用户名: 密码: 验证码:
α-羟基羧酸盐辅助合成氧化锌与银微纳米结构及光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在探索控制性液相化学合成微纳米材料的新方法,利用具有良好生物相容性的有机多官能团试剂如柠檬酸盐、苹果酸盐、酒石酸盐、葡萄糖酸盐等控制性合成了具有不同形状、组装方式的氧化锌微纳米结构,发现了具有α—羟基羧酸官能团的有机试剂在控制氧化锌形貌方面具有独特的作用,能够有效的控制氧化锌纳米晶体的长径比。并进一步将α—羟基羧酸盐应用于银纳米颗粒的合成中,选择性合成具有三角形、截角三角形、六边形的银纳米片。主要内容如下:
     1.设计了柠檬酸盐辅助的水热合成氧化锌的化学反应路线,合成了由纳米片规则排列组装而成的氧化锌微纳米结构。发现了柠檬酸盐能够有效的抑制氧化锌纳米晶体在碱性水溶液中的一维生长趋势。通过调节柠檬酸盐的浓度、反应进行的温度等实验参数,有效地控制了氧化锌微纳米颗粒的形状。深入研究了氧化锌微纳米结构的形成过程,认为其形成过程主要包括两个步骤:先形成六边形氧化锌微米片,而后纳米颗粒在一个六边形表面进行外延生长形成具有规则排列方式的多级微纳米结构。发现了氧化锌(0001)和(0001)晶面在生长过程中具有显著不同的活性,这一现象被归结于氧化锌极性晶体的晶体特征。
     2.设计了苹果酸盐辅助的水热合成路线,合成了由纳米片定向排列的具有六边形轮廓的微米颗粒。气体吸附/脱附的分析结果表明这种外形特殊的氧化锌纳米结构具有孔状特征,通过扫描电镜和透射电镜的观察认为孔隙来源于纳米颗粒定向排列产生的晶粒间隙。发现了苹果酸盐与柠檬酸盐类似,能够有效的控制纳米颗粒的长径比,改变苹果酸盐的浓度能够起到控制产物的外观形状的作用。通过对产品形成时间演化的分析发现反应过程包括两个阶段:首先生成了单晶六边形纳米颗粒,然后在颗粒六边形表面二次生长形成多级结构,二次生长过程中在纳米颗粒之间形成了晶粒间隙。揭示了苹果酸盐与柠檬酸盐均能够抑制氧化锌的一维生长趋势,起到控制长径比的作用。
     3.根据“结构相似,功能相似”的基本原则,选择了酒石酸盐、葡萄糖酸盐等α—羟基羧酸盐运用于氧化锌的液相化学合成中,获得了一系列由纳米片沿特定晶体学方向有序排列的多级纳米结构,揭示了具有α—羟基羧酸根的多官能团有机小分子在抑制氧化锌一维生长习性,控制产物长径比方面具有特殊效果,α—羟基羧酸根是这些有机分子的共同特征。从分子结构—分子功能的角度对这种特殊结构的有机试剂在氧化锌生长过程中的作用进行了归纳,认为它们基于分子特性在氧化锌生长过程中能够起到两个作用:首先作为配位剂,与锌离子螯合,起到输运锌离子控制氧化锌生成速率的作用;其次,选择性吸附于氧化锌晶面,稳定氧化锌极性面{0001},改变氧化锌各个晶面生长速率,起到控制氧化锌纳米颗粒形状的作用。
     4.对采用α—羟基羧酸盐辅助合成的氧化锌微纳米结构进行光致发光的研究,发现利用α—羟基羧酸盐辅助制备的氧化锌粉末具有较强的紫外近带边荧光发射,源于缺陷的可见光发射受到不同程度的抑制。从晶体生长的角度出发,提出α—羟基羧酸盐的配位作用以及表面吸附作用是抑制氧化锌本征缺陷以及表面缺陷的原因。发现了紫外近带边荧光发射峰随着激发光光率密度的增加发生红移的现象。结合能带基本理论,通过对拉曼光谱与紫外近带边荧光发射峰的特征分析,提出了光—热效应是导致近带边荧光峰红移现象产生的原因,并且从定量的角度对粉体的质量进行了评估。
     5.将α—羟基羧酸盐辅助合成路线推广到银纳米片的形貌控制合成中,成功地合成了具有三角形、截角三角形、六边形的银纳米片。研究了α—羟基羧酸盐对银纳米颗粒形状的影响。并且在实验中通过改变银纳米片的形状,实现了对表面等离子体共振吸收峰的调节,成功地红移至近红外区域。对银纳米片进行了详细的结构分析,观察到了由堆垛层错造成的二次衍射形成的超晶格二维点阵相。将不同形状的银纳米片应用于线嘌呤的微量检测中,研究了银纳米片形状对表面等离子体共振增强效应的影响。
In this dissertation, a multi-functional oligocarboxylic based chemical methods were developed to controlled synthesize inorganic micro- or nano- materials. With the assistance of various benign biocompatible agents such as citrate malate tartrate and gluconate, ZnO hierarchical nanostructures that assembled with distinct nanoplates were harvested. Theseα-hydroxy carboxylate played special role in the control of the aspect ration of ZnO nanocrystals and the formation of nanoplates. In addition, theα-hydroxy carboxylate based chemical route was also developed to the shaped controlled synthesis of silver nanoplates. Silver nanoplates with triangular sniped triangular or hexagonal frameworks were selectively obtained by selecting differentα-hydroxy carboxylate in the reaction. The main points are summarized as follows:
     1. A citrate assistance hydrothermal route was developed to the synthesis of ZnO micro- or nano- crystals. A hierarchical ZnO microparticles that assembled of regular arranged nanoplates were harvested. Experiments find that citrates can effectively prohibit the elongation of ZnO nanocrystals and formation of ZnO nanoplates. By carefully tuning the experiments factors such as the citrates concentration or reaction temperature, the shape of the ZnO nanocrystals could be alternated. Based on the shape evolution observations, two stages were suggested in the formation of the hierarchical ZnO microparticles: firstly formation hexagonal ZnO microplates, and the subsequent epitaxial growth of nanoplates on the (0001) surface planes of the ZnO microplates. The(0001) and (0001) show distinct activities in the second stage, resulting the formation of anisotropic microstructures. These phenomena were derived from the polar characteristics of ZnO crystals.
     2. A malate assistance hydrothermal route was developed to the synthesis of ZnO hexagonal microstructures. These hexagonal microstructures were composed of ZnO nanoplates that well arranged along the base planes. N_2 adsorption/desorption curves showed there were small pores embedded in the ZnO microstructures. TEM and SEM observations confirmed the pores resulted from the interplaces of the nanolates. Similar to citrate, malates were effect in the control of the aspect ration of ZnO nanocrystales and the formation of ZnO nanoplates. The shape evolution investigations also found two stages involved in the growth: the formation of hexagonal ZnO seeds and subsequent epitaxial growth. The small pores formed in the second stage.
     3. Based on the principle "similar structures, similar functions", other multi-functionalα-hydroxy carboxylate such as tartrate and gluconate were applied in the shape controlled synthesis of ZnO nanostructures, and a series of hierarchical nanostructures based on ZnO nanoplates were harvested, indicating the importance ofα-hydroxy carboxylate in the aspect ratio control of ZnO nanocrystales.
     4. The room temperature PL of the ZnO powders prepared by theα-hydroxy carboxylate assistance routes was investigated. The samples showed intensive UV emissions, and the defects related emissions in the visible zone were greatly depressed. The improvement of optical quality of the samples were attribute to two factors: the chelating ability ofα-hydroxy carboxylate, and the surface adsorption. We also observed the red shift of UV peaks as the exciting power increased. In combination of the Raman spectrum we deduce this originated from the lasing-thermal effects during the investigation.
     5. Theα-hydroxy carboxylate assistance routes were also developed to the controlled synthesis of silver nanoplates with various frameworks such as triangular, sniped triangular or hexagonal shapes. Theα-hydroxy carboxylate were found to be crucial in the formation of silver nanoplates, and by selectively choosing theα-hydroxy carboxylate , the shape of the silver nanoplates can be alternated. The surface plasmon bands of silver ` can be turned to the near infrared zone.
引文
[1].张立德,牟季美,纳米材料和纳米结构,科学出版社,2001
    [2]. http://www.zyvex.com/nanotech/feynman.html
    [3].朱静 等 纳米材料和器件 清华大学出版社,2003
    [4]. Maruccio, G.; Gingolani, R.; Rinaldi, R. J. Mater. Chem. 2004, 14, 542
    [5]. Suiyanarayana, C.; Froes, F. H. Metall. Trams. 1992, A23, 1071.
    [6]. Yoffe, A. D. Advancees in Physics 1993, 2, 173.
    [7]. Henglein, A. Chem. Rev. 1989, 84, 1861.
    [8]. Webb, R. A. Phys. Rev. Lett. 1985, 54, 2696.
    [9]. Kroto, H. W. Nature 1985, 318, 162.
    [11]. Hagfeidt, A.; Gratzel, M. Chem. Rev., 1995, 95, 49.
    [11]. Ping, Y.; Hdjinanayis, G. C. Appl. Phys. 1990, 67, 4502.
    [12]. Ball, P.; Garwin, L. Nature 1992, 355, 762.
    [13]. Legget, A. J; Chakravarty S. Rev. Mod. Phys. 1987, 59, 1
    [14]. Weller, H.; Eychmuler, A. Advances in Photochemistry 1995 Vol. 20, New York, John Wiley&Sons. Inc.
    [15]. (a) Schaefer, H. F.; Wurschum, R. Phys. Lett. 1987, A119, 370;
    (b) M. Mark et al Catal. Today 1991, 8, 467.
    (c) Tsang, S. C.; Chen, Y. K.; Harris, P. J. Nature 1994, 372, 159.
    [16]. Brringer, R; Gleiter, H.; Klein, H. P.; Marquit, P. Phys. Lett. 1984, 102A, 365.
    [17]. Kuyama, J.; Inui, H.; Imaoka S. J. Appl. Phy. 1991, 30, L864.
    [18]. (a) Clson K. N.; Cook, R. L. J Am. Ceram. Soc. 1959, 38, 499.
    (b) Guire M. R. J. Mater. Res. 1993, 8, 2327.
    (c) Shi, J. L. J. Eur. Ceram. Soc. 1993, 13, 265.
    (d) Lu, C. W.; Shi, J. L. ThernochimicaActa 1994, 232, 77.
    (e) Shi, J. L. J. Mater. Sci.1995, 30, 793.
    [19]. Switzer, J. A.; Shane, M. L.; Phillips, R. Science 1990, 247, 444.
    [20]. Deshev, P. Mater. Res. Bull. 1987, 13, 1167.
    [21]. (a) Shaw, T. W. JAm. Ceram. Soc. 1986, 69, 979.
    (b) Gleiter, H. Prog. Mater. Sci. 1990, 33, 223.
    (c) Pacheco-Malagon, G. J Mater. Res. 1995, 10, 1264.
    (d) Ding, X. Z. et al. J Mater. Sci. Lett. 1995, 14, 21.
    (e) Dong, X. T; Hong, G. Y. J. Mater. Sci. Technol. 1997, 13, 113.
    [22]. Venkatachari, K. R. J. Mater. Res. 1995, 10, 248.
    [23]. (a) Gleiter, H. Euro. Physics News 1989, 20, 13Q.
    (b) Cui, Z. L. Nanostructured Maier. 1995, 5, 829.
    (c) Birringer, R.; Gleiter, H. Phys. Lett. 1984, 102A, 365.
    [24].高晓云,陈进,王冕 无机材料学报 1992,7,429
    [25]. (a) Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
    (b) Feng, S.; Xu, R. Ace Chem. Res. 2001. 34, 239
    [26]. Qian, Y. T.; Chun, Q W; Chen, Z. Y. J. Mater. Chem, 1993, 3, 203.
    [27]. Qian, Y. T. et al. Mater. Res. Bull. 1995, 30, 601.
    [28]. Mo, M. S.; Zheng, J. H.; Liu, X. M.; Yu, W. C.; Zhang, S. Y.; Qian, Y. T. Adv. Mater 2002, 14, 1658.
    [29]. Bibby, D. M.; Dale. M. P. Nature 1985, 317, 157.
    [30]. Inoue, M. et al. J Am. Ceram. Soc. 1989, 72, 352.
    [31]. (a) Gao, Q.; Xu, R. J Am. Chem. Soc. 1994, 1364.
    (b) Hun, Q.; Xu, R. J Chem. Soc. Chem. Commun. 1992, 875.
    [32]. Sheldrick, W. S; Wachold, M. Angew. Chem. Int. Ed. 1997, 36, 206
    [33]. Li, Y. D.; Liao H. W.; Qian, Y. T.. Inorg. Chem. 1999, 38, 1382
    [34]. Yang, J.; Xue, C.; Yu, S. H; Zeng, J; Qian, Y. T. Angew. Chem. Int. Ed. 2002, 41, 4697.
    [35]. Xie, Y.; Qian, Y. T.. et at. Science 1996, 272, 1926.
    [36]. Li, Y. D.; Qian, Y. T. et al. Inorg. Chem. 1998, 37, 2844.
    [37]. Yu, S. H.; Qian, Y. T. et al. Chem. Mater 1998, 10, 2309.
    [38]. (a) Xie, Y.; Qian, Y. T. et al. Science 1996, 272, 1926.
    (b) Xie, Y.; Qian, Y. T. et al Appl. Phys. Lett. 1996, 69, 334.
    [39]. Li, Y. D.; Qian, Y. T. et al. Science 1998, 281, 246.
    [40]. Jiang, Y.; Qian, Y. T. et al. J. Mater. Res. 2001, 10, 1.
    [41].王笃金,吴瑾光,徐光宪 化学通报 1995,9,1
    [42]. (a) Qi, L.; Coffen, H.; Antonietti, M. Angew. Chem. Int. Ed. 2000, 39, 1704.
    (b) Shi, H.; Qi, L.; Ma, J. Cheng, J. Chem. Commun. 2002, 104.
    (c) Qi, L.; Li, J.; Ma, J. Adv. Mater. 2002, 14, 300.
    (d) Zhang, D.; Qi, L.; Ma, J. Cheng, H. Adv. Mater 2002, 14, 1499.
    (e) Shi, H.; Qi, L.; Ma, J.; Cheng, H. J. Am. Chem. Soc. 2003, 125, 3450.
    [43].张军,孙聆东,钱程等.化学通报 2001,46,1423.
    [44].李彦,万景华,顾镇南.物理化学学报 1999,15,1.
    [45]. Murray, C. B.; Norris, D. J.; Bawendi, M. C. J. Am. Chem. Soc. 1993, 115, 8706.
    [46]. Jun, Y. W.; Lee, S. M; Kang, N. J.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 5150.
    [47]. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 608
    [48]. Chen, J.; Wiley, B.; Li, Z. Y.; Campbell, D; Saeki, F.; Cang, H.; Au. L.; Lee, J.; Xia, Y. Adv. Mater. 2005, 18, 2255
    [49]. Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Chem. Asian. J. 2006, 1, 888
    [50]. Routkevitch, D.; Bigioni, T; Moskovits, M. et al. J. Phys. Chem. 1996, 100, 14037
    [51]. Zhang, Z; Gekhtman, D: Dresselhaus, M. S.; Ying, J. Y. Chem. Mater. 1999, 11, 1659
    [52]. Prieto, A. L.; Sander, M. S.; Martin-Gonzalez, M. S. J. Am. Chem. Soc. 2001, 123, 7160.
    [53]. Dai, H; Wong, E. W.; Lu, Y. Z. et al. Nature 1995, 375, 769
    [54]. Lisiecki, I.; Sack-Kongehl, H.; Weiss, K.; Urban, J.; Pileni, M. -P Langmui 2000, 16, 8807
    [55]. Lisiecki, I.; Pileni, M. P. Langmui 2003, 19, 9386
    [56]. Salzemann, C.; Brioude, A.; Pileni, M-P. J. Phys. Chem. B. 2006; 110, 7208
    [57]. Taleb, A.; Petit, C.; Pileni, M. P. Chem. Mater. 1997, 9, 950
    [58]. Simmons, B. A.; Li, S.; John, V. T.; McPherson, G. L.; Bose, A.; Zhou, W.; He, J. Nano Lett, 2002; 2, 263
    [59]. Zhang, J. L.; Han, B. X.; Liu, M. H.; Liu, D. X.; Dong, Z. X.; Liu, J.; Li, D.; Wang, J. Dong, B. Z.; Zhao, H. Rong, L. X. J. Phys. Chem. B 2003, 107, 3679
    [60]. J. M. Tarascon, F. J. DiSalvo, C.11. Chen, P. J. Carrol, M. Walsh, L. Rupp, J. Solid State Chem. 1985, 58, 290
    [61]. Venkataraman, L.; Lieber, C. M. Phys. Rev. Lett 1999, 83, 5334.
    [62]. Messer, B.; Song, J. H.; Huang, M.; Wu, Y.; Kim, F.; Yang, P. Adv. Mater. 2000, 12, 1526.
    [63]. Gates, B.; Yin, Y.; Xia, Y. J Am. Chem. Soc. 2000, 122, 12582
    [64]. B. Gates, B. Mayers, A. Grossman, Y. Xia, Adv. Mater. 2002, 14, 1749.
    [65]. Mayers, B. Xia, Y J Mater. Chem. 2002, 12, 1875.
    [66]. Mayers, B. Xia, Y Adv. Mater. 2002, 14, 279.
    [67]. Mayers, B.; Gates, B.; Yin, Y.; Xia, Y. Adv. Mater 2001, 13, 1380
    [68]. Sun, Y. G.; Xia, Y. N. Adv. Mater. 2003, 15, 695
    [69]. Sun, Y. G.; Mayers, B.; Xia, Y. N. Nano Lett. 2003, 3, 675
    [70]. Washio, I.; Xiong, Y. J.; Yin, Y. D.; Xia, Y. N. Adv. Mater. 2006, 18, 1745
    [71]. Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648
    [72]. Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B. 2001, 105, 4065
    [73]. Gou, L.; Murphy, C. J. Chem. Mater 2005; 1, 3668
    [1]. Tsukazaki, A.; Ohtomo, A.; Omuna, T.; Ohtani, M.; Makino, T.; Suyama, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinama, H.; Kawasaki, M. Nat. Mater. 2005, 4, 42.
    [2]. Rensmo, H.; Keis, K.; Lindstrom, H.; Sodergren, S.; Solbrand, A.; Hagfeldt, A.; Lindquist, S. E.; Wang, L. N.; Muhammed, M. J. Phys. Chem. B 1997, 101, 2058.
    [3]. G olego, N.; Studenikin, S. A.; Cocivera, M. J. Electrochem. Soc. 2000, 147, 1592.
    [4]. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R. S.; Zhang, Y. Adv. Funct. Mater. 2004, 14, 943.
    [5]. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
    [6]. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897
    [7]. Dulub, O.; Boatner, A.; Diebold, U. Surf. Sci. 2002, 519, 201
    [8]. Meyer, B.; Marx, D. Phys. Rev. B 2003, 67, 035403
    [9]. Wander, A.; Schedin, F.; Steadman, P.; Norris, A.; McGrath, R.; Turner, T. S.; Thoronton, G.; Harrison, N. M. Phys. Rev. Lett. 2001, 86, 3811
    [10]. Staemmler, V.; Fink, K.; Meyer, B.; Marx, D.; Kunat, M.; Girol, G.; Burghaus, U.; Woll, C. Phys. Rev. Lett. 2003, 90, 106102
    [11]. Yang, R. S.; Ding, Y.; Wang, Z. L. Nano. Lett. 2004, 4, 1309
    [12].张克从,张乐惠.晶体生长科学与技术(第二版),北京:科学出版社,1997:126
    [13]. Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. J. Cryst. Growth. 1999, 203, 186.
    [14]. Laudise R. A.; Kolb E. D,; Caporaso AJ. J. Am. Cerm. Soc., 1964, 47, 9
    [15]. Drago, S. R.; Valencia, M. E. J. Agric. Food Chem. 2004, 52, 3202
    [16]. de la Fuente, M. A.; Fontecha, J.; Juarez, M. J. Agric. Food Chem. 1996, 44, 1988
    [17]. Glusker, J. P. Acc. Chem. Res. 1980, 13, 345.
    [18]. Munro, C. H.; Smith, W. E,; Garner, M.; Clarkson, J.; White, P. C. Langmure 1995, 11, 3712
    [19]. Barralet, J. E.; Hofmann, M.; Grover, L. M.; Gbureck, U. Adv. Mater. 2003, 15, 2091.
    [20]. Barralet, J. E.; Tremayne, M.; Lilley, K.J.; Gbureck, U. Chem.Mater. 2005,17, 1313
    [21]. Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J.J. Am. Chem. Soc. 2002, 124, 12954.
    [22]. Tian, Z. R.; Voigt, J. A.; Liu,J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H. Xu,H. F. Nat. Mater. 2003, 2, 821.
    [23]. Noguera, C. J. Phys.: Condens. Matter 2000, 12, R367-R410.
    [24]. Sleevi, M. C.; Cale A. D. J. R.; Berot. W. J Med. Chem. 1991, 34, 1314
    [25]. Filella, M.; Town, R. M.; Bugarin, M. G. J. Chem. Eng. Data 1999, 44, 1099
    [26]. Johansson, K.; Ramaswamy, S.; Saarinen, M.; Lemaire-Chamley, M.; Issakidis-Bourguet, E.; Miginiac-Maslow, M.; Eklund, H. Biochemistry 1999,38,4319
    [27]. Gajovic, N.; Warsinke, A.; Huang, T.; Schulmeister, T.; Scheller, F. W. Anal. Chem. 1999, 71,4657
    [28]. Kurtz,M.; Strunk, J.; Hinrichsen,O. ; Muhler, M.; Fink, K.; Meyer, B.; WPll, C. Angew. Chem. Int. Ed. 2005, 44, 2790.
    [29]. Lavalley,J. C.; Saussey,J.; Rais, T. J. Mol. Catal. 1982, 17, 289
    [30]. Kung, H. H.; Catal. Rev. Sei. Eng. 1980, 22, 235
    [31]. French,S. A.; Sokol,A. A.; Bromley, S. T.; Catlow,C. R. A.; Rogers, S. C.; King, F.; Sherwood, P. Angew. Chem. Int. Ed. 2001, 40, 4437
    [32]. Kong, X. Y.; Wang, Z. L. Nano. Lett. 2003,3,1625
    [33]. Kim, C. K.; Kim, Y. J.; Jang, E. S.; Yi, G. C.; Kim, H. H. Appl. Phys. Lett. 2006,88, 093104
    [34]. Li, F.; Ding, Y.; Gao, P. X.; Xin, X. Q.; Wang, Z. L. Angew.Chem., Int. Ed. 2004, 43, 5238.
    [35]. Peng, Y.; Xu, A. W.; Deng, B.;Antonietti, M.; Colfen, H. J. Phys. Chem. B 2006, 110, 2988.
    [36]. Yang, J.; Zeng, J. H.; Yu, S. H.; Yang, L.; Zhou, G. E.; Qian,Y. T. Chem.Mater. 2000,12,3259
    [37]. Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H. Angew. Chem. Int. Ed. 2002, 41, 4697
    [38]. Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity,2nd ed.; Academic Press: London, UK, 1982.
    [39]. Wang, T.; Colfen, H.; Antonietti, M. J. Am. Chem. Soc. 2005,127, 3246
    [40]. Wang, X.; Li, Y. Inorg. Chem. 2006, 45,7522
    [41]. Xiong, Y.J.; Li, Z.Q.; Li, X.X.; Hu, B.; Xie, Y. Inorg. Chem. 2004,43, 6540
    [42]. Peng, Z.A.; Peng, X.J. Am. Chem. Soc. 2001, 123, 1389
    [43]. Peng, Z. A.; Peng, X. J. Am. Chem. Soc 2002, 124, 3343
    [1].金其荣等.有机酸发酵工艺学.中国轻工业出版社.1994
    [2].白云.生物合成有机酸分离技术的研究.华东理工大学硕士学位论文,1997
    [3].陈绍怡,杨秀,秦玉静.手性药物合成中的生物转化.生物工程进展,2000,20,60
    [4]. Sato Hidetsugu, Yauchi Akira 工 Toray Industries Ltd.) Japan, Kokai, 1975: 75145586
    [5]. Sorgenfrei, USP 4017 410. 1997-04-12
    [6]. Das, USP 4 422 886. 1983-12-27
    [7]. Villa, USP 4 290 817. 1981-09-22
    [8]. Miksic, USP 5 750 053. 1995-05-12
    [9].杨志,林保和 北京医科大学学报,2000,32,536
    [10]. Hnatowich, USP 5 980 861 1999-11-09
    [11]. Yang, J.; Zeng, J. H.; Yu, S. H.; Yang, L.; Zhou, G. E.; Qian, Y. T. Chem. Mater 2000, 12, 3259
    [12]. Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H. Angew. Chem. Int. Ed. 2002, 41, 4697
    [13]. Taubert. A.; Glasser, G.; Palms, D. Langmuir 2002, 18, 4488
    [14]. Taubert. A.; Palms, D.; Weiss, O.; Piccini, M. T.; Batchelder, D. N. Chem. Mater. 2002, 14, 2594
    [15]. Taubert. A.; Kubel, C.; Martine, D. C. J. Phys. Chem. B 2003, 107, 2060
    [16]. Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J. J. Am. Chem. Soc. 2002, 124, 12954.
    [17]. Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H. Xu, H. F. Nat. Mater. 2003, 2, 821.
    [18]. Gao, X. P.; Zheng, Z. F.; Zhu, H. Y.; Pan, G. L.; Bao, J. L.; Wu, F.; Song, D. Y. Chem. Comm. 2004, 12, 1428.
    [1]. Djurisic, A. B.; Leung, Y. H. Small 2006, 2, 944.
    [2]. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkocu, H. J. Appl. Phys. 2005, 98, 041301
    [3]. Klingshim, C. J. J. Cry. Grow. 1992, 117, 753
    [4]. Wegscheider, W.; Pfeiffer, L. N.; Dignam, M. M.; Pinczuk, A.; West, K. W.; Mccall, S. L.; Hull, R. Phys. Rev. Lett. 1993, 71, 4071
    [5]. Nicoll, F. H. Appl. Phys. Lett. 1966, 9, 13
    [6]. Hvam, J. M. Solid. State Commu. 1973, 12, 95
    [7]. Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T. Appl. Phys. Lett. 1997, 70, 2230
    [8]. Tang, Z. K.; Wong, GK. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Appl. Phys. Lett. 1998, 72, 3270
    [9]. Cao, H.; Zhao, Y. G.; Ong, H. C.; Ho, S. T.; Dai, J. Y.; Wu, J. Y.; Chang, R. P. H. Appl. Phys. Lett. 1998, 73, 3656
    [10]. Cao, H.; Zhao, Y. G.; Ho, S. T.; Selling, E. W.; Wang, Q. H.; Chang, R. P. H. Phys. Rev. Lett. 1999, 82, 2278
    [11]. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897
    [12]. Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Adv. Mater. 2001, 13, 113.
    [13]. Yao, B. D.; Chan, Y. F., Wang, N. Appl. Phys. Lett. 2002, 81, 757
    [14]. Yan, H.; He, R.; Pham, J. Yang, P. D. Adv. Mater. 2003, 15, 402.
    [15]. Yao, B. D.; Chan, Y. F.; Wang, N. Appl. Phys. Lett. 2002, 81, 757.
    [16]. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
    [17]. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Adv. Funct. Mater. 2004, 14, 943.
    [18]. Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625.
    [19]. Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Nano Lett. 2003, 3, 235.
    [20]. Xing, Y. J.; Xi, Z. H.; Zhang, X. D.; Song, J. H.; Wang, R. M.; Xu, J.; Xue, Z. Q.; Yu, D. P. Solid State Commun. 2004, 129, 671.
    [21]. Park, J. H.; Choi, H. J.; Choi, Y. J.; Sohn, S. H. Park, J. G. J. Mater. Chem. 2004, 14, 35
    [22]. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Adv. Funct. Mater. 2004, 14, 943.
    [23]. Park, W. I.; Jun, Y. H.; Jung, S.W.; Yi, G.C. Appl. Phys. Lett. 2003, 82, 964.
    [24]. Hartanto, A. B.; Ning, X.; Nakata, Y.; Okada, T. Appl. Phys. A 2003, 78, 299.
    [25]. Liu, C.; Zapien, J. A.; Yao, Y.; Meng, X.; Lee, C. S.; Fan, S.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15, 838.
    [26]. Ng, H. T.; Chen, B.; Li, J.; Han, J.; Meyyappan, M.; Wu, J.; Li, S. X.; Haller, E. E. Appl. Phys. Lett. 2003, 82, 2023.
    [27]. Lin, B.; Fu, B. Z.; Jia, Y. Appl. Phys. Lett. 2001, 79, 943.
    [28]. Wang, R. C.; Liu, C. P.; Huang, J. L.; Chen, S. J. Appl. Phys. Lett. 2005, 87, 053103.
    [29]. Hsu, N. E.; Hung, W. K.; Chen, Y. F. Appl. Phys. Lett. 2004, 96, 4671.
    [30]. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. D. Angew. Chem. Int. Ed. 2003, 42, 3031.
    [31]. Wen, F.; Li, W.; Moon, J. H.; Kim, J. H. Solid State Commun. 2005, 135, 34.
    [32]. Li, D.; Leung, Y. H.; Djurisic, A. B.; Liu, Z. T.; Xie, M. H.; Shi, S. L.; Xu, S. J.; Chan, W. K. Appl. Phys. Lett. 2004, 85, 1601.
    [33]. Fan, H. J.; Scholz, R.; Kolb, F. M.; Zacharias, M. Appl. Phys. Lett. 2004, 85, 4142.
    [34]. Cross, R. B. M.; De Souza, M. M. Sankara, E. M. Nanotechnology 2005, 16, 2188.
    [35]. Abrarov, S. M.; Yuldashev, S. U.; Kim, T. W.; Lee, S. B.; Kwon, Y. H.; Kang, T. W. Opt. Commun. 2005, 250, 111
    [36]. Lin, C. C.; Chen, H. P.; Liao, H. C.; Chen, S. Y. Appl. Phys. Lett. 2005, 86, 183103.
    [37]. Kim, Ko J.; Park, Y. R. Appl. Phys. Lett. 2001, 78, 475
    [38]. Bergman, L.; Chen, X. B.; Morrison, J. L.; Huso, J.; Purdy, A. P. J. Appl. Phys. 2004, 96, 675.
    [39]. Li, C. F.; Huang, Y. S.; Malikova, L.; Pollak, F. H. Phys. ReV. B 1997, 55, 9251.
    [40]. Yang, Y. L.; Yan, H. W.; Fu, Z. P.; Yang, B. F.; Xia, L. S.; Xu, Y. D.; Zuo, J.; Li, F. Q. J. Phys. Chem. B 2006, 110, 846
    [41]. Makino, T.; Chia, C. H.; Tuan, N. T.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Tamura, K.; Koinuma, H. Appl. Phys. Lett. 2000, 76, 3549.
    [42]. Wang, R. P.; Xu, G.; Jin, P. Phys. Rev. B 2004, 69, 113303.
    [43]. Zhang, X. T.; Liu, Y. C.; Zhi, Z. Z.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Xu, W.; Zhong, G. Z.; Fan, X. W.; Kong, X. G. J. Phys. D: Appl. Phys. 2001, 34, 3430.
    [44]. Sun, H. D.; Makino, T.; Tuan, N. T.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Tamura, K.; Koinuma, H. Appl. Phys. Lett. 2001, 78, 2464.
    [45]. Wang, R. P.; Xu, G.; Jin, P. Phys. ReV. B 2004, 69, 113303.
    [1]. (a) Halperin, W. P. Rev. Mod. Phys. 1996, 58, 533;
    (b) Schmid, G. Chem. Rev. 1992, 92, 1709;
    (c) Henglein A. Chem. Rev. 1989, 89, 1861;
    (d) Lewis, L. N. Chem. Rev. 1993, 93, 2693;
    [2]. (a) Schon, G. Simon, U. Colloid Polym. Sci. 1995, 273, 101;
    (b) Schmidt, G. L. F. Chi, Adv. Mater. 1998, 10, 515;
    (c) Theys, R. D.; Sosnovsky, G. Chem. Rev. 1997, 97, 83;
    [3]. (a) Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S. A.; Requicha, A. G.; Atwater, H. A. Adv. Mater. 2001, 13, 1501;
    (b) Kamat, P. V. J. Phys. Chem. B 2002, 106, 7729;
    (c) Murray, C. B.; Sun, S.; Betley, H.; Bettey, T. MRS Bull. 2001, 26, 985;
    [4]. (a) Pileni, M. P. Adv. Funct. Mater 2001, 11, 323;
    (b) Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Duyne, R. P. van J. Am. Chem. Soc. 2001, 123, 1471.
    [5]. Brioude, A.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 23371
    [6]. Wiley, B.; Sun, Y.; Mayers, B. ; Xia, Y. N. Chem. Eur. J. 2005, 11, 454
    [7]. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 608
    [8]. Zhang, J. T.; Sun, X. m.; Li, Y. D. J. Phys. Chem. B 2005, 109, 12544
    [9]. Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Chem. Asian. J. 2006, 1, 888
    [10]. Shi, A. C.; Masel, R. I. J. Catal. 1989, 120, 421
    [11]. Siekkinen, A. R.; McLellan, J. M.; Chen, J. Y.; Xia, Y. N. Chem. Phys. Lett. 2006, 432, 491
    [12]. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. J. Chem. Phys., 2002, 116, 6755
    [13]. Chen, J.; Wiley, B.; Li, Z. Y.; Campbell, D; Saeki, F.; Cang, H.; Au. L.; Lee, J.; Xia, Y. Adv. Mater. 2005, 18, 2255
    [14]. Bastys, V.; Pastoriza-Santos, I.; Rodriguez-Gonzalez, B.; Vaisnoras, R.; Liz-Marzan L. M. Adv. Funct. Mater. 2006, 16, 766
    [15]. Noguez, C. J. Phys. Chem. C 2007, 111, 3806
    [16]. (a)Kelly, K. L.; Lazarides, A. A.; Schatz, G. C, COMPUTING IN SCIENCE & ENGINEERING 2001, 4, 67;
    (b) Kelly, K. L.; Coronado, E.; Zhao, L. L. J. Phys. Chem. B 2003, 107, 668
    [17]. Wiley, J. B.; Sang, H. I.; Li, Z. Y.; Mclellan, J.; Siekkinen, A.; Xia, Y. N. J. Phys. Chem. B 2006, 110, 15666
    [18]. Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596
    [19]. Haynes, C. L.; McFarland, A. D.; Smith, M. T.; Hulteen, J. C.; Van Duyne, R. P. J. Phys. Chem. B 2002, 106, 1898
    [20]. Ormonde, A. D.; Hicks, E. C. M.; Castillo, J.; Van Duyne R. P. Langmuire 2004, 16, 6927
    [21]. Yener, D. O.; Sindel, J.; Randall, C. A.; Adair, J. H. Langmuir 2002, 18, 8692.
    [22]. (a) Chen, S.; Carroll, D. L. Nano Lett. 2002, 2, 1003.
    (b) Chen, S.; Fan, Z.; Carroll, D. L. J. Phys. Chem. B 2002, 106, 10777.
    [23]. Maillard, M.; Giorgio, S.; Pileni, M.-P. Adv. Mater. 2002, 14, 1084.
    [24]. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng,J. G. Science 2001, 294, 1901.
    [25]. Jin, R.; Cao, Y. C.; Hao, E.; Me'traux, G. S.; Schatz, G. C.; Mirkin,C. A. Nature 2003, 425, 487.
    [26]. Pastoriza-Santos, I.; Liz-Marza'n, L. M. Nano Lett. 2002, 2, 903.
    [27]. Sun, Y.G.; Mayers, B.; Xia, Y. N. Nano Lett. 2003, 3, 675
    [28]. Washio, I.; Xiong, Y.J.; Yin, Y. D.; Xia, Y.N. Adv. Mater. 2006, 18, 1745
    [29]. Jana, N.A. Small 2005,1,875
    [30]. Metraux, G. S.; Mirkin, C. A. Adv. Mater. 2005, 17, 412
    [31]. Jiang, X. C.; Zeng, Q.H.; Yu, A.B. Nanotech. 2006,17,4929
    [32]. Sun, Y.G.; Xia, Y.N. Adv. Mater. 2003, 15, 695
    [33]. Henglein, A.; Giersig, A. J. Phys. Chem. B 1999, 103, 1533.
    [34]. Novak, I.P.; Feldheim, D.L. J. Am. Chem. Soc. 2000, 122, 3979
    [35]. Maillard, M.; Giorgio, S.; Pileni, M.P. Adv. Mater. 2002, 14, 1084
    [36]. Germain, V.; Li, J.; Ingert, D.; Wang, Z.L. Pileni, M.P.J. Phys. Chem. B 2003, 107, 8717
    [37]. Jiang, L.-P.; Xu, S.; Zhu, J.-M.; Zhang, J.-R.; Zhu, J.-J.; Chen, H.-Y. Inorg. Chem.2004, 43, 5887
    [38]. Lofton, C.; Sigmund, W. Adv.Funct.Mater. 2005,15, 1197
    [39]. Munro, C. H.; Smith, W. E,; Garner, M.; Clarkson, J.; White, P. C. Langmure 1995,11,3712
    [40]. Callegari, A.; Tonti, D.; Chergui, M. Nano Lett. 2003, 3, 1565
    [41]. Zhang, J. L.; Han, B. X.; Liu, M. H.; Liu, D. X.; Dong, Z.X.;Liu, J.;Li, D.; Wang, J. Dong, B. Z.; Zhao, H. Rong, L.X.J. Phys. Chem. B 2003, 107, 3679
    [42]. Colussi, A. J.,;Weavers, L. K.; Hoffmann, M. R. J. Phys. Chem. A 1998, 102, 6927
    [43]. Lu, L.; Kobayashi, A.; Tawa, K.; Ozaki, Y. Chem.Mater. 2006,18,4894

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700