用户名: 密码: 验证码:
基于数据挖掘的基坑工程安全评估与变形预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海城市轨道交通网络逐步完善,地铁建设工程正在向“深、大、近、紧、难、险”六个方向发展,即深度深、规模大、距离近、工期紧、地质差、隐患多。如何在这种大规模、跨越式、风险高度集中的形势下“又好又快”地完成400公里基本网络的建设节点目标,成为摆在上海地铁建设者们面前的一道难题。本文从工程实际需求出发,以上海软土地区地铁车站基坑安全评估与变形预测作为主要研究目标,收集了上海市已建和在建的上百个地铁基坑的几百万组现场实测数据,创新性地引入数据挖掘技术,主要研究了以下内容:
     1、在综合国内外研究的基础上较全面的总结了数据挖掘技术,分析了数据挖掘技术的产生与发展、处理过程和有关计算模型的算法原理;结合上海软土地区地铁基坑工程的具体特点探讨了数据挖掘技术在该领域的应用前景。
     2、选取了有代表性的30个地铁基坑工程的围护墙体实测变形数据,采用数据挖掘方法研究了基坑状态、工程风险、施工工况、保护等级和监测数据之间的关系,并在此基础上结合上海地铁工程实际情况提出了一套合理有效的基坑变形警戒值。
     3、对上海软土地区地铁基坑中233个测斜和地面沉降断面实测数据进行了汇总和挖掘,得出最大地面沉降点发生位置以及地面沉降最大值与围护结构最大水平位移比值的分布规律。并以常熟路地铁站为背景,采用基坑降水三维渗流场与应力场耦合有限元程序计算了在实际的降水工况下产生的地面沉降,采用地层补偿法计算了由基坑开挖变形产生的地面沉降;对上述两种因素产生的地面沉降进行叠加,与实测的地面沉降值吻合较好。
     4、通过对大量地铁基坑地下墙位移时程曲线特点的分析和挖掘,参考了其它一系列相关的位移预测手段,提出了一套基于实测数据的基坑围护墙体变形预测方法。该方法把基坑变形分为“开挖变形”和“有撑变形”两个阶段分开预测,分别提出了不同的计算方法,并通过古北路车站的数据进行了验证。
With the amelioration of urban rail transit network in Shanghai, projects of the metro construction have showed six trends. That is the foundation pits become deeper, the scale of constructions is getting larger, the distance between buildings and subway is getting closer, the time limit for constructions is more urgent, the geologic feature is more complex, the hidden troubles are more and more. How to accomplish the node target of completing 400km basic network in both 'quick and satisfactory' way under the situation of large scale, leaping over style, high integration of risk becomes a question for the subway constructors in Shanghai. This paper concentrates on the evaluation of safety and deformation prediction of the foundation pits of subway stations in Shanghai soft soil from the needs of real projects. The paper collected millions groups of field measure data from more than 100 both constructing an constructed subway stations and innovatively introduced data mining technology into the research. The main ideas of the paper are listed as follows:
     1, Based on relative studies at home and abroad the paper comprehensively summarized data mining technology and analyzed the origin and development of the technology, dealing process and algorithm principle of relative calculation models. According to the features of subway foundation pits in Shanghai soft soil, the paper studied the prospect of data mining technology in this area.
     2, The paper selected 31 representative deformation data of retaining structure of subway foundation pits in Shanghai soft soil and studied time-space distribution rule of the maximum deformation ratio and deformation velocity by data mining technology. On the basis of research mentioned above and practical cases in the Shanghai, a reasonable and effective series of deformation alarm value in the pits constructing was put forward.
     3, By compiling and mining the data of retaining wall deformation and ground settlement which comes from 233 foundation pits in Shanghai soft soil, the conclusion of distribution rule and feature between horizontal distance of maximum ground settlement point far away from the foundation pit and the maximum horizontal retain wall deformation was drawn. Changshu subway station was chosen as an example. The paper adopted FEM programmer which considered the coupling of 3D seepage field and stress field to calculate the ground settlement when the foundation pit was dewatered. It also made use of stratum compensation theory to calculate the ground settlement resulting from excavation of the foundation pit. Add the two kinds of ground settlement together, and then made a comparison with the field measure data.
     4, By analyzing and mining the feature of numerous deformation time-history curves of retaining wall and referring to other relative deformation prediction methods as well, the paper proposed a set of deformation prediction method based on field measure data. The method divided deformation of foundation pit into two phases, 'excavation deformation' and 'bracing deformation'. Different calculation methods are proposed according to each phase. The method was proved by the data of Gubei subway station.
引文
[1] 李先逵,我国城市轨道交通发展战略的思考,城市轨道交通研究,1998(4)
    [2] 上海市城市总体规划(1990-2020),1999
    [3] 刘建航、侯学渊,基坑工程手册,中国建筑工业出版社,1997
    [4] 刘建航,软土基坑工程中时空效应理论与实践,地基处理,Vol.10,No.4,1999
    [5] 赵锡宏、杨国祥,大型超深基坑工程实践与理论,中国建筑工业出版社,1996
    [6] 刘国彬、刘涛、史世雍,全国轨道交通工程事故分析与风险防范,内部资料,2006
    [7] 刘朝明,地铁基坑安全评估研究,同济大学博士论文,2005.
    [8] Borja, R. I. & Kavazanjian, E. (1985). A constitutive model for the stress-strain-time behaviour of 'wet' clays. Geotechnique, Vol. 35(3), 283-298.
    [9] Brooker, E. W. & Ireland, H. O. (1965). Earth pressure at rest related to stress history. Can. Geotech. J., Ottawa, Vol. 2, 1-15.
    [10] Bros, B., The influence of model retaining wall displacements on active and passive earth pressure in sand. Proc. 5th Eur. Conf. On soil Mech., Vol. 1, Madrid, 241-249.
    [11] BSI. (1990). British standard methods of test for soils for civil engineering purposes. Part 2. Classification tests. British Standards Instition.
    [12] Buisman, K. (1936). Result of long duration settlement tests. Proc. 1st Int. Conf. Soil Mech. Found. Engrg. Vol. 1.
    [13] Christensen, R. W. & Wu, T. H, (1964). Analysis of clay deformation as a rate process, J. Soil Mech. Found. Div., ASCE, Vol. 90(6), 125-157.
    [14] Clayton, C. R. I., Khatrush, S. A., Bica, A. V. D. and Siddique, A. (1989). The use of Hall Effect Semiconductors in Geotechnical Engineering. Geotechnical Testing Journal, GTJODJ, Vol. 12(1): 69-76.
    [15] Clough, G. W. & Denby, G. W. (1977). Stabilizing Beam Design for Temporary Wails in Clays, J. ofGeotech. Div., ASCE. Vol. 103(2).
    [16] Clough, G. W., and Reed, M. W. (1984). "Measured behavior of braced wall in very soft clay." J. Geotech. Engrg, ASCE, 110(1), 1-19.
    [17] Coulomb, C. A. (1776). Essais sur une application des regles des maximis et minimis a quelques problems de statique problems de statique relatits al'architecture. Mere. Acad. Roy. Pres. Divers, Sav. Paris 5, 7.
    [18] Dafalias, Y. F. (1987). An anisotropic critical state clay plasticity model. Constitutive laws for engineering materials: Theory and applications, C. S. Desai et al., eds., 513-521.
    [19] Dasari, G. R. & Britto, A. M.(1995). A strain-dependant modified cam-clay model in CRISP. Technical report. Department of Engineering, Cambridge University. UK.
    [20] Davis, E. H. (1968). Theory of plasticity and the failure of soil Masses, Soil Mechanics-selected Topics, Ammerican Elsevier, New York, and 341-380.
    [21] Desai, C. S. & Zhang, D. (1987). Viscoplastic model for geologic materials with generalized flow rule. International journal for Numerical and Analytical Methods in Geomechnics, Vol. 11(6),603-620.
    [22] Diaz-Rodriguez, J. A., Leroueil, S. & Aleman, J. D.(1992). Yielding of Mexico City Clay and other natural clays, J. of Geotech. Engrg, Vol. 118(7), 981-995.
    [23] Dibiagio, E. & Roti, J. A. (1972). Earth pressure measurements on a braced slurry-trench wall in soft clay. Proc. 5th Eur. Conf. Soil Mech., Madrid, Vol. 1, 473-482.
    [24] Duncan, J. M. and Mokwa, R. L. (2001). Passive earth pressures: theories and tests, J. Geotech. Geoenv. Engng. ASCE, Vol 127(3), 248-257.
    [25] Edgers, L., Ladd, C. C. & Christian, J. T. (1973). Undrained creep of Atchafalaya levee foundation clays. MIT Res. Rpt. R73-16, Dept. of Civil Eng., MIT, Cambridge, MA, 2 vols. [26] Finn, W. D. L. & Snead, D. E.(1973). Creep and creep rupture of undisturbed sensitive clay. Proc. 8th Int. Conf. Soil Mech. Found. Engrg. Vol. 1, 135-142.
    [27] Finno, R. J., Harahaps, I.S. & Sabatini, P.J. (1991). Analysis of Excavation with Coupled Finite Element Formulations, Computer and Geotechnics, Vol.12.
    [28] Fioravante, V. 2000. Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing. Soils and Foundations, 40(4): 129-142.
    [29] Fraser, A. M. (1957). The influence of stress ratio on compressibility and pore pressure coefficient in compacted soils. PhD thesis, University of London.
    [30] Georgiannou, V.N., Rampello, S. & Silvestri, F. (1991). Static and dynamic measurement of undrained stiffness of natural overconsolidated clays. Proceedings. 10th Eur. Conf. Soil Mech., Florence 1,91-96.
    [31] Goh, A.T.C. Behavioue of cantilever retaining walls, J. of Geotech. Engrg. ASCE. Vol. 119(11).
    [32] Goto, S., Burland, J. B. & Tatsuoka, F.(1999). Non-linear soil model with various levels and its application to axisymmetric excavation problem. Soils and Foundations. Vol. 39(4), 111-119.
    [33] Liu, K. X., Yong, K. Y. & Lee, F. H. (1996). A numerical study on 3-D behaviour of excavation-support system, Proc. 2nd Int. Conf. on Soft Soil Engineering, Nangjing.
    [34] Lo Presti, D. C. F. (1989). Proprieta dinamiche dei terreni. Atti delle conferenze digeotecnica di Torino, vol.2, 1 -62.
    [35] Long, M. (2001). "Database for retaining wall and ground movements due to deep excavations." J. Geotech. And Geoenvir. Engrg. ASCE, 127(3), 203-224.
    [36] Mana A. I. and Clough G. W. (1981). Prediction of movements for braced cuts in clay. J. Geotech. Engrg. ASCE, 107(6), 759-777.
    [37] Marsland, A. (1971). Laboratary and insitu measurements of the deformation modules of London Clay. Proc. Symp. Interaction of Structure and Foundation, July. Midland Soil Mechanics and Foundation Engineering Society.
    [38] Marsland, A. & Eason, B.J.(1973). Measurements of displacements in the ground below loaded plates in deep boreholes. Proc. Symp. On Field Instrumentation, London. Butterworths. 304-317.
    [39] Mair, R.J. (1993). Developments in geotechnical engineering research: Application to tunnels and deep excavations. Proc. Instn.Civ. Engrs., London, 93(February), 27-41.
    [40] Massarsch, K.R. (1985). Stress-strain behaviour of clays. Proc. 11th Int. conf. Soil Mech. Fdn Engng, San Francisco, Vol. 2, 571-574.
    [41] Mayne, P. W. (1980), Cam-clay prediction of undrained strength, J. Of Geot.Div. ASCE.Vol. 106(11).
    [42] Mesri, G., Febres-Cordero, E., Shields, D. R., & Castro, A. (1981). Shear stress-strain-time behavior of clays, Geotechnique, Vol. 31(4), 537-552.
    [43] Mitchell, J. K. (1964). Shearing resistance of soils as a rate process. J. Soil Mech. Found. Div., ASCE, Vol. 90(1), 29-61.
    [44] Nakai, T. (1985). Analysis of earth pressure problems considering the influence of wall friction and the wall deflection. Proc, the 5th Int. Conf on Numer. Methods in Geomechanics, Nagoya, Japan, 765-772.
    [45] Ng, C. W. W. (1992). An evaluation of soil-structure interaction associated with a multi-propped excavation. PhD thesis, University of Bristol.
    [46] Ng, C.W.W. (1998). "Observed performance of multi-propped excavation in stiff clay." J. Geotech. Engrg. ASCE, 124(9), 889-905.
    [47] Ng, C.W.W. (1999). "Stress paths in relation to deep excavations." J. Geotech. And Geo-environ. Engrg, ASCE. Vol. 125(5), 357-363.
    [48] Ng, C.W. W., Pun, W. K. & Richard, P. L. P.(2000). Small strain stiffness of natural granitic saprolite in Hong Kong. Journal of Geotechnical and geoenvironmental Engineering, ASCE, vol. 126 (9), 819-833.
    [49] Ng, C. W. W. & Wang, Y.(2001). Field and laboratory measurements of small strain stiffness of decomposed granites. Soils and Foundations. Vol. 41(3), 57-71.
    [50] Oasys 1997. SAFE manual of Geotechnical Finite Element Analysis. Oasys Limited. Newcastle upon Tyne, U.K.
    [51] Ohta, H. & Sekiguchi, H. (1979). Constitutive equations considering anisotropy and stress reorientation in AACHEN: University of Aachen, 475-484.
    [52] Oka, F., Adachi, T., & Mimura, M., (1988). Elasto-viscoplastic constitutive models for clays, Proceedings of the International Conference on Rheology and Soil Mechanics, UK Sept., 12-27.
    [53] O'Rourke, T. D., and O'Donnel, C. J. (1997). Field behavior of excavation stabilized by deep soil mixing, J. Geotech. & Geoenvir. Engrg. ASCE, 123(6), 516-524.
    [54] O'Reilly, M. P., Brown, S. F. & Austin, G.(1988). Some observations on the creep behavior of silty clay. In Rheology and Soil Mechanics, M. J. Keedwell, ed., London: Elsevier, 44-58.
    [55] Rankine, W. J. M. (1857). On the stability of loose earth. Phil. Trans. Roy. Soc., Lond. 147, Part 1,9-27.
    [56] Roscoe, K. H., Schofleld, A. N. & WROTH, C. P. (1958). On the yielding of soils." Geotechnique, Vol. 8(1), 22-53.
    [57] Rowe, P. W. (1957). Cc=0 hypothesis for normally loaded clays at equilibrium. Proc. 4th Int. Conf. Soil Mech., London, 189-192.
    [58] Peck, R.B. (1969). "Deep excavation & tunneling in soft ground. State-of-the-Art-Report." Proc, 7th Int. Conf. Soil Mech. Fdn. Engrg. 226-281.
    [59] Schiffman, R. L. (1959). The use of visco-elastic stress-strain laws in soil testing. ATSM Special Technical Publication No. 254, 131-155.
    [60] Schmidt, B. (1967). Discussion on earth pressure, by E. W. Brooker et al. Can. Geotech. J., Ottawa, Vol. 8, 391-399.
    [61] Sekiguchi, H. (1984). Theory of undrained creep rapture of normally consolidated clay based on elasto-viscoplasticity. Soils and Foundations, Vol. 24(1), 129-147.
    [62] Shibata, T. & Karube, D. (1969). Creep rate and creep strength of clays. Proc. 7th Int. Conf. Soil Mech. Found. Engrg. Vol. 1, 361-367.
    [63] Shibuya, S. (2002). A non-linear stress-stiffness model for geomaterials at small to intermediate strains. Geotechnical and geological Engineering, Vol, 20, 333-369.
    [64] Shirley, D. J. and Hampton, L. D. 1978. Shear-wave measurements in laboratory sediments. Journal of Acoustical Society of America, 63(2): 607-613.
    [65] Skempton, A. W. (1951). The Bearing Capacity of Clays. Sldg Res. Cong., London, Div. 1, 180-189.
    [66] Simpson, B. & Wroth, C. P. (1972). Finite element computations for a model retainingwall in sand. Proc, 5th Eur... Conf on Soil Mech. and Found Engrg, Marid, Spain, 85-94.
    [67] Singh, A. & Mitchell, J. K. (1968). General stress-strain-time functions for soils, J. Soil Mech. Found. Div., ASCE, Vol. 94(1), 21-46.
    [68] Soubra, A. H. (2000). Can. Geotech. J., Ottawa, 37(2), 463-478.
    [69] Stallebrass, S. A. (1990). Modeling the effect of recent stress history on the deformation of overconsolidated soils. PhD thesis, City University, London.
    [70] Stokoe II, K. H., Hwang, S. K., Lee J. N. K., and Andrus, R. D. 1995. Effects of various parameters on the stiffness and damping of soils at small to medium strains. In Proceedings of International Symposium on Pre-failure Deformation of Geomaterials (Eds S. Shibuya, T. Mitachi & S. Muira), Vol. 2, pp. 785-816.
    [71] Stokoe II, K. H. and Santamarina, J. C. 2000. Seismic-wave-based testing in geotechnical engineering. GeoEng 2000. An International Conference on Geotechnical and Geological Engineering, Vol. 1,pp. 1490-1536.
    [72] Sugimoto. (1986). Prediction for the maximum settlements of ground surface by open cut. Proceedings of Japan Society of Civil Engineers No. 373, Ⅳ-5.
    [73] Taylor, D. W. (1948). Fundamental of soil mechanics, New York, Wiley, 1948.
    [74] Tedd, P., Chard, B. M., Charles, J. A. & Symons, I. F. (1984). Behavior of a propped embedded retaining wall in stiff clay at Bell Common Tunnel. Geotechnique 34(4), 513-532.
    [75] Terzaghi, K. (1936) A fundamental fallacy in earth pressure computations. Journal of Boston Society of Civil Engineers, Vol. 23, 71-88.
    [76] Thomann, T. G. and Hryciw, R. D. 1990. Laboratory measurement of small strain shears modulus under K0 conditions. Geotechnical Testing Journal, 13(2): 97-105.
    [77] Tsui, Y. (1974). A fundamental study of tied-back wall behavior. Ph. D. thesis presented to Duck University, Durham, N. C.
    [78] Uff, J. F. (1970). In situ measurements of earth pressure for a quay wall at seaforth, Liverpool. Proc. of Conf. on In Situ Investigations in Soils and Rocks. British Geotechnical Society, London. 229-239.
    [79] Uriel, S. & Oteo, C. S. (1977). Stress and strain besides a circular trench wall. Proc. 9th Int. Conf. Soil Mech. Fdn Engng, Tokyo, Vol. 1, 781-788.
    [80] Whittle, A. J. (1987). A constitutive model for overconsolidated clays with application to the cyclic loading of friction piles. SoD thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
    [81] Yin, J. H., Zhu, J. G. & Graham, J. (2002). A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification, Can. Geotech. J., Ottawa, Vol. 39(1), 157-173.
    [82] Zhang, J. M., Shamoto, Y., and Tokimatsu, K. (1998). Evaluation of earth pressure under any lateral deformation. Soils and foundations, Vol. 38(1), 15-33.
    [83] Zeng, G. X. & Gong, X. N. (1985). Geotechnical aspects of soft clay ground under tanks, Proc. 11th Int. Conf. Soil Mech. Found. Engrg. (4).
    [84] Zienkiewicz, O. C. & Cormeau, 1. C. (1974). Visco-plasticity, plasticity and creep in elastic solids: a unified numerical solution approach. International journal for Numerical and Analytical Methods in Geomechnics, Vol. 8(2), 821-845.
    [85] 陈煌铭(1987).深开挖引致之地盘移动,地工学术杂志,No.2.
    [86] 陈永福(1990).深基坑回弹计算的探讨,首届全国岩土工程博士论文学术研讨会论文集.
    [87] 侯学渊、刘国彬、黄院雄,城市基坑工程发展的几点看法,施工技术,Vol.29,No.1,2000
    [88] 董正筑,黄平(1992).土力学极限分析的滑移单元最优化计算法及侧土压力计算《岩土工程学报》Vol.14 f2)
    [89] 何颐华,杨斌,金宝森(1997)深基坑护坡桩土压力的工程测试及研究,土木工程学报,30(1),16-24。
    [90] 侯学渊,陈永福(1989).深开挖引起周围地基土沉陷的计算,岩土工程师,Vol.1(1).
    [91] 侯学渊,夏明耀,李桂花(1991).软土深基坑工程的稳定与隆起研究,深基坑施工技术会议论文集
    [92] 姜洪伟(1995).软土的三维各向异性弹塑性/弹粘塑性本构关系理论及其应用研究,同济大学申请博士学位论文。
    [93] 金鸣(1994).软土地基深基坑护壁结构的侧向土压力分布研究.黄熙龄主编,高层建筑地下结构及基坑支护,宇航出版社,176-178。
    [94] 李军世,林咏梅(2000).上海淤泥质粉质粘土的Singh-Mitchell蠕变方程。岩士力学,Vol.2l(4),362-366.
    [95] 李军世,孙钧(2001).上海淤泥质粘土的Mesri蠕变模型.土木工程学报,Vol.34(6),73-79.
    [96] 彭胤宗,沈相男(1991).粘性土压力的有限元分析,西南交通大学
    [97] 濮家骝,李广信,孙岳嵩(1986).砂土复杂应力状态试验及三维弹塑性模型研究。第四届土力学及基础工程学术会议论文集。中国建筑工业出版社.156-163。
    [98] 齐法特(中译本1982).难处理地基的基础工程。水利出版社。
    [99] 孙钧(1993).饱和软土流变属性及其在地基与地下工程中的应用研究。同济大学岩土工程研究所.
    [100] 汪炳鉴(1984),地下连续墙的抗隆起稳定与入土深度的计算,地下工程,No.7.
    [101] 王鸿光,孙大庆(1988).挡土墙后士体滑裂面及士压力变分法初探《岩土工程学报》Vol.10(2)
    [102] 魏汝龙(1984),正常压密粘性土在开挖卸荷后的不排水强度。水利水运科学研究,No.4。
    [103] 魏元友(1987).扶壁码头刚性模型土压力量测 岩土工程学报.Vol.19(6).
    [104] 夏明耀(1990).多撑式地下连续墙入土深度的模型试验研究,同济大学学报.
    [105] 徐日庆(2000).考虑位移和时间的土压力计算方法.浙江大学学报(工学版),34(4),370-375.
    [106] 杨春林(1998) 边界面模型研究及其在基坑围护体系中的应用 同济大学博士学位论文.
    [107] 应宏伟(1997).软土地基深基坑工程性状的研究,浙江大学博士学位论文.
    [108] 俞建灵(1997).软土地基深基坑工程数值分析研究,浙江大学博士学位论文。
    [109] 袁静(2001)软土地基基坑的流变效应。浙江大学博士学位论文。
    [110] 岳祖润,彭胤宗,张师德(1992).压实粘性填土挡土墙土压力离心机模型试验,岩土工程学报。Vol.14(6).
    [111] 曾国熙(1980).正常固结饱和粘土不排水剪切的归一化性状,软土地基学术讨论会论文集,水利出版社。
    [112] 曾国熙,潘秋元,胡一峰(1988).软粘土地基基坑开挖性状的研究,岩土工程学报,Vol.10(3).
    [113] 张诚厚(1982),开挖卸荷前后士的不排水抗剪切强度及静止侧压力系数的估算方法,水运工程,NO,12。
    [114] 张冬梅(2002).软粘土的时效特性分析及隧道长期沉降的预测,同济大学博士学位论文.
    [115] 张其光,李广信,温庆博(2001).应力路径和强度指标对基坑支护结构上水士压力计算的影响,岩石力学与工程学报,Vol.20(增1),952-957.
    [116] 周应英,任美龙(1990).刚性挡土墙主动土压力的试验研究《岩土工程学报》Vol.12(2).
    [117] 朱百里(1991).软土深开挖的弹塑性分析,第六届全国土力学及基础工程学术讨论会论文集,中国建筑工业出版社。
    [118] 黄院雄,软土基坑工程的土压力回弹研究,同济大学博士论文,2000
    [119] 刘国彬、侯学渊,软土基坑隆起变形的残余应力法,地下工程与隧道,1996.2
    [120] 刘国彬、侯学渊,软土的卸荷模量,岩土工程学报,1996.11,18-23
    [121] 唐晓萍,数据挖掘与知识发现综述[J].电脑开发与应用,2002,4(15):3135
    [122] 李亚,基坑周围土体位移场的分析与动态控制,同济大学硕士学位论文,1999.1
    [123] 杨国伟,深基坑及其临近建筑保护研究,同济大学博士学位论文,2000
    [124] 《上海地铁基坑施工规程》(SZ—08—2000),2000
    [125] 陈震,陈鸣皋.深基坑挡土支护结构的可靠度分析.青岛建筑工程学院学报,1995,Vol 16(4):18-25
    [126] 杨林德,徐超.Monte Carlo模拟法与基坑变形的可靠度分析.岩土力学,1999,Vol20(1):15-18
    [127] 仲景冰,李惠强,吴静.工程失败的路径及风险源因素的FTA分析方法.华中科技大学学报(城市科学版),Vol20(1):14-17
    [128] 毛金萍,钟建驰,徐伟.深基坑支护结构方案的风险分析.建筑施工,2003,Vol25(4):249-252
    [129] 边亦海,黄宏伟.可信性方法在深基坑工程施工期风险分析中的应用.2005全国地铁与地下工程技术风险管理研讨会论文集.北京,2005:208-213
    [130] 黄宏伟,边亦海.深基坑工程施工中的风险管理.地下空间与工程学报,2005,Vol.1(4):611-614
    [131] 肖庆华,岩石力学与工程中的数据挖掘技术应用.河海大学硕士论文,2004,2:1-30
    [132] 冯夏庭.智能岩石力学的发展.中国科学院院刊,2002,第4期
    [133] 黄润秋等,岩土工程中信息管理新技术应用.中国工程科技论坛现代测控技术在土木工程中的应用,2002
    [134] 白世伟等.三维地层信息系统和岩土工程信息化[J].华中科技大学学报(城市科学版),2002,1(19):2426
    [135] 钟晓等.数据挖掘综述[[J].模式识别与人工智能.2001,14(1):4855
    [136] U. Fayyad, G. Piatetsky-Shapiro, and Padhraic Smyth, Knowledge Discovery and Data Mining: Towards a Unifying Framework. Proceedings of Second International Conference on Knowledge Discovery and Data Mining (KDI)96), AAAI Press, 1996
    [137] Fayyad, Usama. Data mining and knowledge discovery in databases: Implications for scientific databases. Scientific and Statistical Database Management-Proceedings of the International Working Conference, Aug 1997, Sponsored by IEEE
    [138] 冯夏庭,马平波.基于数据挖掘的地下酮室围岩稳定性判别.岩石力学与工程学报.2001,20(3):306309
    [139] J. Hart, R. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.
    [140] 赵丹群,数据挖掘:原理、方法及其应用[J],现代图书情报技术,2002,6(83):4144
    [141] 王勇,神经网络在岩土工程中的应用[J],河海大学学报,1998,4(26):7074
    [142] 冯夏庭、贾民泰,岩石力学问题的神经网络建模[J],岩石力学与工程学报,2000,19(增刊):1030—1033
    [143] Babovic, Viadan. Data mining and knowledge discovery in sediment transport. Computer-Aided Civil and Infrastructure Engineering. Biackwell Publ Inc, 2000, No. 155: 383389
    [144] Buehheit, R. B, Garrett Jr., J. H. A knowledge discovery case study for the intelligent workplace. Computing in Civil and Building Engineering, Aug 2000, vol. 2, pp. 914-921
    [145] Soibeiman, Lucio. Generating construction knowledge with knowledge discovery in databases. Computing in Civil and Building Engineering, Aug 2000, vol. 2, pp. 906-913
    [146] 韩家玮[加],Kamber.M.(加) 著.范明等译.数据挖掘:概念与技术(M).北京:机械一〔业出版社,2001
    [147] 肖本职,岩石物理力学参数灰色关联分析[J],长江科学院院报,1996,13(3):5051
    [148] 陆兆漆,工程地质学[M],北京:中国水利水电出版社,2001
    [149] 高玮,郑颖人,岩土工程位移预测神经网络建模的儿个问题[J],地下空间,2001,21(5):369374
    [150] 肖庆华,岩石力学与工程中的数据挖掘技术应用.河海大学硕士论文,2004,2:1-30
    [151] 地基基础设计规范(DGJ08-11-1999),上海,1999
    [152] 王江涛.渗流对深基坑工程的影响分析[D].武汉:武汉科技大学,2004.
    [153] 王彩会.深基坑降水工程优化设计及渗流场与应力场耦合分析[D].南京:河海大学,2001.
    [154] 吴军.基坑开挖中渗流场与应力场耦合分析[D].沈阳:辽宁工程技术大学,2005.
    [155] 李又云.同时考虑加荷、变形和时间的公路软基固结沉降理论及仿真的研究[D].西安:长安大学,2000.
    [156] 董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1998,19(1):63~70.
    [157] 冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61~455.
    [158] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419~426.
    [159] Verruijt. Elastic storage of aquifers. [A]. In: De Wiest R J M. In: Flow Through Porous Media [C]. New York: Tiho Wiley, 1969, 5-65.
    [160] 张蔚榛.地下水非稳定计算与地下水资源评价[M].北京:科学出版社,1983.
    [161] 何松龄.分层总和法地基变形计算精度探讨[J].工程勘察,1997,6:10~13.
    [162] 周健等.地下水位与环境岩土工程[M].上海:同济大学出版社,1995.
    [163] 李玉岐.考虑渗流影响得基坑工程性状研究[D].杭州:浙江大学,2005.
    [164] 张乾飞.复杂渗流场演变规律及转异特征研究[D].南京:河海大学,2002.
    [165] 裴利华.有自由面三维非稳定渗流数值模拟若干关键技术研究[D].南京:河海大学,2005.
    [166] 薛禹群.地下水动力学原理[M].北京:地质出版社,1986.
    [167] 吴世余.多层地基和减压井的渗流计算理论[M].北京:水利电力出版社,1983.
    [168] 毛昶熙.渗流数值计算与程序应用[M].南京:河海大学出版社,1999,263~269.
    [169] 王恩志,王洪涛,邓旭东.“以管代孔”—排水孔模拟方法探讨[J].岩石力学与工程学报,2001,20(3):346~349.
    [170] 王恩志,王洪涛,王慧明.“以缝代井”—排水孔幕模拟方法探讨[J].岩石力学与工程学报,2002,21(1):98~101.
    [171] 詹美礼,速宝玉,刘俊勇.渗流控制分析中密级排水孔模拟的新方法[J].水力发电,2000(4):23~25.
    [172] 王镭,刘中,张有天.有排水孔幕的渗流场分析[J].水利学报,1992,4:15~20.
    [173] 朱岳明,张燎军.渗流场求解的改进排水子结构法[J].岩土工程学报,1997,19(2):69~76.
    [174] 沈珠江,张诚厚.有限单元法计算井点作用下基坑边坡的变形[J].土木工程学报,1980,2:65~73.
    [175] 王嫒.多孔介质渗流与应力的耦合计算方法[J].土木工程学报,1980,2:20~22.
    [176] 张洪武,钟万勰,钱令希.土体固结分析的一种有效算法[J].计算结构力学及其应用,1991,8(4):389~395.
    [177] 苏荣华,梁冰.承压含水层非稳定渗流耦合问题的研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):541~542.
    [178] 罗晓辉.深基坑开挖渗流与应力耦合分析[J].工程勘察,1996.6:37~41.
    [179] 高俊合.考虑固结、土一结构相互作用的基坑开挖有限元分析[J].岩土工程学报,1999,21(5).
    [180] 杨志锡,叶为民,杨林德.基坑工程中应力场与渗流场直接耦合的有限元法[J].勘察科学技术,2001,3:32~36.
    [181] 平扬,白世伟,徐燕萍.深基坑工程渗流-应力耦合分析数值模拟研究[J].岩土力学,2001,22(1):37~41.
    [182] 冯晓腊,熊文林,胡涛等.三维水—土耦合模型在深基坑降水计算中的应用[J].岩石力学与工程学报,2005,24(7):1196~1201.
    [183] 李筱艳,王传鹏,柳毅.流场与应力场的完全耦合模型及其在深基坑工程中的应用[J].水文地质工程地质,2004,6:86~89.
    [184] 李筱艳.基于位移反分析的深基坑渗流场与应力场完全耦合分析[J].岩石力学与工程学报,2004,23(8):1269~1274.
    [185] 陈崇希,裴顺平.地下水开采—地面沉降模型研究[J].水文地质工程地质,2001,2:5~8.
    [186] 周志芳,朱宏高,陈静等.深基坑降水与沉降的非线性耦合计算[J].岩土力学,2004,25(12):1984~1988.
    [187] 钱家欢,殷宗泽.土工原理与计算[M].北京:水利水电出版社,1996.
    [188] Griffiths D V, Willison S M. An explicit form of the plastic matrix for Mohr-Coulomb materiais [J]. Comm. App. Num. Meths., 1986, 9: 523~529.
    [189] 宰金珉,梅国雄.全过程的沉降量预测方法研究.岩土力学,2000,Vol.21(4):322~325
    [190] 张启辉,赵锡宏.基坑开挖引起变形的时效性回归分析.岩土工程师,1999(2):1-4
    [191] 唐孟雄.深基坑挡土墙侧向位移回归分析.岩土工程师,1995,Vol.7(2):20-25
    [192] 徐至钧,赵锡宏.逆作法设计与施工.北京:机械工业出版社,2002
    [193] 张军平,邹银生.基坑位移反分析方法的对比研究.湖南大学学报(自然科学版),2005,Vol.32(2):52-56
    [194] 杨敏,熊巨华,冯又全.基坑工程中的反分析技术与应用.工业建筑,1997,Vol.28(9):1-6
    [195] 朱合华,刘学增,傅德明.软士基坑粘土弹性动态增量反演分析与变形预测.岩土力学,2000,Vol.21(4):381-384
    [196] 孙钧,汪炳鉴.地下结构有限元法解析.上海:同济大学出版社,1998
    [197] 刘涛,杨国伟,刘国彬.上海软土深基坑有支撑暴露变形研究.岩土工程学报,Vol.28:1842-1844
    [198] 白廷辉,马忠政.三向搜索危险滑弧的方法及其在地铁车站工程中的应用[J].岩土工程界,2003,6(1):41—43.
    [199] 马忠政,祁红卫,候学渊.边坡稳定验算中全面搜索的一种新方法[J].岩土力学,2000,21(3):65—68.
    [200] 徐至均,全科政.高压喷射注浆法处理地基[M].北京:机械工业出版社,2004.1.
    [201] 崔江余.高压喷射注浆法产生的超孔隙水压力分析[J].探矿工程,2000,(1):32—34.
    [202] 郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989:291-29
    [203] 白逢义,王清,孙政.高压注浆加固造成铁路路基隆起的原因分析[J].世界地质,2006,25,(4):450—455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700