用户名: 密码: 验证码:
新型金属熔旋快淬薄带材料的交流磁响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代信息技术的发展,电子技术跟电子工业都取得了巨大的进步,磁传感器件与磁存储器件都朝着小尺寸、高灵敏度和响应快速的方向发展。1992年,日本学者K.Mohri等人首先发现:当CoFeSiB非晶丝通以交变电流时,丝两端感生的电压幅值随外加磁场的变化而发生非常灵敏的变化。在低频时,趋肤效应可以忽略,阻抗中的电阻分量受外磁场影响很小,交流电压的磁场关系主要来自电感分量,称为“巨磁电感效应”;而在趋肤效应明显的高频环境下,电阻分量和电感分量同时受外磁场和驱动电流频率的影响,称为巨磁阻抗效应(GMI效应)。
     最初,对GMI效应的研究较多的是具有零或负磁致伸缩系数的Co基软磁非晶丝,后来又逐步延伸到薄膜、薄带和Fe基软磁材料。由于其应用在磁传感器和磁头上具有响应快、无磁滞、高灵敏等优点,现在,软磁材料中的GMI效应已经成为磁电子学研究的热点。
     现在,FeZrB、FeZrBCu、FeNbSiB系列金属薄带的GMI效应已经进行了大量的研究,但FeNbB及FeNbBCu材料的巨磁阻抗效应还没有研究,并且对材料横向磁导率的变化率与巨磁阻抗效应关系的研究也非常少。因此为了制备具有更高巨磁阻抗效应的新材料,研究影响巨磁阻抗效应的因素,本论文对以下几个方面的内容进行了研究:
     1.用快淬甩带法制备了Fe_(84)Nb_7B_9及微量搀杂Cu元素的Fe_(83)Nb_7B_9Cu_1非晶薄带,在520℃—820℃下进行真空退火处理,使材料析出α-Fe纳米晶粒,由X射线衍射图谱得到其晶粒大小在9nm—14nm左右;测量了退火薄带在不同外加磁场、驱动电流频率下的电阻、电感值,通过计算其阻抗值的变化,得到了纳米晶薄带的巨磁阻抗效应频谱及巨磁阻抗效应随外场的变化规律,研究了外加磁场、电流频率和退火温度对材料巨磁阻抗效应的影响。
     2.测量了两种纳米晶薄带在外场下的磁导率,研究了磁导率的变化率和巨磁阻抗效应变化的规律,说明了材料在磁场作用下的趋肤效应和横向微分磁导率的变化共同作用,使得磁阻抗GMI(Z)和磁电阻GMI(R)出现峰值,他们是产生巨磁阻抗效应的主要原因。
     3.通过研究退火温度对材料巨磁阻抗效应的影响,我们发现纳米晶薄带存在一个最佳退火温度,在此温度下退火可产生GMI(Z)的最大值。Fe_(84)Nb_7B_9纳米晶薄带的最佳退火温度是670℃,其GMI(Z)的最大值为-48.22%;而Fe_(83)Nb_7B_9Cu_1纳米晶薄带的最佳退火温度为650℃,GMI(Z)的最大值为-54.8%。
     4.对比Fe_(84)Nb_7B_9与Fe_(83)Nb_7B_9Cu_1纳米晶薄带的巨磁阻抗效应,可以发现Cu搀杂改善了材料的软磁性能,降低了最佳退火温度,提高了材料的巨磁阻抗效应。
With the rapid development of the mordern communication technology,the electronic technology have got a large improvement.The magnetic sensors and recording instruments are required with small size,high sensitivity and quick response.In 1992,K.Mohri et al firstly found the Giant Magneto-Impedence effect.When an AC current flows through the Co-based soft magnetic amorphous CoFeSiB wire,the AC voltage between the two ends of the wire would change sensitively with an applied magnetc field along the wire.At low frequencies,where the skin effect is very weak,this change is determined mainly by the change of inductance and it is named giant magneto inductance.But at high frequencies,the skin effect becomes very important,the field influences on both resistance and inductance are very large,so this effect is named giant magneto-impedance effect(GMI effect).
     At first,the most researchs on GMI were concentrated on the Co-based soft magnatic amorphous wire with vanishing or negative magnetostriction,and soon the research extended to thin ribbons,films and Fe-based soft magnetic materials. Recently,the GMI effect in soft magnetic materials has become one of the most important topics in magnetic electronics because of its important applications in various magnetic sensors and heads.This kind of magnetic sensors have many advantage,such as quick response,non-hysteresis and high sensitivity and so on.
     Now,the GMI effects of FeZrB and FeZrBCu thin ribbons have been researched,but FeNbB,FeNbBCu and FeNbSiB thin ribbons were not researched,and the relationship between GMI effect and the relative change of transverse permeability were seldom researched.So in order to get the new materials with high GMI effect and research the dependence of physical factors, we have done the following works.
     1.We prepared the Fe_(84)Nb_7B_9 and Fe_(83)Nb_7B_9Cu_1 amorphous thin ribbons by a rapid quenching technique.Then the ribbons were annealed in vacuum at 520℃-820℃andα-Fe nanograins with a size of about 9nm-14nm appeared.We measured the resistance and inductance in different outer magneticfield and current frequency, then calculated their impedance.We achieved the spectrum of GMI and the dependence of GMI via outer magnetic field and researched the relationship between GMI effect and outer magnetic field, frequency and annealing temperature.
     2.We measured the permeability induced by dc magnetic fields and researched the relationship between GMI effect and the relative change of transverse permeability.It showed that giant magnetoimpedance is contacted to the the change of transverse permeability and the skin effect.
     3.We found that There is an optimal anneal temperature for obtaining the largest giant magnetoimpedance.Fe_(84)Nb_7B_9 nano-crystal thin ribbon's optimal anneal temperature is 670℃and it's GMI(Z)_(max)is -48.22%;what in Fe_(83)Nb_7B_9Cu_1 nano-crystal thin ribbon are 670℃and -54.8%.
     4.Compared Fe_(84)Nb_7B_9 and Fe_(83)Nb_7B_9Cu_1 nano-crystal thin ribbon, we can found that the doping of Cu element can improve the soft magnetic properties,below the ptimal anneal temperature and increase the GMI effect of the materials.
引文
[1]M.N.Baibich,J.M.Broto,A.Fert,et al,"Giant Magnetoresistance of(001)Fe/(001)Cr Magnetic Superlattice",Phys.Rev.Lett,61(1988):2472-2475
    [2]John Q.Xiao,J.Samuel Jiang,and C.L.Chien,"Giant magnetoresistance in nonmultilayer magnetic systems",Phys.Rev.Lett,68(1992):3749-3752
    [3]K.Mohri,T.Kohzawa,K.Kawashima,et al,"Magneto -inductive efect in amorphous wires",IEEE Trans.Magn.,28(1992):3150-3152
    [4]K.Mandal and S.K.Ghatak,"Large magnetoresistance in an amorphous Co_(68.1)Fe_(4.4)Si_(12.5)B_(15)ferromagnetic wire",Phys.Rev.B,47(1993):14233-14236
    [5]J.Velazquez,M.Vazquez,D.-X.Chen,and A.Hernando,"Giant magnetoimpedance in nonmagnetostrictive amorphous wires",Phys.Rev.B,50(1994):16737-16740
    [6]L.V.Panina,K.Mohri,K.Bushida,and M.Noda,"Giant magneto-impedance and magneto-inductive effects in amorphous alloys(invited)" J.Appl.Phys.76(1994):6198-6203
    [7]L.V.Panina and K.Mohri,"Magneto-impedance effect in amorphous wires",Appl.Phys.Lett,65(1994):1189-1191
    [8]R.S.Beach and A.E.Berkowitz,"Giant magnetic field dependent impedance of amorphous FeCoSiB wire",Appl.Phys.Lett,64(1994):3652-3654
    [9]R.S.Beach and A.E.Berkowitz,"Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon(invited)",J.Appl.Phys.76(1994):6209-6213
    [10]叶超群,严彪,徐政,“金属合金巨磁阻抗三明治结构多层薄膜研究进展”,上海有色金属,26(2005):36-42
    [11]A.N.Medina,M.Knobel,S.Salem-Sugui,and F.G..Gandra,"Resonant microwave cavity response of amorphous ribbons",J.Appl.Phys.79(1996):5462-5464
    [12]R.L.Sommer and C.L.Chien,"Longitudinal and transverse magneto-impedance in amorphous Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 films",Appl.Phys.Lett. 67(1995);3346-3348
    [13]K.C.Mendes,F.L.A.Machado,L.G.Pereira,S.M.Rezende,and F.C.Montenegro,"Giant transversal magnetoimpedance and Hall-effect measurements in Co_(70.4)Fe_(4.6)Si_(15)B_(10)",J.Appl.Phys.79(1996):6555-6557
    [14]D.P.Makhnovskiy and L.V.Panina,"Size effect on magneto-impedance in layered films",Sensors and Actuators A,81(2000):91-94
    [15]M.Knobel,M.L.Sanchez,C.Gomez-Polo,P.Marin,M.Vazquez,and A.Hernando,"Giant magneto-impedance effect in nanostructured magnetic wires",J.Appl.Phys.79(1996):1646-1654
    [16]Jifan Hu,Shaoxiong Zhou,Wenzhi Chen,"Giant magnetoimpedance effect in Fe-Nb-B ribbon",Solid State Communications,109(1999):661-664
    [17]L.V.Panina,K.Mohri,T.Uchiyama,M.Noda,"Giant Magneto-Impedance in Co-Rich Amorphous Wires and Films",IEEE Trans.Magn.31(1995):1249-1260
    [18]K.Mohri,K.Kawashima,T.Kohzawa,and H.Yoshida,"Magneto-Inductive Element",IEEE Trans.Magn.29(1993):1245-1248
    [19]辛宏梁,袁望治,程金科,林宏,阮建中,赵振杰,物理学报56(2007):4152-4157
    [20]Jifan Hu,Hongwei Qin,Shaoxiong Zhou,Yizhong Wang and Zhenxi Wang,"Giant magnetoimpedance effect in Fe_(79.5)P_(12)C_6Mo_(0.5)Cu_(0.5)Si_(1.5)nanocrystalline ribbons",Materials Science and Engineering B,83(2001):24-28
    [21]D Garcia,J.L Munoz,G Kurlyandskaya,M Vazquez,M All and M.R.J Gibbs,"Induced anisotropy,magnetic domain structure and magnetoimpedance effect in CoFeB amorphous thin films" Journal of Magnetism and Magnetic Materials,191(1999):339-344
    [22]L.V.Panina,K.Mohri,"Magnete-impedance in multilayer films".Sensors and Actuators,81(2000):71-77
    [23]K.Mohri,T.Uchiyama,L.P.Shen,C.M.Cai and L.V.Panina,"Sensitive micro magnetic sensor family utilizing magneto-impedance(MI)and stress-impedance(SI)effects for intelligent measurements and controls", Sensors and Actuators A.91(2005):85-90
    [24]P.Ripka,A.Platil,P.Kaspar,et al,"Permalloy GMI sensor",J.Magn.Magn.Mater.,254-255(2003):633-635
    [25]陈先中,李芸芸,侯庆文,孙光飞,“基于巨磁阻抗效应的微磁传感器研制”,传感技术学报,20(2007):2575-2578
    [26]纪松,钱坤明,张延松,谭锁奎,“非晶/纳米晶软磁材料及其应用”,兵器材料科学与工程28(2005):51-55
    [27]陈世元,张亮,李德仁,卢志超,滕功清,“基于巨磁阻抗效应的新型高灵敏度磁敏传感器”,磁性材料及器件38(2007):46-49
    [28]李晓东,袁望治,赵振杰,阮建中,杨燮龙,“铁基纳米微晶薄膜巨磁阻抗效应的Mossbauer研究”,核技术,27(2004):754-757
    [29]韩涛 “软磁合金薄带中的巨磁阻抗效应分析”山东大学硕士论文2003
    [30]安康 “软磁合金的巨磁阻抗效应” 山东大学博士论文 2004
    [31]喻晓军“FeBHf系合金薄带晶化行为、微观结构和巨磁阻抗效应的研究”钢铁研究总院博士论文2004
    [32]代由勇“软磁合金薄带、薄膜和三明治结果的巨磁阻抗效应”山东大学博士论文2001
    [1]王利牛.快淬Nd-Fe-B粘结磁体的研究:[硕士论文].北京:北京科技大学,1990。
    [2]周寿增.超强永磁体-稀土铁系永磁材料 北京:冶金工业出版社 1999
    [3]栾开政,刘宜华,“磁膜交流磁导率的测量”,磁性材料及器件,16(1985):34-37
    [4]M.I.Mendelson,"Average Grain Size in Polycrystalline Ceramics",J.Am.Ceram.Soc.,52(1969):443-446
    [1]K.Mohri,T.Kohzawa,K.Kawashima,et al,"Magneto -inductive efect in amorphous wires",IEEE Trans.Magn.,28(1992):3150-3152
    [2]Kiyonori Suzuki,Akihiro Makino,Akihisa Inoue,and Tsuyoshi Masumoto,"Low core losses of nanocrystalline Fe-M-B(M=Zr,Hf,or Nb)alloys",J.Appl.Phys.74(1993):3316-3322
    [3]B.Kaviraj and S.K.Ghatak,"Very large magneto-impedance and its scaling behavior in amorphous Fe_(73.5)Nb_3Cu_1Si_(13.5)B_9 ribbon",Physica B:Condensed Matter,403(2008):1731-1737
    [4]Y.Yoshizawa,S.Oguma,and K.Yamauchi,"New Fe-based soft magnetic alloys composed of ultrafine grain structure",J.Appl.Phys.64(1988):6044-6046
    [5]秦宏伟,“Fe-Cu-Nb-Si-B快淬薄带中的巨磁阻抗效应”,稀有金属材料与工程,35(2006):270-272
    [6]M.Knobel,"Giant magneto-impedance in nanocrystalline Fe_(73.5)Cu_1Nb_3Si1_(3.5)B_9and Fe_(86)Zi_7B_6Cu_1 ribbons",Materials Science and Engineering A.1997:546-549
    [7]L.V.Panina,K.Mohri,K.Bushida,and M.Noda,"Giant magneto-impedance and magneto-inductive effects in amorphous alloys(invited)" J.Appl.Phys.76(1994):6198- 6203
    [8]L.V.Panina and K.Mohri,"Magneto-impedance effect in amorphous wires",Appl.Phys.Lett,65(1994):1189-1191
    [9]R.S.Beach and A.E.Berkowitz,"Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon(invited)",J.Appl.Phys.76(1994):6209-6213
    [10]秦宏伟,安康,韩涛,“Fe89Zr784退火薄带的纳米晶结构、巨磁阻抗和磁导率变化”,稀有金属材料与工程,34(2005):1875-1878
    [11]S.Honda,T.Ishikawa,K.Takai,Y.Mitarai and H.Harada,"New type magnetoresistance in Co/Si systems",Journal of Magnetism and Magnetic Materials,290-291(2005):1063-1066
    [1]K.Mohri,T.Uchiyama,L.P.Shen,C.M.Cai and L.V.Panina,"Sensitive micro magnetic sensor family utilizing magneto-impedance(MI)and stress-impedance(SI)effects for intelligent measurements and controls",Sensors and Actuators A.91(2001):85-90
    [2]K.Mohri,T.Kohzawa,K.Kawashima,et al,"Magneto -inductive efect in amorphous wires",IEEE Yrans.Magn.,28(1992):3150-3152
    [3]M.Knobel,"Giant magneto-impedance in nanocrystalline Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9and Fe_(86)Zi_7B_6Cu_1 ribbons",Materials Science and Engineering A.1997:546-549
    [4]B.Kaviraj and S.K.Ghatak,"Very large magneto-impedance and its scaling behavior in amorphous Fe_(73.5)Nb_3Cu_1Si_(13.5)B_9 ribbon",Physica B:Condensed Matter,403(2008):1731-1737
    [5]Wei-Hua Tang,Chun-Shu Li,Yong-Hong Kong and Gui-Lian Zhang,"Giant magnetoresistance effect in nanostructures consisting of magnetic-electric barriers" Physics Letters A,36(2007):262-266
    [6]R.L.Wang,Z.J.Zhao,L.P.Liu,W.Z.Yuan and X.L.Yang,"Giant magneto-impedance effect on nanocrystalline microwires with conductive layer deposit",Journal of Magnetism and Magnetic Materials,28(2005):55-59
    [7]M.H.Phan,H.X.Peng,M.R.Wisnom,S.C.Yu,C.G.Kim and N.H.Nghi,"Effect of annealing temperature on permeability and giant magneto-impedance of Fe-based amorphous ribbon",Sensors and Actuators A,129(2006):62-65
    [8]I.Orue,A.Garcia-Arribas,A.Saad,D.de Cos and J.M.Barandiaran,"Transverse magnetization and giant magnetoimpedance in amorphous ribbons",Journal of Magnetism and Magnetic Materials,290-291(2005):1081-1084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700