the middle parts of ISP-Gain relationship curves upwards (P<0.05), and increased parameters Gmax and the MAP range (P<0.05), compared with the stressed group of PRZ. The responses of CSR level in stressed groups to M1 or M2 cholinoceptor antagonists generally occurred 12 min after the administration and lasted approximately for 20 min. Microinjection of the selective nicotinic N1 cholinoceptor antagonist HEX into the NTS in the stressed group, however, displayed no significant effects on the stressed CSR baseline and the CSR level of the positive control (P>0.05) but exhibited significant difference from the CSR levels in the stressed groups of the MTR and PRZ (P<0.05).
     3.3 Comparison between the CSR levels treated by different cholinoceptor antagonists into the NTS in stressed groups and the corresponding control level of CSR in the unstressed groups
     Microinjection of PRZ or MTR or HEX into the NTS in the stressed groups could not completely abolish the stress-induced changes in CSR (P<0.05).
     Conclusion:
     1. Stress results in a resetting of CSR , a decrease in reflex sensitivity.
     2. Microinjection of selective cholinergic receptor antagonist PRZ or MTR or HEX into the lateral ventricle or the NTS with given respective dose under the unstressed state, has neither effects on the CSR function and nor on the arterial blood pressure basal level.
     3. Microinjection of the selective M1 cholinoceptor antagonist PRZ or the selective M2 cholinoceptor antagonist MTR into the lateral ventricle with given respective dose could obviously attenuate the stress-induced CSR inhibitory resetting, and the alleviative effects of MTR are more stronger than those of PRZ in the stressed group, but the selective N1 cholinoceptor antagonist, HEX into the lateral ventricle may have no effects on the CSR resetting resulted from the stress, which suggest that the M1 and M2 cholinoceptors, especially M2 cholinoceptors, in brain ventricle peripheral nuclei may participate in mediating stress-induced CSR resetting.
     4. Microinjection of the selective M1 cholinoceptor antagonist PRZ or the selective M2 cholinoceptor antagonist MTR into the NTS with given respective dose could also remarkably diminish the stress-induced CSR inhibitory resetting, and the alleviative effects of MTR are more stronger than those of PRZ in the stressed group, but the selective N1 cholinoceptor antagonist, HEX into the NTS may also have no effects on the CSR resetting resulted from the stress, which indicate that the M1 and M2 cholinoceptors, especially M2 cholinoceptors, in the NTS may also involve in regulating stress-induced CSR resetting, and the descending cholinergic pathway from the hypothalamus to NTS may be involved in mechanisms of the stress-inhibited CSR function.
     5. Microinjection of PRZ or MTR or HEX into the lateral ventricle or the NTS with given respective dose in the stressed state can not completely abolish the stress-induced changes in CSR, which denote that other neuromechanisms may also contribute to effects of the stress on CSR besides central cholinergic system.
引文
[1]何瑞荣,主编.心血管生理学[M].北京:人民卫生出版社, 1987, 145~151.
    [2] Wang GQ(王国卿), Zhou XP, Huang WQ. Effect of intracerebroventricular injection of histamine on carotid sinus baroreceptor reflex in anesthetized rats and its mechanism. Acta Physiologica Sinica, 2002, 54(6): 490~496.
    [3]王国卿,周希平,蒋星红,等.中枢α受体在脑室注射组胺对颈动脉窦反射重调定中的作用.中国药理学通报, 2003, 19(9): 1037~1042.
    [4] Luk J, Ajaelo I, Wong V et al. Role of V1 receptors in the action of vasopressin on the baroreflex control of heart rate. Am J Physiol, 1993; 265(3Pt2): R524~529.
    [5] Qian ZM, Xiao DS, Huang WQ et al. Central ANGⅡreceptor involved in carotid sinus reflex resetting in chronically stressed rats. Physiol Behav, 1997; 62 (2): 241~247.
    [6] Wang GQ(王国卿), Zhou XP, Huang WQ. Effects of central histaminergic receptor activation on carotid sinus baroreceptor reflex resetting in stressed rats. Acta Physiologica Sinica, 2003, 55(1): 29~35.
    [7]王国卿,周希平.蓝斑α受体减弱脑室注射组胺对颈动脉窦压力感受性反射的重调定.中国应用生理学杂志, 2005, 21(3): 260~264.
    [8] Schwartz JC, Arrang JM, Garbarg M et al. Histaminergic transmission in the mammalian brain. Physiol Rev, 1991, 71(1): 1~51.
    [9]王国卿,周希平.孤束核组胺受体参与大鼠脑室注射组胺对颈动脉窦反射的抑制.中国应用生理学杂志, 2004, 20(3): 285~289.
    [10]王国卿,沈新娥,孙万平,等.孤束核组胺能受体参与应激大鼠颈动脉窦压力感受性反射的重调定.江苏医药, 2003, 29(10): 738~740.
    [11]王国卿,孙万平,邹容,等.蓝斑H1受体作用参与脑室注射组胺对颈动脉窦反射的重调定.苏州大学学报医学版, 2005, 25(6): 959~962.
    [12]王国卿,张玉英,李金华,等.蓝斑H2受体作用增强脑室注射组胺对减压反射的抑制.中国基础与临床医学杂志, 2005, 4(1): 29~31.
    [13]王国卿,傅春玲,周希平,等.大鼠蓝斑H1受体在应激对颈动脉窦反射重调定中的作用.中国基础与临床医学杂志, 2004, 3(3): 1~3.
    [14]王国卿,周希平,高博,等.蓝斑H2受体参与应激对颈动脉窦反射的重调定.中国基础与临床医学杂志, 2004, 3(2): 5~6, 13.
    [15]王国卿,周希平,蒋星红,等.外周α1、α2受体作用减弱脑室注射组胺对颈动脉窦反射的抑制.中国药理学通报, 2005, 21(2): 178~182.
    [16] Blount PJ, Nguyen CD, McDeavitt JT. Clinical use of cholinomimetic agents: a review. Journal of Head Trauma Rehabilitation, 2002, 17(4): 314~321.
    [17]万选材,杨天祝,徐承焘,主编.现代神经生物学[M].北京:北京医科大学、中国协和医科大学联合出版社, 1999, 120~129.
    [18]韩济生,主编.神经科学原理[M].北京:北京医科大学出版社,第二版, 1999, 431~454.
    [19] Chrousos GP, Cady R, Pacak. Stress basic mechanism and clinical implications. New York Acad Sci, NY, 1995, 1~675.
    [20] Herd JA. Cardiovascular response to stress. Physiol Rev, 1991, 71: 305~330.
    [21] Henry JP. Biological basis & the stress responses. NIPS, 1993, 8: 69~73.
    [22] Okuya, S, Yamatomo H. Effects of atrial natriuretic polypeptide on rat hypothalamic neurons in vitro. J Physiol, 1987, 338: 44~52.
    [23] Carotid and aortic chemoreceptor function in the rat. J. Appl physiol, 1977, 42(2): 344~348.
    [24]徐浩东,等。中枢去甲肾上腺素能系统对大鼠颈动脉窦反射的影响。生理学报,1992,44(2):127~132。
    [25]黄伟秋,等。四种不同麻醉药对大鼠颈动脉窦反射的影响。中国应用生理学杂志,1992,7(3):228~232。
    [26] Konig, J.F.R., et al. The Rat Brain.A:Stereotaxic Atlas of the Forebrain and lower parts of the Brains stem. Williams and Wilkins, Baltimore, 1993.
    [27] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Fifth Edition, Elsevier, Academic Press, 2004, 43~66.
    [28] Ishikawa N, Kallman CH, Sagawa K. Rabbit carotid sinus reflex under pentobarbital, urethane, and chloralose anesthesia. Am J Physiol, 1984, 246: H696~H701.
    [29]华罗庚.优选学[M].科学出版社,北京, 1981, 73.
    [30]曹银祥.用微机作logistic曲线拟合的一种方法.上海医科大学报, 1987, 14: 88.
    [31]陆守曾. Logistic曲线拟合.中国医学百科全书统计学分册[M].杨树勤主编,上海科学技术出版社, 1982, 168~169.
    [32]徐世谨,等.医用统计学[M].上海科技出版社,上海, 1979, 98.
    [33] Kent BB, Drane JW, Blumenstein B, Manning JW. A mathematical model to assess changes in the baroreceptor reflex. Cardiology, 1972, 57: 295~310.
    [34] Hatton DC, Virginia Brooks,YueQ, McCarron DA. Cardiovascular response to stress:baroreflex resetting and hemodynamics. Am J Physiol,1997,272(Regulatory Integrative Comp Physiol 41):R1588-R1594.
    [35] Knardahl S, Hendley ED. Association between cardiovascular reactivity to stress and hypertension or behavior. Am J Physiol, 1990, 259( Heart Circ Physiol, 28 ): H248~H257.
    [36] Gonzalez ER. Central resetting of baroreflex in the spontaneously hypertensive rat. Hypertension, 1983, 5: 346~352.
    [37] Lawler JE, Sanders BJ, Cox RH,O'Connor EF.Baroreflex function in chronically stressed borderline hypertensive rats. Physiology & behavior, 1991, 49(3): 539~542.
    [38] Eric Lazartigues, Jean-Louis Freslon, Tahir Tellioglu, Christine Brefel-Courbon, Michel Pelat, Marie-Antoinette Tran, Jean-Louis Montastruc, Olivier Rascol. Pressor and bradycardic effects of tacrine and other acetylcholinesterase inhibitors in the rat.European Journal of Pharmacology, 361: 1998, 61~71.
    [39] Ugur ?zkutlu, Filiz Onat, A.Neslihan Aslan and ?ule Oktay. Central muscarinic M2 cholinoceptors involved in cholinergic hypertension. Eur J Pharmacol, 1993, 21, 250(3): 349~354.
    [40] Angel Pazos, Karl-Heinz Wiederhold,JoséM,Palacios. Central pressor effects induced bymuscarinic receptor agonists: Evidence for a predominant role of the M2 receptor subtype.European Journal of Pharmacology, 1986, 125(1): 63~70.
    [41] Arslan BY, Ulus IH, Avci V, Ismail H.; Kiran, Burhan K. Effects of intracerebroventricular injected choline on cardiovascular functions and sympathoadrenal activity. Journal of Cardiovascular Pharmacology, 1991, 17(5): 814~821.
    [42] AI Levey, CA Kitt, WF Simonds, DL Price,MR Brann. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies The joural of Neuroscience, 1991, 11: 3218~3226.
    [43] Monica Akemi Sato, JoséVanderlei Menani, Oswaldo Ubríaco Lopes, Eduardo Colombari. Lesions of the commissuralnucleus of the solitary tract reduce arterial pressure in spontaneously hypertensive rats. Hypertension, 2001, 38: 560~564.
    [44]许绍芬,主编.神经生物学[M].上海:上海医科大学出版社,第二版, 1999, 496~504.
    [45]康颂建.孤束核内的神经递质及其生理作用.生理科学进展, 1992, 23(1): 62~65.
    [46] Kalyana, Sundaram, Jaya Murugaian, Mark Watson and Hreday Sapru. M2 muscarinic receptor agonists produce hypotension and bradycardia when injected into the nucleus tractus solitarii. Brain Research, 1989, 477(1-2): 358~362.
    [47] Talman WT, Lewis SJ. Altered cardiovascular responses to glutamate and acetylcholine microinjected into the nucleus tractus solitarii of the SHR. Clinical & Experimental Hypertension-Part A, Theory & Practice, 1991, 13(5): 661~668.
    [48]蒋文华,主编.神经解剖学[M]. 2002.
    [49] Aslan, N., Go¨ren, Z., Onat, F., Oktay, S.. Muscarinic receptors involved in bloodpressure changes induced by electrical stimulation of central amygdaloid nucleus. Br. J. Pharmacol. 1995, 114: 334.
    [50] Aslan, N., Go¨ren, Z., O¨zkutlu, U., Onat, F., Oktay, S.. Modulation of the pressor response elicited by carbachol and electrical stimulation of the amygdala by muscarinic antagonists in conscious rats. Br. J.Pharmacol, 1997, 121(1): 35~40.
    [51] Hopkins DA. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Experimental Brain Research, 1978, 32: 529~547.
    [52]贾宏阁,饶志仁,范际武.大鼠孤束迷走复合体儿茶酚胺能神经元向杏仁直接投射-HRP与免疫组织化学双标记研究.神经解剖学杂志, l999, (2): 233~237.
    [53] Kihara M and Kubo T. Cardiovascular effects of GABA system activating drugs injected into the caudal ventrolateral medulla of the rat. Arch Int Pharmacodyn Ther,1988, 295: 67~79.
    [54] Sun MK and Guyenet PG. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol Regulatory IntegrativeComp Physiol, 1985, 249: R672~R680.
    [55]郭娟.大鼠杏仁中央核内注射CHR对血压的影响及其中枢机制初探.生理学报, 1997, 49(1): 110~114.
    [1]侯燕芝.神经元通讯的神经化学.吕国蔚主编.医学神经生物学.北京:高等教育出版社,2000,100~124.
    [2]王国卿,周希平,黄伟秋.大鼠侧脑室内注射组胺对颈动脉窦压力感受性反射的影响及其中枢机制[J].生理学报,2002,54(6):490~496.
    [3] Blount PJ,Nguyen CD,McDeavitt JT.Clinical use of cholinomimetic agents:a review.Journal of Head Trauma Rehabilitation,2002,17(4):314~321
    [4]万选材,杨天祝,徐成焘,主编.现代神经生物学[M].北京:北京医科大学、中国协和医科大学联合出版社,1999,120~129.
    [5]韩济生,主编.神经科学原理[M].北京:北京医科大学出版社,第二版,1999,431~454.
    [6]姚泰,主编.生理学[M].人民卫生出版社,第6版,2006,116~117.
    [7]左明雪.人体及动物生理学[M].北京:高等教育出版社,2001. 229~241.
    [8]陈爽,范振中,何瑞荣.腺苷易化大鼠颈动脉窦压力感受器的活动.生理学报,1998,50(5):525~531.
    [9] Mubagwa K,Mullane K,Flameng W.Role of adenosine in the heart and circulation. Cardiovasc Res ,1996 ,32:797~813.
    [10] Morris CE. Mechanosensitive ion channels. J Member Biol ,1990 ,113 :93~107.
    [11]尹彤,陈爽,何瑞荣.KATP通道开放剂对颈动脉窦压力感受器反射的易化作用.生理学报,2000,52(3):170~174.
    [12] Hasunuma K,Rodman DM ,OɡBrien RF.Endothelin 1 causes plumonary vasodilation in rats. Am J Physiol ,1990 ,259:H48~H54.
    [13]李德培,范振中,何瑞容.内皮素对麻醉大鼠颈动脉窦压力感受器活动的影响.生理学报.1998年10月,50(5),532~538
    [14] Tanaka K,Chiba T. Nitric oxide synthase containing neurons in the carotid body and sinus of the guinea pig. Microsc Res Tech ,1994 ,29 (2) :90~93.
    [15] Matsuda T ,Bates JN ,Lewis SJ ,etal. Moduation of baroreceptor activity by nitiricoxide and S - nitrocysteine. Circ Res ,1995 ,76 :426~433.
    [16]沈靖,钮伟真,刘萍.一氧化氮对家兔压力感受器活动的影响.生理学报,1997,49(5):285~291.
    [17] Bolotina VM,Najibi S,Palacino PJ,estal.Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature ,1994 ,368 :850~853.
    [18] Li Z,Chapleau MW,Bates JN,etal.Nitric oxide as an autocrine regulator of sodium currents in baroreflex neurom. Neuron ,1998 ,20(5) : 1039~1049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700