用户名: 密码: 验证码:
铀化合物激发态和热力学性质的相对论量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对论效应和电子结构的复杂性使铀化合物的精确理论计算迄今仍是计算量子化学的一个尚未解决的难题。核能和核科技的发展要求迅速改变铀化学研究上理论严重落后于实验的现状,将感性认识提升到理性。因此寻找解决这一困难的有效途径具有重要的学术意义和应用背景。本论文以与核化工以及核环境科学有密切联系、并在基础研究中备受关注的铀化合物若干重要性质为切入点,从基于波函数的高精度Post-HF方法和密度泛函理论(DFT)方法两方面探索了准确和高效地计算铀化合物关键性质的量子化学计算方案。
     在Post-HF方法方面,本论文综合运用相对论有效芯势,多组态自洽场和RASSI旋轨校正等多种方法构建了一套适用于小分子铀化合物激发态计算的可行方案。成功地计算了UN_2、NUO~+和UF_6的低激发态能量和跃迁特性,以及UN_2和NUO~+低激发态的精确势能面;理论模拟的UF_6电子光谱5个能量最低谱峰位置在误差0._2eV内全部与实验谱图相符。精度水平高于迄今发表过的各种铀化合物激发态计算结果。表明该方案可行且达到基础研究的基本精度要求,可用作含时间密度泛函理论(TDDFT)激发态计算的参考标尺。但算例表明TDDFT给出的结果误差过大。
     为解决常规精度下基态大分子铀化合物质的计算,重点探讨了开壳层铀化合物DFT计算中的非动态电子相关效应等若干关键理论与技术问题。对UO和UO_2分子及它们的一、二价正离子用1_6种常用泛函的计算实例进行了系统的比较分析,总结出了泛函选择的一般原则。这些算例表明,在使用合适泛函的情况下,几何优化计算,以及振动频率、键能和电离能等性质的计算结果可达到误差在5%以内的精度水平。
     在以上进展的基础上,将DFT计算与Marcus的电子转移理论相结合,用于研究含4_2个原子的模型水合离子[(UO_2)_2(H_2O)_(12)]~(3+)中的电子自交换反应,得到的反应能垒与高精度的CASPT_2方法相比误差小于3kJ·mol~(-1),由反应能垒计算推导实际体系的反应速率常数在0.089~0.31 l·mol~(-1)·s~(-1)之间,与实验数据相比处于测量误差范围之内。表明DFT在较大分子铀化合物的化学反应计算中有一定的应用前景。
Theoretical studies of actinide compounds are essential for elucidating their electronic structures and various physicochemical properties. There are still numerous open issues in this area and the difficulties are mainly due to significant relativistic effects and complicated electron correlation in these compounds. Despite of rich experimental data accumulated during the development of nuclear energy and environmental nuclear science, theoretical investigations on actinide compounds are far behind the experimental efforts. In order to explain experimental facts and be able to predict some of the properties with reasonable accuracy, it is mandatory to develop and calibrate accurate and efficient computational methodologies for application in actinide compounds. In this dissertation I have investigated a series of theoretical schemes applicable to actinide compounds, focusing on predictions of the key properties of uranium compounds relevant to nuclear industry, environmental science, and fundamental actinide chemistry.
     Investigations of the excited states of actinide compounds are one of challenges in actinide chemistry. An ab initio post-HF strategy for calculating excited states of small uranium compounds is proposed in this work. By using a relativistic effective core potential (RECP), a combined MCSCF and RASSI/SO method is used to calculate the energies and other excitation parameters for low-lying excited states of UN_2, NUO+, and UF_6 molecules. Accurate potential energy surfaces (PES) for the excited states of UN_2 and NUO+ have been obtained. The electronic spectra for the 5 low-lying absorptions of UF_6 are simulated, which is in good agreement with the experimental observation. The largest error between the predicted and observed absorptions is no larger than 0._2 eV, which is a significant improvement when comparing with the published data. Such a strategy is applicable for other actinide systems with comparable accuracy. TDDFT calculations with spin-orbit coupling (SOC) are also performed and large deviations in excited energies are found when comparing with the ab initio post-HF data as reference, indicating that DFT methods with proper handling of the self-interaction error (SIE) are needed for excited states of uranium compounds.
     To investigate whether DFT functionals can predict the thermochemical data of uranium oxides with open-shells, systematic ab initio and DFT calculations are carried out on UO, UO_2 and their univalent and divalent cations. 1_6 exchange-correlation (XC) functionals at different levels of the“Jacob Ladder”are selected for comparison. It is shown that with careful calibrated XC functionals, the average errors against the experimental data for structural parameters, bond-dissociation energies and ionized energies can be reduced to less than 5%. These benchmark researches provide important information on calculations of large uranium compounds with computationally less-expensive DFT methods.
     To investigate the accuracy of DFT methods in predicting the electron-transfer (ET) dynamics, selected DFT methods combined with Marcus ET theory have been applied to study the model system [(UO_2)_2(H_2O)_(12)]~(3+) with 4_2 atoms for the electron self-exchange process between uranyl ions in aqueous solution. The difference of the calculated energy barriers is less than 3 kJ·mol~(-1) when comparing the DFT and CASPT_2 results. For such reaction the rate constant has been determined to lie between 0.089 to 0.31 l·mol~(-1)·s~(-1), which is within the range of the experimental ones. The successful predictions of the ET parameters of selected uranium systems indicate that DFT methods with appropriate treatment of self-interaction correction (SIC) is promising for applications in large uranium systems.
引文
[1] Seaborg G T. Uranium // Hampel C A. Encyclopedia of the chemical elements. Skokie, Illinois: Reinhold. 1968:773-786.
    [2] Wan J, Tokunaga T K, Kim Y, Wang Z, Lanzirotti A, Saiz E, Serne R J. Effect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford Sediments. Environ. Sci. Technol., 2008, 42:1973-1978.
    [3] Uranium // Lerner K L, Lerner B W, eds. Encyclopedia of espionage, intelligence, and security. Gale. 2003.
    [4] Arfsten D P, Still K R, D Ritchie A G. A review of the ffects of uranium and depleted uranium exposure on reproduction and fetal development. Toxicology and Industrial Health, 2001, 17:180-191.
    [5] Nielsen P E, Hiort C, S?nnichsen S H, Buchardt O, Dahl O, Nordèn B. DNA binding and photocleavage by uranyl(VI)(UO22+) Salts, J. Am. Chem. Soc, 1992, 114:4967-4975.
    [6] Wittberger D, Berens C, Hammann C, Westhof E, Schroeder R. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs. J. Mol. biol., 2000, 300:339-352.
    [7] Yazzie M, Gamble S L, Civitello E R, Stearns D M. Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (Vitamin C). Chem. Res. Toxicol., 2003, 16:524-530.
    [8] Das S, Madhavaiah C, Verma S, Bharadwaj P. Light induced DNA scission by a luminescent mixed-ligand uranyl complex. Inorganica Chimica Acta, 2006, 359:548-552.
    [9] Evarestov R A, Panin A I, Bandura A V. Calculations of electronic structure of the UF6 molecule and the UO2 crystal with a relativistic pesudopotential. Russian Journal of General Chemistry, 2008, 78(10):1823-1835.
    [10] Guillaumont R, Fangh?nel T, Fuger J, Grenthe I, Neck V, Palmer D A, Rand M H. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elservier: Amsterdam, 2003.
    [11] Stewart B D, Neiss J, Fendorf S. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI). J. Environ. Qual. 2007, 36:363-372.
    [12]约瑟夫·哲·卡茨,尤金·拉宾诺维奇.伍丽素,范毅克译.铀化学.北京:化学工业出版社, 1960.
    [13] Kelly J W. Review of laser isotope separation of uranium hexafluoride. Australian Nuclear Science Technology Organisation, 1983. [2010-01-24]. http://hdl.handle.net/10238/265.
    [14] Ambartsumyan R V, Gorokhov Y A,Furzikov N P. Investigation of the 360-420 nm absorption in UF6 vapor by intraresonator laser absorption spectroscopy. Sov. J. Quantum Electron, 1976, 6(10):1251-1252.
    [15] Lewis W B, Asprey L B, Jones L H, McDowell R S, Rabideau S W. Electronic and vibronic states of uranium hexafluoride in the gas and in the solid phase at very low temperatures. J. Chem. Phys, 1976, 65:2707-2714.
    [16] M?rtensson N, Malmquist P ?, Svensson S, Johansson B. The electron spectrum of UF6 recorded in the gas phase. J. Chem. Phys, 1984, 80(11):5458-5464.
    [17] Kosterev A A, Makarov A A, Malinovsky A L, Petrova I Y, Ryabov E A, Letokhov V S. Transition spectra in the vibrational quasicontinuum of polyatomic molecules: raman spectra of highly excited UF6 molecules. J. Phys. Chem. A, 2000, 104:10259-10264.
    [18] Hay, P J, Martin R L. Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree-Fock and density functional methods: UF6, NpF6, and PuF6. J. Chem. Phys, 1998, 109:3875-3881
    [19] Han Y K, Hirao K. Density functional studies of UO22+ and AnF6 (An=U, Np, and Pu) using scalar-relativistic effective core potentials. J. Chem. Phys, 2000, 113:7345-7350
    [20] Xiao H, Li J. Benchmark calculations on the atomization enthalpy, geometry and vibrational frequencies of UF6 with relativistic DFT methods. Chinese J. Struct. Chem. 2008, 27(8):967-974.
    [21] Peralta J E, Batista E R, Scuseria G E, Martin R L. All-electron hybrid density functional calculations on UFn and UCln (n=1-6). J. Chem. Theory. Comput, 2005, 1:612-616.
    [22] Hay P J. Wadt W R. Ab initio studies of the electronic structure of UF6, UF6+, UF6- using relativistic effective core potentials. 1979, J. Chem. Phys.71(4):1767-1779
    [23] Hay P J. Ab initio studies of excited states of polyatomic molecules including spin-orbit and multiplet effects: The electronic states of UF6. J. Chem. Phys, 1983, 79(11):5469-5482.
    [24] Onoe J, Takeuchi K. Theoretical study on the UV excited states of UF6 using the discrete-variational Dirac-Slater calculation method. Chem. Phys. Lett, 1992, 196:636-640.
    [25] Malli G L, Styszynski J. Ab initio all-electron Dirac-Fock-Breit calculations for UF6. J. Chem. Phys, 1996, 104(3):1012-1017.
    [26] Uranium processing // Encyclop?dia Britannica Online. 2010. [2010-01-24]. http://www.britannica.com/EBchecked/topic/619232/uranium-processing/81595/Ores
    [27] Vallet V, SzabóZ, Grenthe I. Experimental and quantum chemical studies of dioxouranium(VI) complexs in solution. Dalton Trans, 2004, 3799-3807.
    [28] Shamov G A, Schreckenbach G. Density functional studies of actinyl aquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method. J. Phys. Chem. A, 2005, 109:10961-10974.
    [29] Vallet V, Wahlgren U, Schimmelpfennig B, SzabóZ, Grenthe I. The mechanism for water exchange in [UO2(H2O)5]2+ and [UO2(oxalate)2(H2O)]2-, as studied by quantum chemical methods. J. Am. Chem.Soc. 2001, 123(48):11999-12008.
    [30] Rotzinger P. The water-exchange mechanism of the [UO2 (OH2)5]2+ ion revisited: the importance of a proper treatment of electron correlation. Chem. Eur. J. 2007, 13:800-811.
    [31] W?hlin P, Danilo C, Vallet V, Réal F, Flament J P, Wahlgren U. An investigation of the accuracy of different DFT functionals on the water exchange reaction in hydrated Uranyl(VI) in the ground state and the first excited state. J. Chem. Theory Comput., 2008, 4:569-577.
    [32] Ikeda A, Hennig C, Tsushima S, Takao K, Ikeda Y, Scheinost A C, Bernhard G. Comparative study of uranyl(VI) and–(V) carbonato complexes in an aqueous solution. Inorg. Chem. 2007, 46:4212-4219
    [33] Sonnerberg J L, Hay P J, Martin R L, Bursten B E. Theoretical investigations of uranyl-ligand bonding: four- and five-coordinate uranyl cyanide, isocyanide, carbony, and hydroxide complexes. Inorg. Chem, 2005, 44:2255-2262.
    [34] de Jong W A, ApràE, Windus T L, Nichols J A, Harrison R J, Gutowski K E, Dixon D A. Complexation of the carbonate, nitrate, and acetate anions with the uranyl dication: density functional studies with relativistic effective core potentials. J. Phys. Chem. A, 2005, 109:11568-11577.
    [35] Privalov T, Schimmelpfennig B, Wahlgren U, Grenthe I. Reduction of uranyl(VI) by iron(II) in solutions: an ab initio study. J. Phys. Chem. A, 2003, 107:587-592.
    [36] Wander M C F, Kerisit S, Rosso K M, Schoonen M A A. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study. J. Phys. Chem. A, 2006, 110:9691-9701.
    [37] Wahlgren U, Tsushima S, Grehthe I. Some quantum chemical aspects on outer-sphere electron-transfer reactions: the U(V)/Fe(III)-U(VI)/Fe(II) system. J. Phys. Chem. A, 2006, 110:9025-9027.
    [38] Boyanov M I, O'Loughlin E J, Roden E E, Fein J B, Kemner K M. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence ofspeciation on uranyl reduction studied by titration and XAFS. Geochimica et Cosmochimica, 2007, 71:1898-1912.
    [39] Charlet L, Silverster E, Liger E. N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface [FeIIIOFeIIOH°] species, as major reductant. Chemical Geology, 1998, 151:85-93.
    [40] Liger E, Charlet L, Van Cappellen P. Surface catalysis of uranium(VI) reduction by iron(II). Geochim. Cosmochim. Acta, 1999, 63:2939-2955.
    [41] Sundararajan M, Campbell A J, Hillier I H. Catalytic cycles for the reduction of [UO2]2+ by cytochrome c7 proteins proposed from DFT calculations. J. Phys. Chem. A, 2008, 112:4451-4457.
    [42] Liu C, Zachara J M, Zhong L, Kukkadupa R, Szecsody J E, Kennedy D W. Influence of sediment bioreduction and reoxidation on uranium sorption. Environ. Sci. Technol, 2005, 39:4125-4133.
    [43] Kraus K A, Nelson F, Johnson G L. Chemistry of aqueous uranium(V) solutions. I. preparation and properties. Analogy between uranium(V), neptunium(V) and plutonium(V). J. Am. Chem. Soc, 1949, 71(7):2510-2517
    [44] Morss L R, Katz J J, Seaborg G T. The chemistry of the actinide elements. London: Methuen, 1957.
    [45] Ekstrom A. Mechanism of the disproportionation of uranium(V). Inorg. Chem, 1974, 13:2237-2241.
    [46] McKee M L, Swart M. Study of Hg22+ and complexes of NpO22+ and UO22+ in solution. Examples of cation-cation interactions. Inorg. Chem, 2005, 44:6975-6982.
    [47] Sullens T A, Jensen R A, Shvareva T Y, Albrecht-Schmitt T E. Cation-cation interactions between uranyl cations in a polar open-framework uranyl periodate. J. Am. Chem. Soc, 2004, 126:2676-2677.
    [48] Steele H, Taylor R J. A theoretical study of the inner-sphere disproportionation reaction mechanism of the pentavalent actinyl ions. Inorg. Chem, 2007, 46:6311-6318.
    [49] Pan Q J, Shamov G A, Schreckenbach G. Binuclear uranium(VI) complexes with a "pacman" expanded porphyrin: computational evidence for highly unusual bis-sctinyl structures. Chem. Euro. J, 2010:Early View [2010-1-11].
    [50] Newton T W, Baker F B. A uranium(V)-uranium(VI) complex and its effect on the uranium(V) disproportionation rate. Inorg. Chem. 1965, 4(8):1166-1170.
    [51] Howes K R, Bakac A, Espenson J H. Electron-transfer reactions of uranium(V): kinetics of the uranium(V)-uranium(VI) self-exchange reaction. Inorg. Chem. 1988, 27:791-794.
    [52] Privalov T, Macak P, Schimmelpfennig B, Fromager, Grenthe I, Wahlgren U. Electron transfer in uranyl(VI)-uranyl(V) complexes in solution. J. Am. Chem. Soc. 2004, 126:9801-9808.
    [53] Hunt R D, Andrews L. Reactions of pulsed-laser evaporated uranium atoms with molecular oxygen: Infrared spectra of UO, UO2, UO3, UO2+, UO22+, and UO3-O2 in solid argon. J. Chem. Phys, 98(5):3690-3696.
    [54] Kaledin L A, Heaven M C. Electronic spectroscopy of UO. J. Mol. Spect., 1997, 185:1-7.
    [55] Han J, Goncharov V, Kaledin L A, Komissarov A V, Heaven M C. Electronic spectroscopy and ionization potential of UO2 in the gas phase. J. Chem. Phys, 2004, 120:5155-5163.
    [56] Heaven M C. Probing actinide electronic structure using fluorescence and multi-photon ionization spectroscopy. Phys. Chem. Chem. Phys, 2006, 8:4497-4509.
    [57] Han J, Kaledin L A, Goncharov V, Komissarov A V, Heaven M C. Accurate ionization potentials for UO and UO2: a rigorous test of relativistic quatum chemistry calculations. J. Am. Chem. Soc, 2003, 125:7176-7177.
    [58] Gagliardi L, Roios B O, Malmqvist P-?, Dyke J M. On the electronic structure of the UO2 molecule. J. Phys. Chem. A, 2001, 105:10602-10606.
    [59] Ruipérez F, Danilo C, Réal F, Flament J-P, Vallet V, Wahlgren U. An ab initio theoretical study of the electronic structure of UO2+ and [UO2(CO3)3]5-. J. Phys. Chem. A 2009, 113:1420-1428.
    [60] Li J, Bursten B E, Andrews L, Marsden C J. On the electronic structure of molecular UO2 in the presence of Ar atoms: evidence for direct U-Ar bonding. J. Am.Chem. Soc. 2004, 126:3424-3425.
    [61] Yeamans C B, Silva G W C, Cerefice G S, Czerwinski K R, Hartmann T, Burrell A K, Sattelberger A P. Oxidative ammonolysis of uranium(IV) fluorides to uranium(VI) nitride. J. Nucl. Mater., 2008, 374:75-78.
    [62] Hunt R D, Yustein J T, Andrews L. Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen. J. Chem. Phys, 1993, 98(8):6070-6074.
    [63] Kaltsoyannis N. Computational study of analogues of the uranyl ion containing the–N=U=N- unit: density functional theory calculations on UO22+, UON+, UN2, UO(NPH3)3+, U(NPH3)24+, [UCl4{NPR3}2] (R = H, Me), and [UOCl4{NP(C6H5)3}]-. Inorg. Chem, 2000, 39:6009-6017.
    [64] Pyykk? P, Li J, Runeberg N. Quasirelativistic pesudopotential study of species isoelectronic to uranyl and the equatorial coordination of uranyl. J. Phys. Chem. 1994, 98:4809-4813
    [65] Gagliardi L, Roos B O. Uranium triatomic compounds XUY (X,Y=C,N,O): a combined multiconfigurational second-order perturbation and density functional study. Chem. Phys. Lett, 2000, 331:229-234.
    [66] Polizer P, Maksi? Z B, eds. Relativistic electronic structure theory, part 1. Fundamentals. Amsterdam, Netherlands: Elsevier. 2002
    [67] Dyall K G, F?gri, J K. Introduction to relativistic quantumn chemistry. New York:Oxford, 2007
    [68] Reiher M, Wolf A. Relativistic quantum chemistry. Weinheim:Wiley-VCH. 2009
    [69] Lo B W N, Saxena K M S, Fraga S. Mass-variation and Darwin relativistic corrections in many-electron atoms. Theoret. Chim. Acta, 1972, 24:300-306.
    [70] Pyykk?, P. Relativistic effects in structural chemistry. Chem. Rev, 1988, 88:563-594.
    [71] Seth M, Dolg M, Fulde P, Schwerdtfeger P. Lanthanide and actinide contractions: relativstic and shell structure effects. J. Am. Chem. Soc, 1995, 117:6597-6598.
    [72] Küchle W, Dolg M, Stoll H. Ab initio study of the lanthanide and actinide contraction. J. Phys. Chem. A, 1997, 101:7128-7133.
    [73] Kayama K, Baird J C. Spin-orbit effects and the fine structure in the 3Σg- ground state of O2. J. Chem. Phys, 1967, 46:2604-2618.
    [74] Landau L D, Lifshitz E M. Quantum mechanics: non-relativistic theory. New York:Oxford. 1977.
    [75] Wood J H, Boring A M. Improved Pauli Hamiltonian for local-potential problems. Phys. Rev. B, 1978, 18:2701-2711.
    [76] Mann J B, Waber J T. SCF Relativistic Hartree-Fock calculations on the superheavy elements 118-131. J. Chem. Phys, 1970, 53:2397-2406.
    [77] Denning R G, Snellgrove T R,Woodwark D R. The electronic structure of the uranyl ion III. Theory. Mol. Phys., 1979, 37(4):1109-1143.
    [78] Hess B A. Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A, 1985, 32:756-763.
    [79] Faas S, Snijders J G, van Lenthe J H, van Lenthe E, Baerends E J. The ZORA formalism applied to the Dirac-Fock equation. Chem. Phys. Lett., 1995, 246(6):632-640.
    [80] Sarrio C C, Ismail N, Marsden C J, BéguéD, Pouchan C. Calculation of harmonic and anharmonic vibrational wavenumbers for triatomic uranium compounds XUY. Chem. Phys, 2004, 302:1-11.
    [81] Iché-Tarrat N, Marsden C J, Examining the performance of DFT methods in uranium chemistry: does core size matter for a pseudopotential? J. Phys. Chem. A, 2008, 112(33):7632-7642.
    
    
    [82] Dolg M, Stoll H, Preuss H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys, 1989, 90(3):1730-1734.
    [83] Küchle W, Dolg M, Stoll H, Preuss H. Energy-adjusted pseudopotentials for actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys, 1994, 100(10):7535-7542.
    [84] Odoh S O, Schreckenbach G. Performance of relativistic effective core potentials in DFT calculations on actinide compounds. J. Phys. Chem. A, 2010, 114(4):1957-1963.
    [85] Reiher M, Wolf A. Exact decoupling of the Dirac Hamiltonian. I. General theory. J. Chem. Phys, 2004, 121:2037-2048.
    [86] Richards W G, Trivedi H P, Cooper D L. Spin-orbit coupling in molecules. New York: Oxford, 1981.
    [87]徐光宪,黎乐民,王德民.量子化学基本原理和从头算法.北京:科学出版社, 2001.
    [88] Parr R G, Craig D P, Ross I G. Molecular orbital calculations of the lower excited electronic levels of benzene, configuration interaction included. J. Chem. Phys, 1950, 18:1561-1563.
    [89] Griffiths D J. Introduction to quantum mechanics. Upper Saddle River, N. J.: Pearson Prentice Hall, 2005.
    [90] Helgaker T, J?rgensen P, Olsen J. Molecular electronic structure theory. New York: John Wiley & Sons, 2000.
    [91] Dill D. Notes on general chemistry. Freeman, 2008(2009-12-2). http://quantum.bu.edu/notes/GeneralChemistry/index.html
    [92] Kutzelnigg W. Friedrich Hund and chemistry. Angew. Chem. Int. Ed, 1996, 35(6):572-586.
    [93] Dalgaard E, J?rgensen P. Optimization of orbitals for multiconfigurational reference states. J. Chem. Phys, 1978, 69(8):3833-3844.
    [94] Werner H J, Knowles P J. A second order multiconfiguration SCF procedure with optimum convergences. J. Chem. Phys, 1985, 82(11):5053-5064.
    [95] Knowles P J, Werner H J. An efficient second-order MC-SCF method for long configuration expansions. Chem. Phys. Lett, 1985, 115(3):259-267.
    [96] Roos B O, Taylor P R, Siégbahn P E M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys, 1980, 48(2):157-173.
    [97] Olsen J, Roos B O, J?rgensen P, Jense H J A. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces. J. Chem. Phys, 1988, 89(4):2185-2192.
    [98] Werner H J, Knowles P J. An efficient internally contracted multiconfiguration-reference configuration interaction method. J. Chem. Phys, 1988, 89(9):5803-5814.
    [99] Knowles P J, Werner H J. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem. Phys. Lett, 1988, 145(6):514-522.
    [100] Langhoff S R, Davison E R. Configuration interaction calculations on the nitrogen molecule. Int. J. Quan. Chem, 1974, 8(1):61-72.
    [101] (?)i(?)ek J, Paldus J. Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst. Int. J. Quant. Chem, 1971, 5(4):359-379.
    [102] Hampel C, Peterson K A, Werner H J. A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods. Chem. Phys. Lett, 1992, 190:1-12.
    [103] Jayatilaka D, Lee T J. Open-shell coupled-cluster theory. J. Chem. Phys, 1993, 98(12):9734-9747.
    [104] VillàJ, Corchado J C, González-Lafont A, Lluch J M. Truhlar D G. Variational transition-state theory with optimized orientation of the dividing surface and semiclassical tunneling calculations for deuterium and muonium kinetic isotope effects in the free radical association reaction H + C2H4→C2H5. J. Phys. Chem. A, 1999, 103:5061-5074.
    [105] Kállay M, Szalay P G, Surján P R. A general state-selective multireference coupled-cluster algorithm. J. Chem. Phys, 2002, 117:980-990.
    [106] Li X, Paldus J. Simultaneous handling of dynamical and nondynamical correlation via reduced multireference coupled cluster method: Geometry and harmonic force field of ozone. J. Chem. Phys, 1999, 110:2844-2852.
    [107] Fan P D, Hirata S. Active-space coupled-cluster methods through connected quadruple excitations. J. Chem. Phys, 2006, 124:104108.
    [108] M(?)lloer C, Plesset M S. Note on an approximation treatment for many-electron systems. Phys. Rev, 1934, 46:618-622.
    [109] Coulson C A. Brillouin’s theorem and the Hellmann-Feynman theorem for Hartree-Fock wave functions. Molecular Physics, 1971, 20(4):687-694.
    [110] Bartlett R J, Purvis III G D. Molecular applications of coupled cluster and many-body perturbation methods. Physica Scripta, 1980, 21:255-265.
    [111] Werner H J. Third-order multireference perturbation theory The CASPT3 method. Molecular Physics, 1996, 89:645-661.
    [112] Andersson K, Malmqvist P (?), Roos B O, Sadlej A J, Wolinski K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem., 1990, 94(14):5485-5488.
    [113] Andersson K, Malmqvist P (?), Roos B O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys., 1992, 96:1218-1226.
    [114] Finley J, Malmqvist P-(?), Roos B O, Serrano-Andrés L. The multi-state CASPT2 method. Chem. Phys. Lett, 1998, 288:299-306.
    [115] Schreiber M, Silva-J. M R, Sauer S P A, Thiel W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD and CC3. J. Chem. Phys, 2008, 128:134110.
    [116] Pople J A, Head-Gordon M, Raghaachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys, 1987, 87(10):5968-5975.
    [117] Hirata S, Fan P D, Auer A A, Nooijen M N, Piecuch P. Combined coupled-cluster and many-body perturbation theories. J. Chem. Phys, 2004, 121:12197-12207.
    [118] Denis P A. On the performance of CCSD(T) and CCSDT in the study of molecules with multiconfigurational character: halogen oxides, HSO, BN and O3. Chem. Phys. Lett, 2004, 395:12-20.
    [119] Chermette H. Density functional theory a powerful tool. For theoretical studies in coordination chemistry. Coordination Chemistry Reviews, 1998, 178:699-721.
    [120] Parr R G, Yang W T. Density-functional theory of atoms and molecules. New York: Oxford: 1989.
    [121] Levy M. Electron densities in search Hamiltonians. Phys. Rev. A, 1982, 26(3):1200-1208.
    [122] Zhou B J, Wang Y A. Orbital-corrected orbital-free density functional theory. J. Chem. Phys, 2006, 124, 081107.
    [123] Lieb E H. Density functional for coulomb systems. Int. J. Quant. Chem, 1982, 24(3):243-277.
    [124] Janak J F. Proof that (?)E/(?)ni=εi in density-functional theory. Phys. Rev. B, 1978, 18:7165-7168.
    [125] Singh R, Deb B M. Developments in excited-state density functional theory. Physics Reports, 1999, 311:47-94.
    [126] Runge E, Gross E K U. Density-functional theory for time-dependent systems. Phys. Rev. Lett, 1984, 52(12):997-1000.
    [127] Petersilka M, Grossmann U J, Gross E K U. Excitation energies from time-dependent eensity-functional theory. Phys. Rev. Lett, 1996, 76(8):1212-1215.
    [128] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys, 1980, 58:1200-1211.
    [129] Perdew J P, Schmidt K. Jacob's ladder of density functional approximations for the exchange-correlation energy // DENSITY FUNCTIONAL THEORY AND ITS APPLICATION TO MATERIALS. AIP Conference Proceedings. 2001, 577:1-20.
    [130] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev, 1965, 140:A1133-A1138.
    [131]Gunnarsson O, Harris J, Jones R O. Density functional theory and molecular bonding. I. First-row diatomic molecules. J. Chem. Phys, 1977, 67:3970-3979.
    [132] Harris J. Adiabatic-connection approach to Kohn-Sham theory. Phys. Rev. A, 1984, 29:1648-1659.
    [133] Gunnarsson O, Jonson M, Lundqvist B I. Descriptions of exchange and correlation effects in inhomogeneous electron systems. Phys. Rev. B, 1979, 20:3136-3164.
    [134] Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects. Rev. Mod. Phys, 1989, 61:689-746
    [135] Gunnarsson O, Lundqvist B I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B, 1976, 13:4274-4298.
    [136] Langreth D C, Perdew J P. Exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys. Rev. B, 1976, 15:2884-2901.
    [137] Perdew J P. Accurate Density Functional for the Energy: Real-Space Cutoff of the Gradient Expansion for the Exchange Hole. Phys. Rev. Lett, 1985, 55:1665-1668.
    [138]Perdew J P, Burke K. Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett, 1996, 77:3865-3868.
    [139] Perdew J P, Kurth S, Zupan A, Blaha P. Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys. Rev. Lett, 1999, 82:2544-2547.
    [140] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 1981, 23:5048-5079.
    [141] Autschbach J. Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions. ChemPhysChem, 2009, 10:1757-1760.
    [142] Zhao Y, Truhlar D G. A new local density functional for main group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys, 2006, 125:194101.
    [143] Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37:785-789.
    [144] Henderson T M, Janesko B G, Scuseria G. Range separation and local hybridization in density functional theory. J. Phys. Chem. A, 2008, 112(49):12530-12542.
    [145] Johnson E R, Mori-Sánchez P, Cohen A J, Yang W T. Delocalization errors in density functionals and implications for main-group thermochemistry. J. Chem. Phys, 2008, 129:204112.
    [146] van Wüllen C. Relativistic density functional calculations on small molecules // Polizer P, Maksi(?) Z B, eds. Relativistic electronic structure theory, part 2. Applications. Amsterdam, Netherlands: Elsevier. 2002
    [147] DiLabio G A, Christiansen P A. Separability of spin–orbit and correlation energies for the sixth-row main group hydride ground states. J. Chem. Phys, 1998, 108:7527-7529.
    [148] Teichteil C, Maron L, Vallet V. Relativistic pseudopotential calculations for electronic excited states // Polizer P, Maksi(?) Z B, eds. Relativistic electronic structure theory, part 2. Applications. Amsterdam, Netherlands: Elsevier. 2002
    [149] Malmqvist P A, Roos B O, Schimmelpfennig B. The restricted active space (RAS) state interaction approach with spin-orbit coupling. Chem. Phys. Lett, 2002, 357:230-240.
    [150] Rotzinger F P. Reply to the Comment on "The water-exchange mechansim of the [UO2 (OH2)5]2+ Ion Revisited: The Importance of a Proper Treatment of Electron Correlation" [F. P. Rotzinger, Chem. Eur. J. 2007, 13, 800]. Chem. Eur. J., 2007, 13:10298-10302.
    [151] Pierloot K, van Besien E. Electronic structure and spectrum of UO22+ and UO2Cl22-. J. Chem. Phys., 2005, 123:204309.
    [152] Pierloot K. The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes. Molecular Physics, 2003, 101:2083-2094.
    [153] Baerends E J. Exact exchange-correlation treatment of dissociated H2 in density functional theory. Phys. Rev. Lett., 2001, 87:133004.
    [154] Shamov G A, Schreckenbach G, Vo T N. A Comparative relativistic DFT and ab initio study on the structure and thermodynamics of the oxo fluorides of uranium (IV), (V) and (VI). Chem. Eur. J., 2007, 13:4932-4947.
    [155] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M et al. MOLPRO, version 2008.1, a package of ab initio programs. see http://www.molpro.net
    [156] Dunning T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 1989, 90:1007-1023.
    [157] Werner H J, Meyer W. A quadratically convergent MCSCF method for the simultaneous optimization of several states. J. Chem. Phys., 1981, 74(10):5794-5801.
    [158] Roos B O, Andersson K. Multiconfigurational perturbation theory with level shift - the Cr2 potential revisited. Chem. Phys. Lett.,1995, 245:215-223.
    [159] Roos B O, Andersson K, Fülscher M P, Serrano-Andrés L, Pierloot K, Merchán M, Molina V. Applications of level shift corrected perturbation theory in electronic spectroscopy. J. Mol. Struct.: THEOCHEM, 1998, 388(11):257-276.
    [160] Celani P, Werner H J, Multirefernce perturbation theory for large restricted and selected active space reference wave functions. J. Chem. Phys., 2000, 112(13):5546-5557.
    [161] Velde G, Bickelhaupt F M, vanGisbergen S J A, Fonseca Guerra C, Baerends E J, Snijders J G, Ziegler T. Chemistry with ADF. Journal of Computational Chemistry, 2001, 22:931-967.
    [162] Fonseca Guerra C,Snijders J G, te Velde G, Baerends E J. Towards an order-N DFT method. Theoretical Chemistry Accounts, 1998, 99:391-403.
    [163] ADF2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
    [164] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B., 1992, 46:6671-6687.
    [165] Gritsenko O V, Schipper P R T, Baerends E J. Approximation of the exchange-correlation Kohn–Sham potential with a statistical average of different orbital model potentials. Chem. Phys. Lett., 1999, 302:199-207.
    [166] Schipper P R T, Gritsenko O V, vanGisbergen S J A, Baerends E J. Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. J. Chem. Phys., 2000, 112(3):1344-1352.
    [167] Kushto G P, Souter P F, Andrews L. An infrared spectroscopic and quasirelativistic theoretical study of the coordination and activation of dinitrogen by thorium and uranium atoms. J. Chem. Phys., 1998, 108:7121-7130.
    [168] Zhou M, Andrews L. Infrared spectra and pseudopotential calculations for NUO+, NUO, and NThO in solid neon. J. Chem. Phys., 1999, 111:11044-11049.
    [169] Denning R G. Electronic Structure and bonding in actinyl Ions and their analogs. J. Phys. Chem. A, 2007, 111:4125-4143.
    [170] Ekstrom A, Hurst H J, Randall C H, Loeh H. UV-visible and infrared spectra of volatile uranyl complexes in the gas phase. J. Phys. Chem., 1980, 84(20):2626-2630.
    [171] Tozer D J, Handy N C. Improving virtual Kohn–Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J. Chem. Phys., 1998, 109:10180-10189.
    [172] Pierloot K, van Besien E, van Lenthe E, Baerends E J. Electronic spectrum of UO22+ and [UO_2Cl_2~(2-)] calculated with time-dependent density functional theory. J. Chem. Phys, 2007, 126:194311.
    [173] Réal F, Vallet V, Marian C, Wahlgren U. Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: a comparison between wave-function theory and density functional theory. J. Chem. Phys, 2007, 127:214302.
    [174] Seip H M. Acta. Studies on the Failure of the First Born Approximation in Electron Diffraction. I. Uranium Hexafluoride. Chem. Scand., 1965, 19:1955-1968.
    [175] Straatsma T P, ApràE, Windus T L, Bylaska E J, de Jong W, Hirata S, Valiev M, Hackler M, Pollack L, Harrison R, Dupuis M, Smith D M A; Nieplocha J, Tipparaju V, Krishnan M, Auer A A, Brown E, Cisneros G, Fann G, Früchtl H, Garza J, Hirao K, Kendall R, Nichols J, Tsemekhman K, Wolinski K, Anchell J, Bernholdt D, Borowski P, Clark T, Clerc D, Dachsel H, Deegan M, Dyall K, Elwood D, Glendening E, Gutowski M, Hess A, Jaffe J, Johnson B, Ju J, Kobayashi R, Kutteh R, Lin Z, Littlefield R, Long X, Meng B, Nakajima T, Niu S, Rosing M, Sandrone G, Stave M, Taylor H, Thomas G, van Lenthe J, Wong A, Zhang Z. NWChem, A computational chemistry package for parallel computers, Version 4.6. Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA:2004.
    [176] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A., 1988, 38:3098-3100.
    [177] Becke A D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys., 1993, 98(2):1372-1377.
    [178] Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7):5648-5652.
    [179] Visscher L. On the construction of double group molecular symmetry functions. Chem. Phys. Lett., 1996, 253:20-26.
    [180] Cartwright D C, Trajmar S, Chutjian A, Srivastava S. Cross sections for electron impact excitation of electronic states in UF6 at incident electron energies of 10, 20, 40 eV. J. Chem. Phys., 1983, 79(11):5483-5493.
    [181] Pepper M, Bursten B E. The Electronic structure of actinide-containing molecules: a challenge to applied quantum chemistry. Chem. Rev., 1991, 91:719-741.
    [182] Clavaguéra-Sarrio C, Vallet V, Maynau D, Marsden C J. Can density functional methods be used for open-shell actinide molecules(?) Comparison with multiconfigurational spin-orbit studies. J. Chem. Phys., 2004, 121:5312-5321.
    [183] Wang X F, Andrews L, Li J, Bursten B E. Significant interactions between uranium and noble-gas atoms: coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms. Angew. Chem. Int. Ed. 2004, 43, 2554-2557.
    [184] Zhou M, Andrews L, Ismail N, Marsden C. Infrared spectra of UO2, UO~(2+), and UO~(2-) in solid neon. J. Phys. Chem. A., 2000, 104:5495-5502.
    [185] Michelini M C, Russo N, Sicilia E. Gas-phase chemistry of actinides ions: new insights into the reaction of UO+ and UO~(2+) with water. J. Am. Chem. Soc., 2007, 129:4229-4239.
    [186] Mar(?)alo J, Gibson J K. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium. J. Phys. Chem. A., 2009, 113:12599-12606.
    [187] Mattsson A E. In pursuit of the "divine" functional. Science, 2002, 298:759-760.
    [188] Tao J, Perdew J P. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 2003, 91:146401.
    [189] Perdew J P, Tao J, Staroverov V N, Scuseria G E. Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional. J. Chem. Phys., 2004, 120:6898-6911.
    [190] Zhao Y, Schultz N E, Truhlar D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput., 2006, 2(2):364-382.
    [191] Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120:215-241.
    [192] Zhao Y, Truhlar D G. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Chem. Phys. A, 2005, 109(25):5656-5667.
    [193] Schultz N E, Zhao Y, Truhlar D G. Density functionals for inorganometallic and organometallic chemistry. J. Chem. Phys. A, 2005, 109(49):11127-11143.
    [194] Zhao Y, Truhlar D G. Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A, 2006, 110(49):13126-13130.
    [195] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett., 1997, 78:1396-1396.
    [196] Stephens P J, Devlin F J, Chabalowski C F,Frisch M J. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98(45):11623-11627.
    [197] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys., 1999, 110:6158-6170.
    [198] Staroverov V N, Scuseria G E, Tao J, Perdew J P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119:12129-12137.
    [199] Lynch B J, Fast P L, Harris M, Truhlar D G. Adiabatic connection for kinetics. J. Phys. Chem. A, 2000, 104(21):4811-4815.
    [200] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45:13244-13249.
    [201] Choi Y J, Lee Y S. Spin–orbit density functional theory calculations for heavy metal monohydrides. J. Chem. Phys. 2003, 119:2014-2019.
    [202] Baerends E J, Branchadell V, Sodupe M. Atomic reference energies for density functional calculations. Chem. Phys. Lett., 1997, 265:481-489.
    [203] Becke A D. Current density in exchange-correlation functional: application to atomic states. J. Chem. Phys., 2002, 117:6935-6938.
    [204] Johnson E R, Dickson R M, Becke A D. Density functinals and transition-metal atoms. J. Chem. Phys., 2007, 126:184104.
    [205] Merritt J M, Han J, Heaven M C. Spectroscopy of the UO~(2+) cation and the delayed ionization of UO2. J. Chem. Phys., 2008, 128:084304.
    [206] Goncharov V, Kaledin L A, Heaven M C. Probing the electronic structure of UO+ with high-resolution photoelectron spectroscopy. J. Chem. Phys., 2006, 125:133202.
    [207] Kaledin L A, Mccord J E, Heaven M C. Laser spectroscopy of UO: characterization and assignment of states in the 0- to 3-eV range, with a comparison to the electronic structure of ThO. J. Mol. Spectrosc., 1994, 164:27-65.
    [208] Paulovic J, Gagliardi L, Dyke J M, Hirao K. A theoretical study of the gas-phase chemi-ionization reaction between uranium and oxygen atoms. J. Chem. Phys., 2005, 122:144317.
    [209] Gibson J K, Haire R G, Mar?alo J, Santos M, Leal J P, de Matos A P, Tyagi R, Marozik M K, Pitzer R M, Bursten B E. FTICR/MS studies of gas-phase actinide ion reactions: fundamental chemical and physical properties of atomic and molecular actinide ions and neutrals. Eur. Phys. J. D, 2007, 45:133-138.
    [210] Gibson J K, Haire R G, Santos M, Mar?alo J, de Matos A P. Oxidation studies of dipositive actinide Ions, An~(2+) (An = Th, U, Np, Pu, Am) in the gas phase: synthesis and characterization of the isolated uranyl, neptunyl, and plutonyl ions UO2~(2+)(g), NpO2~(2+)(g), and PuO2~(2+)(g). J. Phys. Chem. A, 2005, 109:2768-2781.
    [211] Guido M, Balducci G. Identification and stability of U2O2, U2O3, and U2O4 gaseous oxides molecules. J. Chem. Phys., 1991, 95(7):5373-5376.
    [212] Dean J A. Lange's handbook of chemistry, Dean fifteenth edit. McGRAW-HILL Inc., 1999.
    [213] Zhang B. The use of bond dissociation energy to analyze the geochemical behavior of uranium in the process of granitic magmatism. Chinese Journal of Geochemistry. 1998, 5:226-233.
    [214] Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 1970, 19(5):553-566.
    [215] Privalov T, Schimmelpfennig B, Wahlgren U, Grenthe I. Structure and thermodynamics of uranium(VI) complexes in the gas phase: a comparison of experimental and ab initio data. J. Phys. Chem. A, 2002, 106(46):11277-11282.
    [216] Pattoret A, Drowart J, Smoes S. Etudes thermodynamiques par spectrometrie de masse sur le systeme uranium-oxygene. //Thermodynamics of nuclear materials, IAEA: Vienna, Austra, 1968:613-636.
    [217] Marcus R A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys., 1956, 24:966-978.
    [218] Marcus R A. Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J. Chem. Phys., 1956, 24:979-988.
    [219] Farazdel A, Dupuis M, Clementi E, Aviram A. Electric field induced intramolecular electron transfer in spiroπ-electron systems and their suitability as molecular electronic devices. A theoretical study. J. Am. Chem. Soc., 1990, 112:4206-4214.
    [220] Cave R J, Newton M D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett., 1996, 249:15-19.
    [221] Prezhdo O V, Kindt J T, Tully J C. Perturbed ground state method for electron transfer. J. Chem. Phys., 1999, 111:7818-7827.
    [222] Wu Q, van Voorhis T. Extracting electron transfer coupling element from constrained density functional theory. J. Chem. Phys., 2006, 125:164105.
    [223] Li X Y, Fu K X. Continuous medium theory for nonequilibrium solvation: new formulations and an overview of theories and applications. J. Theor. Comp.Chem., 2005, 4(3):907-983.
    [224] Wu Q, van Voorhis T. Direct optimization method to study constrained systems within density-functional theory. Phys. Rev. A, 2005, 72:024502.
    [225] Wu Q, van Voorhis T. Direct calculation of electron transfer parameters through constrained density functional theory. J. Phys. Chem. A, 2006, 110:9212-9218.
    [226] Fromager E, Vallet V, Schimmelpfennig B, Macak P, Privalov T, Wahlgren U. Spin-orbit effects in electron transfer in neptunyl(VI)-neptunyl(V) complexes in solution. J. Phys. Chem. A, 2005, 109:4957-4960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700