用户名: 密码: 验证码:
头颈部鳞癌对自然杀伤细胞Toll样受体3表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头颈部鳞状细胞癌(HNSCC)是人类最常见的恶性肿瘤之一,在近40年运用传统标准方式治疗(外科手术、放射治疗和化学治疗),其5年的生存率并没有显著地提高。鳞癌细胞能利用其分子策略逃避宿主有效的免疫反应。这可能与正常鳞状上皮恶变过程中产生多种免疫抑制产物来影响免疫功能有关。
     自然杀伤(NK)细胞是天然免疫系统中首要的效应者,在抗感染和肿瘤监视方面起了很重要的作用。在某一状态下NK细胞利用自身的受体与靶细胞上的配体结合诱导其活化。然而从癌症患者身上提取的NK细胞其抗肿瘤的的能力受到很大的影响。
     Toll样受体(TLRs)家族在人类共发现10类受体,能识别病原微生物中保守分子,从而启动天然免疫反应。近年来有资料显示polyI:C(人工合成的dsRNA)能上调NK细胞的自然的和CD16介导的细胞毒作用。polyI:C是Toll样受体3(TLR3)的配体,TLR3的刺激能快速上调体内NK细胞的功能。然而在肿瘤微环境中NK细胞TLR的蛋白表达水平如何,通过相应的配体刺激能否激活NK细胞,被激活的NK细胞的生物学行为又如何体现,目前未见报道。
     本课题由三部分组成,着重研究TLR3在NK细胞内的表达定位及头颈部鳞癌对其影响。
     第一部分人类NK细胞TLR蛋白表达及其受HNSCC的影响
     研究TLR在NK细胞中蛋白表达及其是否受HNSCC的影响。
     利用磁珠分离技术从正常人的外周血中获得NK细胞:采用Western blot检测人类NK细胞的TLR的蛋白表达;NK细胞与正常培养基和HNSCC细胞株(BHY、PCI-1和PCI-13)上清液培养24小时,再通过Western blot检测其TLR的蛋白水平的表达。
     结果显示:1.运用密度梯度离心法和磁珠分离技术能从健康人的外周血中获得高纯度的NK细胞。2.在TLR1-10中,人类NK细胞只有TLR1、2、3和7蛋白表达。3.在上述三种HNSCC肿瘤细胞株上清液和标准培养基中培养24小时的NK细胞中,各组均只有表达TLR1、2、3和7,并且表达强度无差异,因此提示TLR在NK细胞中的蛋白表达并不受HNSCC的影响。
     第二部分人类NK细胞TLR3表达定位
     研究了LR3在NK细胞中的表达定位,以及进一步了解polyI:C对其作用。
     利用流式细胞仪检测TLR3在NK细胞中的表达定位:NK细胞经polyI:C刺激后,用流式细胞仪测CD69的表达,并且通过Western blot了解NF-κB的活化程度;利用anti-TLR3 mAb功能性封闭NK细胞表面的TLR3受体,然后用polyI:C进行刺激,最后通过流式细胞仪和Western blot测定NK细胞的CD69的表达。
     结果显示:1.TLR3在天然的人类NK细胞中主要表达在细胞表面,有少量位于细胞内。2.Poly(I:C)的刺激可以导致NK细胞表面CD69表达的显著上调。3.经功能性封闭后再用polyI:C刺激的NK细胞CD69表达MFI为687±102,与正常的NK细胞CD69表达(MFI=532±78)无显著性差异,P>0.05;该结果与Western blot显示的CD69的蛋白表达相一致:说明封闭NK细胞表面的TLR3后,polyI:C刺激不会导致CD69表达的明显上调。4.在正常培养基中经Poly(I:C)刺激的NK细胞,在60分钟这个时间点可以测得IκBα降解,在90分钟时发现IκBα降解得更加完全。这一结果符合TLR3受刺激后导致NF-κB的活化。
     第三部分HNSCC对人类NK细胞TLR3表达定位的影响
     讨论HNSCC细胞株的上清液对TLR3在人类NK细胞中表达定位的影响。
     将NK细胞与HNSCC细胞株(BHY、PCI-1和PCI-13)上清液培养24小时,利用流式细胞仪检测TLR3在NK细胞中的表达定位,然后用polyI:C刺激上述NK细胞,再用流式细胞仪测TLR3的表达定位和CD69的表达;将质粒pUNO-hTLR3转染到小鼠纤维母细胞NIH3T3中,使其表达异源性的TLR3,然后将其与HNSCC细胞株(BHY和PCI-1)上清液培养24小时,利用流式细胞仪检测该细胞中TLR3的表达定位;通过ELISA分析HNSCC细胞株(BHY、PCI-1和PCI-13)上清液的细胞因子的含量。
     结果显示:1.NK细胞表面的TLR3在正常培养基中明显高于在肿瘤上清液中,经t检验,P<0.01;而在NK细胞内的TLR3在正常培养基中则明显低于在肿瘤上清液中,经t检验,P<0.01。在各HNSCC细胞株上清液之间,NK细胞的TLR3表达无显著性差异,经t检验,P>0.05。提示肿瘤上清液能使表达在细胞表面的TLR3出现快速地下调,相对应地在其细胞内的TLR3蛋白水平上升。这种TLR3“内化”现象也同样存在于表达异源性TLR3的小鼠纤维母细胞中。2.HNSCC细胞株上清液和Poly(I:C)两者具有拮抗效应;在肿瘤微环境中PolyI:C的刺激能使NK细胞表面TLR3的表达显著地增加,故提示Poly(I:C)能削弱HNSCC诱导TLR3在NK细胞中的“内化”;并且Poly(I:C)的刺激可以导致NK细胞表面CD69表达的显著上调,这种NK细胞的活化不受HNSCC上清液的影响。3.在所测定的细胞因子中IL-6和IL-8在上述三种细胞株中均大量分泌。在BHY上清液中IL-6为3750±265pg/ml,在PCI-1和PCI-13中分别为340±52pg/ml和450±78pg/ml。IL-8在BHY、PCI-1和PCI-13的上清液中的含量分别为820±111pg/ml、200±21pg/ml和760±72pg/ml。而其他的细胞因子在上清液中含量极其低,处于0~3pg/ml水平。因此,我们推测HNSCC细胞株分泌的IL-6和IL-8参与了诱导NK细胞TLR3的“内化”。
     总结
     1.采用免疫磁珠法的MACS技术可以从外周血中分离提取高纯度的NK细胞,这一方法值得信赖。
     2.在人类天然NK细胞中,只有TLR1、TLR2、TLR3和TLR7蛋白表达,并且表达是稳定的,不受HNSCC的影响。
     3.TLR3主要表达定位于人类天然NK细胞的细胞表面;polyI:C刺激细胞表面的TLR3激活NK细胞,使其CD69表达显著上调,上述过程依赖于NF-κB的活化。
     4.HNSCC造成NK细胞表面的TLR3迁移至细胞内;这一现象在表达异源性TLR3的纤维母细胞上得以证实。这种TLR3在NK细胞中的“内化”,暗示了NHSCC免疫逃逸的新机制。
     5.polyI:C不仅能削弱HNSCC诱导TLR3在NK细胞中的“内化”,而且能激活受HNSCC影响的NK细胞。
     6.HNSCC可能分泌某些细胞因子,如IL-6和IL-8,参与诱导NK细胞TLR3的“内化”。
Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent cancers in the world and over the last 40 years the 5-year survival rate has only marginally improved. Cells of head and neck cancer are known to develop several molecular strategies to escape efficient immune responses. It is supposed that various tumor secreted immunosuppressive mediators contribute to massively affected immune functions within the malignant transformation process.
    Natural killer (NK) cells are a component of the innate immunity and play an important role in anti-infection activity and tumor surveillance. NK cells can be triggered through various receptors depending on specific ligands presented by target cells in a given encounter. However, NK cells isolated from cancer patients exhibit strongly impaired anti-tumor functions.
    Toll-like receptors (TLRs) are pattern-recognition receptors that trigger innate immune responses to recognize conserved molecular patterns of microbial origin. Ten TLRs have been described in human, and for most of them specific ligands have been identified to date. Recently it has been shown that treatment with the synthetic
    double-stranded RNA (dsRNA) polyinosinic-polycytidylic acid (poly I:C), a mimic of a common product of viral infections, significantly upregulates both natural and CD16 mediated cytotoxicity of highly purified human NK cells. Poly I:C is known to be recognized by Toll-like receptor 3 (TLR3), and TLR3 stimulation was shown to rapidly upregulate NK cell in vivo functions. However in HNSCC micro-environment, the protein expression of TLRs in NK cell and NK cell ability to directly respond to TLRs' Hgands are still mostly unknown.
    There were three sections in this work, in which the effect of HNSCC on the subcellular distribution of TLR3 in NK cell was focused on.
    Section I TLR protein expression of human NK cell in the presence of HNSCC
    To investigate TLR protein expression of human NK cell in the presence of HNSCC.
    Untouched NK cells from human peripheral blood of healthy donors were isolated by magnetic bead separation. TLR protein expression of human NK cell was studied by Western blot. In addition, isolated NK cells were incubated in tumor cell line supernatants (BHY, PCI-1 and PCI-13) for 24 hours before they were used for protein analysis.
    High purity of isolated NK cells from human peripheral blood of healthy donors was achieved using the technique of magnetic bead separation. Among human TLR proteins we found only TLR1, TLR2, TLR3, and TLR7 to be significantly expressed in native NK cells. Our investigations revealed a constitutive expression of these TLR proteins in NK cells which was not affected in response to 24 hours of incubation in different HNSCC supernatants.
    Section II Subcellular localization of TLR3 in human NK cell
    To investigate the subcellular localization of TLR3 and the regulation of TLR3 in response to polyI:C in NK cell.
    Flow cytometric analysis to subcellular distribution of TLR3 was used. The CD69 expression in NK cells responding to polyI:C stimulation was examined by FACS and activation of NF-κB was analyzed by Western blot. In addition, NK cells were pretreated with anti-TLR3 mAb 30 min at 37℃, then stimulated with 50 μg/ml poly(I:C) for 24 h.. After that, CD69 expression in NK cell was further studied by Western blot and FACS.
    TLR3 was identified as a predominantly surface expressed receptor in native NK cells, in which TLR3 could as well be found in low level in the cellular lumen. Our data demonstrated CD69 expression significantly increased in NK cells in response to polyI:C stimulation. The CD69 MFI in polyI:C-stimulated NK cell, in which TLR3 on the surface was blocked by anti-TLR3 mAb, was 687±102, whereas the CD69 MFI in native NK cell was 532±78. There was no significant difference between them, which was consistent with the result of CD69 protein analysis. It showed that CD69 expression was not up-regulated in NK cells with surface TLR3 blockage responding to polyI.C stimulation. In the polyI:C-stimulated NK cells with normal medium incubation, IκBα degradation was detected at the time point of 60 min and by 90 min most of the IκBα protein was degradated. This is consistent with the fact that stimulation of TLRs results in NF-κB activation.
    Section III The effect of HNSCC on the subcellular localization of TLR3 in human NK Cell
    To investigate the effect of HNSCC supernatants on the subcellular localization of TLR3 in human NK Cell.
    Isolated NK cells were incubated in tumor cell line supernatants (BHY, PCI-1
    and PCI-13) or and polyI:C for 24 hours, then flow cytometric analysis to subcellular distribution of TLR3 and CD69 expression was performed. Mouse fibroblasts NIH3T3 were used for transfection with plasmid pUNO-hTLR3, then they were incubated in tumor cell line supernatants (BHY and PCI-1) for 24 hours, and subcellular distribution of TLR3 was further examined by FACS. The cytokines in HNSCC supernatants were analyzed by ELISA.
    Incubation of isolated NK cells in HNSCC supernatants for 24 hours resulted in an internalization of TLR3. TLR3 expression was rapidly down-regulated on the cell surface and correspondingly, increased cytoplasmic protein levels could be detected after incubation with HNSCC supernatants. Identical findings could be achieved using supernatants of three different HNSCC cell lines. The internalization of TLR3 in response to HNSCC could as well be observed in fibroblasts expressing heterologous TLR3 protein.
    Our data indicated antagonistic effects of poly I:C and HNSCC supernatants. Poly I:C stimulated NK cells revealed a significantly increased surface expression of TLR3 in the presence of HNSCC , which shows that poly I:C is able to impair the HNSCC induced internalization of TLR3. Our data demonstrated that poly I:C stimulation resulted in a significant upregulation of surface CD69 on the analyzed NK cells, which was not significantly affected by HNSCC supernatants.
    Our data revealed that IL-6 and IL-8 were secreted in huge amounts by three HNSCC cell lines. High secretion levels of IL-6 of 3750 ± 265 pg/ml were detected in BHY supernatants and lower, but still significant, levels of IL-6 were detected in the PCI-1 (340 ± 52 pg/ml) and PCI-13 (450 ± 78 pg/ml) cell lines. Determination of IL-8 in these supernatants revealed similar cytokine levels of 820 ±111 pg/ml (BHY), 200 ± 21 pg/ml (PCI-1) and 760 ± 72 pg/ml (PCI-13). The detected other cytokines were found to be secreted only at very low levels, in a range of 0-3 pg/ml, in three cell lines. So we presume that IL-6 and IL-8 secreted by HNSCC participate in the induction of TLR3 internalization in NK cell.
    Summary
    1. The technique of magnetic bead separation is a reliable method to achieve high purity of isolated NK cells from human peripheral blood of health donors.
    2. Among human TLR proteins, only TLR1, TLR2, TLR3, and TLR7 are significantly detected in native NK cells, and their stable protein expressions could not be affected by HNSCC.
    3. TLR3 expression predominantly localizes on the surface of native NK cells, and surface TLR3 stimulation by polyI:C could induce activation of NK cell with significant CD69 up-regulation. This process is achieved depending on NF-κB activation.
    4. HNSCC could result in an intracellular migration of surface TLR3 in NK cell, which could be identified in fibroblasts expressing heterologous TLR3. It suggests that this rapid internalisation of TLR3 of NK cell in response to HNSCC represents a novel immune escape mechanism of head and neck cancer.
    5. Poly I:C could not only impair the HNSCC induced intemalization of TLR3, but also trigger NK cell activation in the presence of HNSCC.
    6. It is presumed that some cytokines secreted by HNSCC, such as IL-6 and IL-8, participate in the induction of TLR3 intemalization in NK cell.
引文
1 Janeway CA Jr, Medzhitov R. Introduction: the role of innate immunity in the adaptive immune response. Semin Immunol. 1998; 10(5): 349-50.
    2 Akira S. Toll-like receptor signaling. Curr Opin Immunol. 2003; 15(1): 5-11.
    3 Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989; 47: 187-376.
    4 Nitta T, Yagita H, Sato K, Okumura K. Involvement of CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural killer-target cell interaction. J Exp Med. 1989; 170(5): 1757-61.
    5 徐彤,田志刚,张彩,张建华,夏青,孙汭.人外周血NK细胞纯化方法的初步比较.中国免疫学杂志.2000;11(16):594-597.
    6 Niemeyer CM, Sieff CA, Smith BR, Ault KA, Nathan DG. Hematopoiesis in vitro coexists with natural killer lymphocytes. Blood 1989; 74(7): 2376-82.
    7 Park YG, Moon JH, Kim J. A comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts. Yonsei Med J. 2006; 47(2): 179-83.
    8 Grunewald S, Baumann T, Paasch U, Glander HJ. Capacitation and acrosome reaction in nonapoptotic human spermatozoa. Ann N YAcad Sci. 2006; 1090: 138-46.
    9 Grunewald S, Miska W, Miska G, Rasch M, Reinhardt M, Glander H J, Paasch U. Molecular glass wool filtration as a new tool for sperm preparation. Hum Reprod. 2007 Mar 2; [Epub ahead of print].
    10 Muzio M, Bosisio D, Polentarutti N, D'amico G, Stoppacciaro A, Mancinelli R, van't Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000; 164(11): 5998-6004.
    11 Homung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168 (9) : 4531-4537.
    
    12 Sivori S, Carlomagno S, Moretta L, Moretta A. Comparison of different CpG oligodeoxynucleotide classes for their capability to stimulate human NK cells. Eur J Immunol. 2006; 36(4): 961-7.
    
    13 Muzio M, Bosisio D, Polentamtti N, D'amico G, Stoppacciaro A, Mancinelli R, van't Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000; 164(11): 5998-6004.
    
    14 Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 2002;23(8):375-8.
    
    15 Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002; 168 (2) : 554-561.
    
    16 Oren A, Husebo C, Iversen AC, Austgulen R. A comparative study of immunomagnetic methods used for separation of human natural killer cells from peripheral blood. J Immunol Methods. 2005; 303(1-2): 1-10.
    1 Datta SK, Redecke V, Prilliman KR, Takabayashi K, Corr M, Tallant T, DiDonato J, Dziarski R, Akira S, Schoenberger SP, Raz E. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol. 2003; 170(8): 4102-10.
    2 Muzio M, Bosisio D, Polentarutti N, D'amico G, Stoppacciaro A, Mancinelli R, van't Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000; 164(11): 5998-6004.
    3 Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 2002; 23(8): 375-8.
    4 陈颖,谢磊.头颈部鳞状细胞癌中Toll样受体.3的表达及其意义.肿瘤学杂志.2007:13(1):46-49.
    5 Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun. 2002; 293 (5): 1364-1369.
    6 Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 2005; 280 (7): 5571-5580.
    7 Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003; 171 (6): 3154-3162.
    8 Gerosa F, Tommasi M, Benati C, Gandini G, Libonati M, Tridente G, Carra G, Trinchieri G. Differential effects of tyrosine kinase inhibition in CD69 antigen expression and lytic activity induced by rlL-2, rlL-12, and rlFN-alpha in human NK cells. Cell Immunol. 1993; 150(2): 382-90.
    9 Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res .1997,17:503-524
    
    10 Maggi LB, Heitmeier MR, Scheuner D, Kaufman RJ, Buller RM, Corbett JA. Potential role of PKR in double-stranded RNA-induced macrophage activation. EMBO J. 2000, 19: 3630-3638.
    
    11 Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001,413:732-8.
    
    12 Sivori S, Falco M, Delia Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci U S A. 2004; 101(27): 10116-10121.
    
    13 Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun. 2002; 293 (5) : 1364-1369.
    
    14 Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003; 171 (6) : 3154-3162.
    
    15 Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 2005; 280 (7) : 5571-5580.
    
    16 Barton GM, Medzhitov R. Toll signaling: RIPping off the TNF pathway. Nat Immunol. 2004; 5(5): 472-474.
    
    17 Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002; 169(12): 6668-6672.
    18 Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491-6.
    
    19 Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, Han J, Beutler B. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Mat Immunol. 2003 Dec;4(12): 1223-9.
    
    20 Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR . J Biol Chem. 2003 May 9;278(19): 16713-9.
    
    21 Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol. 2004; 5(5): 503-507.
    
    22 Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem. 1999; 274(43):30353-6.
    
    23 Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA, Wang F, Godowski PJ. APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol. 2004 Jan 1;172(1): 138-43.
    1.卢圣栋主编.现代分子生物学实验技术(第二版).中国协和医科大学出版社,1999,236-251.
    2. Takebe Y, Seiki M, Fujisawa J, Hoy P, Yokota K, Arai K, Yoshida M, Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988; 8(1): 466-72.
    3. Shimauchi T, Hirokawa Y, Yokura Y. Purpuric adult T-cell leukaemia/lymphoma: expansion of unusual CD4/CD8 double-negative malignant T cells expressing CCR4 but bearing the cytotoxic molecule granzyme B. Br J Dermatol. 2005; 152(2): 350-2.
    4. Liu Y, Poon RT, Hughes J, Feng X, Yu WC, Fan ST. Chemokine receptors support infiltration of lymphocyte subpopulations in human hepatocellular carcinoma. Clin Immunol. 2005; 114: 174-182.
    5. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest. 2004; 114: 560-8.
    6. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002; 8: 793-800.
    7. Gratas C, Tohrna Y, Barnas C, Taniere P, Hainaut P, Ohgaki H. Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res. 1998; 58: 2057-62.
    8. Rouas-Freiss N, Moreau P, Menier C, Carosella ED. HLA-G in cancer: a way to turn offthe immune system. Semin Cancer Biol. 2003; 13(5): 325-36.
    9. Broderick L, Yokota S J, Reineke J, Mathiowitz E, Stewart CC, Barcos M, Kelleher RJ Jr, Bankert RB. Human CD4~+ effect or memory T-cells s persisting in the microenvironment of lung cancer xenografts are activated by local delivery of IL-12 to proliferate, produce IFN-gamma, and eradicate tumor cellss. J [mmunol. 2005; 174: 898-906.
    10. Parajuli P, Mathupala S, Sloan AE. Systematic comparison of dendritic cells-based immunotherapeutic strategies for malignant gliomas: in vitro induction of cytolytic and natural killer-like T-cells. Neurosurgery. 2004; 55: 1194-1204.
    11. Mocchegiani E, Malavolta M. NK and NKT cells functions in immunosenescence. Aging Cells. 2004; 3: 177-184.
    12. Chen J, Cao ZY, Zhang P, Peng ZL, Yang YL, Bi JH. Study on the TIL and NK of IL-2 injected via pelvic retroperitoneal space in gynecological cancer patient. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004; 35(3): 406-8.
    13. Ponticiello A, Perna F, Maione S, Stradolini M, Testa G, Terrazzano G; Ruggiero G, Malerba M, Sanduzzi A. Analysis of local T lymphocyte subsets upon stimulation with intravesical BCG: a model to study tuberculosis immunity. Respir Med. 2004; 98(6): 509-14.
    14. Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 2001; 12(4): 375-91.
    15. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005; 65(12): 5009-14.
    16.陈颖,谢磊.头颈部鳞状细胞癌中Toll样受体-3的表达及其意义.肿瘤学杂志.2007;13(1):46-49.
    17. Pattie SB, Farrell PJ. The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther. 2006; 6(11): 1193-205.
    18. Tran N, Rose BR, O'brien CJ. Role of human papillomavirus in the etiology of head and neck cancer. Head Neck. 2007; 29(1): 64-70.
    19. Salaun B, Coste I, Rissoan MC, Lebecque S J, Renno T. TLR3 can directly trigger apoptosis in human cancer cells. J Immunol. 2006; 176(8): 4894-901.
    1 Janeway CA Jr, Medzhitov R. Introduction: the role of innate immunity in the adaptive immune response. Semin Immunol. 1998; 10(5):349-50.
    
    2 Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett. 2003; 85(2):85-95.
    
    3 Takeda K, Akira S. Toll receptors and pathogen resistance.Cell Microbiol. 2003; 5(3):143-53.
    
    4 Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 1998; 95(2):588-93.
    
    5 Datta SK, Redecke V, Prilliman KR, Takabayashi K, Corr M, Tallant T, DiDonato J, Dziarski R, Akira S, Schoenberger SP, Raz E. A subset of Toll-like receptor Hgands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol. 2003;170(8):4102-10.
    
    6 Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res. 1997,17:503-524
    
    7 Maggi LB, Heitmeier MR, Scheuner D, Kaufman RJ, Buller RM, Corbett JA. Potential role of PKR in double-stranded RNA-induced macrophage activation. EMBOJ. 2000, 19: 3630-3638.
    
    
    8 Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, Rothlisberger P, Bachmann MF. Role of Toll-like receptors in costimulating cytotoxic T cell responses.Eur J Immunol. 2003;33(6): 1465-70.
    
    9 Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001,413:732-8.
    
    10 Muzio M, Bosisio D, Polentarutti N, D'amico G, Stoppacciaro A, Mancinelli R, van't Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000; 164(11): 5998-6004.
    11 Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 2002;23(8):375-8.
    
    12 Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002; 168 (2) : 554-561.
    
    13 Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol . 2002; 168 (9) : 4531-4537.
    
    14 Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000; 68 (12) : 7010-7017.
    
    
    15 Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 2005; 280 (7) : 5571-5580.
    
    16 Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun. 2002; 293 (5) :1364-1369.
    
    17 Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 2003; 171 (6) : 3154-3162.
    
    18 Doyle S, Vaidya S, O'Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity. 2002; 17 (3) : 251-263.
    
    19 Heinz S, Haehnel V, Karaghiosoff M, Schwarzfischer L, Muller M, Krause SW, Rehli M. Species-specific regulation of Toll-like receptor 3 genes in men and mice. J Biol Chem. 2003; 278 (24) : 21502-21509.
    20 Honda K, Sakaguchi S, Nakajima C, Watanabe A, Yanai H, Matsumoto M, Ohteki T, Kaisho T, Takaoka A, Akira S, Seya T, Taniguchi T. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci U S A. 2003; 100(19): 10872-10877.
    
    21 Miettinen M, Sareneva T, Julkunen I, Matikainen S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun. 2001; 2(6): 349-355.
    
    22 Tanabe M, Kurita-Taniguchi M, Takeuchi K, Takeda M, Ayata M, Ogura H, Matsumoto M, Seya T. Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochem Biophys Res Commun. 2003; 311(1): 39-48.
    
    23 Sivori S, Falco M, Delia Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci USA. 2004; 101(27): 10116-10121.
    
    24 Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med. 1999; 189(5): 821-829.
    
    
    25 Akira S, Takeda K. Functions of toll-like receptors: lessons from KO mice. Nat Rev Immunol. 2004; 4(7): 499-511.
    
    26 Barton GM, Medzhitov R. Toll signaling: RIPping off the TNF pathway. Nat Immunol. 2004; 5(5): 472-474.
    
    27 Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002; 169(12): 6668-6672.
    
    28 Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem. 2003; 278(50): 49751-49762.
    29 Meylan E, Bums K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol. 2004; 5(5): 503-507.
    30 McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A. 2004; 101 (1): 233-238.
    31 Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003; 171 (8): 4304-4310.
    32 陈颖,谢磊.头颈部鳞状细胞癌中Toll样受体-3的表达及其意义.肿瘤学杂志.2007;13(1):46-49.
    33 Akira S. Toll-like receptor signaling. Curr Opin Immunol. 2003; 15(1): 5-11.
    1 . Borrego F, Kabat J, Kim DK, et al(2002)Structure and function of major histocompatibility complex(MHC)class I specific receptors expressed on human natural killer(NK)cells. Mol Immunol 38:637
    2. Cerwenka A, Lanier LL (2001) Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev 181:158
    3 . Takei F, McQueen KL, Maeda M, et al (2001) Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunol Rev 181:90
    
    4. Lian RH, Kumar V (2002) Murine natural killer cell progenitors and their requirements for development. Semin Immunol 14:453
    
    5. Kiessling R, Petranyi G, Klein G, et al (1975) Genetic variation of in vitro cytolytic activity and in vivo rejection potential of non-immunized semi-syngeneic mice against a mouse lymphoma line Int J Cancer 15:933
    
    6. Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745
    
    7. Bauer S, Groh V, Wu J, et aI(1999)Activation of NK cells and T cells by NKG2D, a receptor for stress, inducible MICA. Science 285:727
    
    8. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41
    
    9. Smyth M J, Hayakawa Y, Takeda K, et al (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850
    
    10. Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3:413
    
    11. Williams NS, Moore TA, Schatzle JD, et al (1997) Generation of lytic natural killer 1.1~+, Ly-49-cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J Exp Med 186:1609
    
    12. Kennedy MK, Glaccum M, Brown SN, et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771
    
    13. Benneff IM, Zatsepina O, Zamai L, et al(1996)Defmition of a natural killer NKR-P1A~+ / CD56~- / CD16~-functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med. 184:1845
    
    
    14. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633
    
    15. Roth C, Carlyle JR, Takizawa H, et al (2000) Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 13:143
    
    16. Loza M J, Perussia B (2001) Final steps of natural killer cell maturation: a model for type 1-type 2 differentiation? Nat Immunol 2:917
    
    17. Kim S, lizuka K, Kang HS, et al (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3:523
    
    
    18. Lanier LL, Le AM, Civin CI, et al (1986) The relationship of CD 16 (Leu-11 ) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136:4480
    
    19. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735
    
    20. Smyth M J, Takeda K, Hayakawa Y, et al (2003) Nature's TRAIL—on a path to cancer immunotherapy. Immunity 18:1
    
    21. Smyth M J, Trapani JA (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today 16:202
    
    22. Smyth M J, Thia KY, Cretney E, et al (1999) Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 162:6658
    
    23. Street SE, Hayakawa Y, Zhan Y, et al (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδT cells. J Exp Med 199:879
    
    
    24. Van den Broek MF, Kagi D, Zinkemagel RM, et al (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25:3514
    25. Davis JE, Smyth M J, Trapani JA (2001) Granzyme A and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potent in vivo anti-tumor capacity. Eur J Immunol 31:39
    
    26. Smyth M J, Street SE, Trapani JA (2003) Cutting edge: granzymes A and B are not essential for perforin-mediated tumor rejection. J Immunol 171:515
    
    27. Takeda K, Hayakawa Y, Smyth M J, et al (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7:94
    
    28. retney E, Takeda K, Yagita H, et al (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356
    
    29. Takeda K, Smyth M J, Cretney E, et al (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161
    
    30. Peritt D, Robertson S, Gri G, et al (1998) Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 161:5821
    
    31. Robertson MJ (2002) Role of Chemokines in the biology of natural killer cells. J Leukoc Biol 71:173
    
    32. Ikeda H, Old L J, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95
    
    33. Street SE, Cretney E, Smyth MJ (2001) Perform and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192
    
    34. Irmler M, Thome M, Hahne M, et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190
    
    35. Griffith TS, Chin WA, Jackson GC, et al (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833
    
    36. Wilson M J, Torkar M, Haude A, et al (2000) Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA 97:4778
    37. Yokoyama WM, Daniels BF, Seaman WE, et al (1995) A family of murine NK cell receptors specific for target cell MHC class I molecules. Semin Immunol 7:89
    
    38. Diefenbach A, Tomasello E, Lucas M, et al (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142
    
    39. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521
    
    40. Diefenbach A, Jensen ER, Jamieson AM, et al (2001) Rael and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165
    
    41. Diefenbach A, Jensen ER, Jamieson AM, et al (2001) Rael and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165
    
    42. O'Hanlon LH (2004) Natural born killers: NK cells drafted into the cancer fight. J Natl Cancer Inst 96:651
    
    43. Liao NS, Bix M, Zijlstra M, et al (1991) MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253:199
    
    44. Smyth M J, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459
    
    45. Haliotis T, Ball JK, Dexter D, et al (1985)Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int J Cancer 35:505
    
    46. Gao Y, Yang W, Pan M, et al (2003) Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 198:433
    
    47. Smyth M J, Thia KY, Street SE, et al (2000) Differential tumor surveillanceby natural killer (NK) and NKT cells. J Exp Med 191:661
    
    48. Cui Z, Willingham MC, Hicks AM, et al (2003) Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA 100:6682
    49. Whiteside TL, Herberman RB (1995) The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 7:704
    
    50. Whiteside TL, Vujanovic NL and Herberman RB (1998) Natural killer cells and tumor therapy. Curr Top Microbiol Immunol 230:221
    
    51. Ballas ZK, Turner JM, Turner DA, et al(1990)A patient with simultaneous absence of "classical"natural killer cells(CD3~- CD16~+ , and NKH1~+ )and expansion of CD3~+, CD4~- CD8~- NKH1~+ subset. J Allergy Clin Immunol 85:453
    
    52. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286:1957
    
    53. Smyth M J, Thia KY, Street SE, et al (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755
    
    54. Brady J, Hayakawa Y, Smyth M J, et al (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048
    
    55. Hashimoto W, Tanaka F, Robbins PD, et al (2003) Natural killer, but not natural killer T, cells play a necessary role in the promotion of an innate antitumor response induced by IL-18. Int J Cancer 103:508
    
    56. Smyth M J, Taniguchi M, Street SE (2000) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165:2665
    
    57. Trinchieri G (1998) Immunobiology of interleukin-12. Immunol Res 17:269
    
    58. Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6 Suppl 1 :S2
    
    59. Silla LM, Whiteside TL, Ball ED (1995) The role of natural killer cells in the treatment of chronic myeloid leukemia. J Hematother 4:269
    
    60. Pawelec G, Da Silva P, Max H, et al (1995) Relative roles of natural killer- and T cell-mediated anti-leukemia effects in chronic myeiogenous leukemia patients treated with interferon-alpha. Leuk Lymphoma 18:471
    
    
    61. Sivakumar PV, Foster DC, Clegg CH (2004) Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology 112:177
    62. Kasaian MT, Whitters M J, Carter LL, et al (2002) IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16:559
    
    63. Moroz A, Eppolito C, Li Q, et al (2004) IL-21 enhances and sustains CD8~+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 173:900
    
    64. Banchereau J, Steinman RM(1998)Dendritic cells and the control of immunity. Nature 392:245
    
    65. Waldmann TA, Tagaya Y (1999) The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17:19
    
    66. Granucci F, Vizzardelli C, Pavelka N, et al (2001) Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2:882
    
    67. Fernandez NC, Lozier A, Flament C, et al (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405
    
    68. Cooper MA, Fehniger TA, Fuchs A, et al (2004) NK cell and DC interactions. Trends Immunol 25:47
    
    69. Ferlazzo G, Munz C (2004) NK cell compartments and their activation by dendritic cells. J Immunol 172:1333
    
    70. Zitvogel L (2002) Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195:F9
    
    71. Ferlazzo G, Tsang ML, Moretta L, et al (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343
    
    72. Gerosa F, Baldani-Guerra B, Nisii C, et al (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327
    
    73. Piccioli D, Sbrana S, Melandri E, et al (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335
    
    74. Granucci F, Zanoni I, Pavelka N, et al (2004) A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J Exp Med 200:287
    
    75. Dokun AO, Kim S, Smith HR, et al (2001) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2:951
    
    76. Ferlazzo G, Semino C, Melioli G (2001) HLA class I molecule expression is up-regulated during maturation of dendritic cells, protecting them from natural killer cell-mediated lysis. Immunol Lett 76:37
    
    77. Wilson JL, Heftier LC, Charo J, et al (1999) Targeting of human dendritic cells by autologous NK cells. J Immunol 163:6365
    
    
    78. Campbell J J, Qin S, Unutmaz D, et al (2001) Unique subpopulations of CD56~+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166:6477
    
    79. Buentke E, Heftier LC, Wilson JL, et al (2002) Natural killer and dendritic cell contact in lesional atopic dermatitis skinmMalassezia-influenced cell interaction. J Invest Dermatol 119:850
    
    80. Ferlazzo G Thomas D, Lin SL, et al (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455
    
    81. Martin-Fontecha A, Thomsen LL, Brett S et al. (2004) Induced recruitment of NK cells to lymph nodes provides IFN-γ for Thl priming. Nat Immunol 5:1260
    
    82. Ferlazzo G, Morandi B, D'Agostino A, et al (2003) The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur J Immunol 33:306
    
    83. Hayakawa Y, Screpanti V, Yagita H, et al (2004) NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol 172:123
    
    84. Kelly JM, Darcy PK, Markby JL, et al (2002) Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 3:83
    
    85. Karre K, Ljunggren HG, Piontek G, et al (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675
    
    86. Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127
    
    87. Kelly JM, Takeda K, Darcy PK, et al (2002) A role for IFN-gamma in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J Immunol 168:4472
    
    
    88. Yuan D, Koh CY, Wilder JA (1994) Interactions between B lymphocytes and NK cells. FASEB J, 8:1012
    
    89. Mocikat R, Braumuller H, Gumy A, et al (2003) Natural killer cells activated by MHC class I(Iow) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561
    
    90. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249
    
    91. Sauter B, Albert ML, Francisco L, et al (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423
    
    92. Wallace ME, Smyth MJ (2005) The role of natural killer cells in tumor control-effectors and regulators of adaptive immunity. Springer Semin Immunopathol. 27:49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700