用户名: 密码: 验证码:
时频峰值滤波随机噪声消减技术及其在地震勘探中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于时频峰值滤波技术消减随机噪声的原理是利用解析信号的时频分布沿着其瞬时频率集中的特性,采用时频分布的峰值估计瞬时频率,从而得到信号的无偏估计。本文从理论和实践的角度分析了时频峰值滤波技术消减地震勘探资料中的随机噪声的技术细节,详细论述了时频峰值滤波消减随机噪声的原理、方法和问题,并将其应用到人工合成记录和实际地震勘探资料中的随机噪声消减,为地震勘探资料信噪比提高提供了一个有效的工具。
     根据解析信号时频分布的理论和瞬时频率估计的方法,研究了时频峰值滤波技术处理地震子波的可能性;在低信噪比条件下,噪声、信号的非线性引起的时频峰值滤波的偏差和方差适用于地震子波;指出零均值高斯色噪声条件下时频峰值滤波技术能够无偏估计地震子波的条件;研究了具有不同层速度,不同优势频率子波,相位振幅比的人工合成记录在不同强度的高斯白噪声和高斯色噪声时频峰值滤波结果,滤波结果表明时频峰值滤波技术消减随机噪声的能力不受同相轴形式的影响,为时频峰值滤波技术应用于实际地震勘探资料去噪提供充分的数据知识;将时频峰值滤波技术应用于共炮点地震勘探资料,叠后地震剖面资料和具有各向异性地震勘探资料中,滤波后的记录随机噪声被消减,有效信号和同相轴的连续性得到改善,信噪比得到提高;为了解决时频峰值滤波应用于实际地震勘探资料处理中分辨率和噪声衰减的矛盾,给出窗长与地震子波频率和采样频率的关系,给出了适合复杂地震勘探记录的技术,理论模型和共炮点地震勘探资料处理结果表明时变窗长时频峰值滤波结果比定窗长时频峰值滤波结果具有更好的分辨率,为地震勘探资料中的随机噪声衰减提供了行之有效的工具。
Seismic exploration is an important tool for oil-gas reservoirs and mineral resources exploration. With the development of method of seismic exploration and increasing demand for oil-gas, the prospecting has turn to research the complex structure and deep crustal structure. The seismic exploration data obtained from the complex earth’s surface, such as desert, hill and boondocks etc., is rather complex and has strong random noise. It is difficult to distinguish the seismic events under the strong noise , even if the intensity of the reflected signal is strong. The problem of attenuating random noise in low signal-to-noise ratio (SNR) seismic data has puzzled the seismic signal processor and producer; even make the data as the waster. Attenuation of noise and improvement of SNR is significant for researching the structure of subsurface and for prospecting oil-gas reservoirs.
     The summarization of status of attenuation of random noise in seismic data has been made in this paper. Based on the difference between the signal and noise in transformed domain, amplitude rule or statistical characteristic, the current methods attenuate the random noise, but they are limited by the type of events and the level of SNR of data, even are invalidated at the SNR less than 0.5dB. Aiming at this problem, we introduced the time-frequency peak filtering (TFPF) technique to attenuate the random noise. The attenuation of random noise in seismic data with TFPF is researched on theory, synthetic model simulation and seismic data in this paper.
     TFPF is a signal enhancement method based on the principle of instantaneous frequency estimation. In TFPF, the observed noisy signal is firstly transformed to be processed into instantaneous frequency (IF) of the analysis signal by frequency modulation, and then the peak of time-frequency distribution of analysis signal is taken as the estimation of IF for the concentration of time-frequency distribution of analysis signal along with IF. The paper researched principle, properties and realization of TFPF systematically; analyzed applicable condition. The results of theory analysis and simulation shown that the seismic wavelet which is band limited,deterministic signal can be recovered from random noise.
     The paper researched the theories, steps of realization and details of techniques about application the TFPF for attenuation random noise in seismic data. The paper proposed that TFPF must be realized on single trace of seismic data which are scaled first for preventing filtered signal aliased. The TFPF for seismic data utilized windowed Wigner-Ville distribution (pseudo Wigner-Ville distribution, PWVD) to compute the time-frequency distribution of analysis signal for decreasing bias induced by nonlinearity of IF. The paper analyzed the bias and variance from the random noise, as well as the bias from the nonlinearity of signal. Under the condition of Gaussian white noise, the filtered signal by TFPF is unbiased. On this basis, the paper analyzed the colored noise with zero mean and indicated that the bias induced by colored noise is related to the type of power spectrum. When Wigner-Ville spectrum of the FM colored noise is symmetrical, the bias is zero. When the mean of random noise is zero, the variance is zero; nonlinear seismic wavelet make the IF of analysis signal is nonlinear, so the TFPF based on PWVD is used to decrease bias for the peak of WVD of analysis signal deviating from the IF. PWVD can ensure the IF in the window is nearly linear by smoothing in frequency domain, but which results in the trade off between the time resolution and smoothness of noise. The paper proposed the time-varying window length TFPF, which has varying window length along with time of a single trace of seismic data according to the rule of propagation of seismic wave, to attenuate random noise in seismic data. The proposed method can get balance between improvement of the time resolution of filtered seismic wave and attenuation of random noise.
     According to the rule of from simple to complex condition, the paper firstly applied TFPF to the synthetic seismic data, then to actual seismic data. The constructed seismic data with single event considered the different factors of seismic wave, including the velocity of event, the frequency of seismic wave, and the attenuation of frequency with in an event, phase-to-amplitude radio of seismic wavelet as well as the mixed phased wavelet. The white random noise is added into the above models to simulate TFPF, the results show that the random noise in the seismic data with low SNR are attenuated validly, the reflective signal is enhanced and SNR of seismic data is increased. The wave of recovered signal is similar to the true wave form with the correct position at wave peak and wave valley, but it is aliased at the inflexion approaching zero. When the noise is Gaussian colored noise, the simulation results also show the good properties at improvement of SNR and attenuation of noise; Comparing TFPF with single trace Wiener filtering indicates that TFPF has advantages at holding wave form and attenuation of random noise. The synthetic seismic models with multiple events are constructed to simulate the complex subsurface media such as multi-interfaces, lamina and faultage etc. TFPF is utilized to the models and get the results of the attenuation of random noise existed in synthetic seismic data at low SNR. The results show that each event can be recovered without affecting each other and the factors of events such as the arrival time and shape of event; the lamina can be detached on the whole; the models with different faultages have the similar filtering results at attenuation random noise and improvement SNR. The conclusion from synthetic seismic data by TFPF is that TFPF is suited method for attenuating the random noise in low SNR seismic data, and the filtered results don’t affect by the shape of wavelets and shape of events which means the complexity of underground media. TFPF technique is the flexible, easy to realize on attenuating added random noise in seismic data. The simulations on synthetic seismic data provide abundant data for processing actual seismic data.
     Because TFPF is flexible tool for attenuating added random noise, it is applied to attenuate added random noise in pre-stacked and post-stacked and anisotropic seismic data. The fixed window length and time-varying window length TFPF are applied on pre-stacked and stacked common shot point seismic data respectively. From the results we can see that the strong noise concentrated in some area is attenuated, the reflected events are enhanced and the continuity of event is improved. The time-varying window length TFPF shows better resolution in time domain than fixed window length TFPF. Profile data processed by TFPF shows more events in filtered data than those in data before TFPF processing for the attenuation of random noise and enhancement of signal. We also try to attenuate the random noise in the anisotropic seismic data by TFPF. In the simulation results, the random noise is restrained and the valid information in seismic data be distinguished easier.
     On the basis of theories analysis and seismic data processing, we can conclude that TFPF can attenuate the random noise in low SNR seismic data, increase SNR, improve the continuity of event and recover valid information by adjusting the modulated factor and window length. The filtered results don’t be affected by the shape of events. The proposed time-varying window length TFPF can improve the time resolution of filtered wavelet. It is promised to be applied in pre-stacked, post-stacked and anisotropic seismic data.
引文
[1]Guitton A, Claerbout J F. Interpolation of bathymetry data from the Sea of Galilee: a noise attenuation problem. Geophysics, 2004, 69(2): 608-616
    [2]Andreas Cordsen. 3D Seismic Surveys in Complex Sub-surface. Presented at 5th Conference & Exposition on Petroleum Geophysics – Hyderabad 2004
    [3]彭更新,梁顺军.山区复杂构造低信噪比地震资料的修饰性处理.石油物探 2004,43(3):251-257
    [4]R Thomas, K.Bram,J.Fertig,K. Schwerd. Acquisition and processing of high-resolution reflection seismic data from a survey within the complex terrain of the Bavarian Folded. Geophysical Prospecting, 2002, 50(4): 411-424
    [5]张希山, 张建英, 郑玉霞, 成剑冰.复杂地区低信噪比地震资料处理方法研究. 石油地球物理勘探, 2002, 37 (增刊) : 40-43
    [6]张军华,田连玉,王兆湖,高振山,周振晓,钟 磊.三江盆地低信噪比资料的多次波处理.石油地球物理勘探,2006,41(5):573-579
    [7]丁伟.镇巴复杂山地地震采集质量影响因素分析.石油物探,2006,45(4):418-422
    [8]吴守华.沙漠地区资源高精度三维地震勘探技术应用.中国煤田地质,2006,18(3):57-59
    [9] Emanuele Lodolo, Angelo Camerlenghi, Gianni Madrussani, Umberta Tinivella and Giuliana Rossi.Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys. J. Int., 2002, 148:103-119
    [10] J. Kim Welford,Ron M. Clowes. Three-dimensional seismic reflection investigation of the upper crustalWinagami sill complex of northwestern Alberta, Canada. Geophys. J. Int , 2006, 166:155-169
    [11]Ghosh S K. Limitations on impedance inversion of band-limited reflection data. Geophysics, 2000, 65(3): 951-957
    [12]安锋,张光德,段卫星,于小刚,董长安.陆上地震勘探随机干扰分析.油气地质与采收率.2006,13(4):62-64
    [13]Masjukov, Shlyonkin. Time-varying time-shift correction by quasi-elastic deformation of seismic traces. Geophysical Prospecting, 2000, 48(2): 209-230.
    [14]Dasios A, McCann C, Astin T. Least-squares inversion of in-situ sonic Q measurements: stability and resolution. Geophysics, 2004, 69(2): 378-385.
    [15]De Oliveira L J C S, Tenorio L, Li Y G. Efficient automatic denoising of gravity gradiometry data. Geophysics, 2004, 69(3): 772-782
    [16] Barnola A S, White R E. Coherence methods in mapping AVO anomalies and predicting P-wave and S-wave impedances. Geophysical Prospecting, 2005, 53(3): 423-433
    [17]De Franco R. Multi-refractor imaging with stacked refraction convolution section. Geophysical Prospecting, 2005, 53(3): 335-348
    [18] Bagaini C. Performance of time-delay estimators. Geophysics, 2005, 70(4):109-120
    [19]RobinsonJ C. Statisticaly optimal stacking seismic data. Geophysics, 1970, 35:435- 446
    [20]Shatilo A, Aminzadeh F. Constant normal-moveout (CNMO) correction: a technique and test results. Geophysical Prospecting, 2000, 48(3): 473-488
    [21] 茅金根,刘雯林.非规则噪音地震记录的优化加权叠加.石油物探,2002,40(3):309-311
    [22]裴江云, 刘洪, 李幼铭. 在随机噪音背景下地震反射信号的增强. 地球物理学进展,2002,17(1):91-95
    [23]刘俊峰,裴江云. 利用扩大反射面元方法压制随机噪音。大庆石油地质与开发,2002,21(4):78-79
    [24]易宗富,邵雨,黄毅,蒋在超,周清华,严泽泉.共反射面元叠加技术的应用. 新疆石油地质,2002,23(3):217-218
    [25]J. P. Ristau, Wooil M. Moon. Adaptive filtering of random noise in 2-D geophysical data.GEOPHYSICS, 2001, 66(1):342-349
    [26]熊翥.地震数据数字处理技术[M].石油工业出版社,1984
    [27]万海涛,苏永昌,俞寿朋. 3-D 叠后地震资料多项式拟合提高信噪比和道内插. 石油地球物理物探,1994,29(2):208-212
    [28]杨云飞,王华忠,曹景忠. 正交多项式逼近去白噪.石油地球物理勘探,2001,36(6):704-706
    [29]钟伟,杨宝俊,张智.多项式拟合技术在强噪声地震资料中的应用研究. 地球物理学进展,2006, 21(1):184-189
    [30]Cai Liu,Yang Liu,Baojun Yang,Dian Wang,and Jianguo Sun.A 2D multistage median filter to reduce random seismic noise.Geophysics. 2006,7(5):105-110
    [31]Weihong Zhu.Liner noise reduction in seismic data using local radial trace median filtering. The Leading Edge.2004,23(8):728-730
    [32]G Duncan,G Beresford.Median filter behavior with seismic data.Geophysical Prospecting,1995,43(3):329-345
    [33]刘财,王典,刘洋,王培茂,李勤学.二维多级中值滤波技术在随机噪声消除中的应用初探.石油地球物理勘探,2005,40(2):163-167
    [34]吴亚东,符溪,文鹏飞,王宏语,谭绍泉,任富新,姜维财.奇异值分解压制随机噪声的方法及应用.新疆石油地质,2004, 24(2):144-145
    [35]Wenkai Lu. Adaptive noise attenuation of seismic images based on singular value decomposition and texture direction detection. 2006, J. Geophys. Eng.3:28-34
    [36] Li Yue,Yang Bao-jun,Yuan Ye. The bifurcation threshold value of the chaos detection system for a weak signal. Chinese Physics,2003, 12(7):714-720
    [37]赵雪平,李月,杨宝俊.用于检测同相轴的Duffing 型系统恢复力项的讨论.地球物理学进展,2006,21(1):61-69
    [38]李月,杨宝俊,赵雪平,张铭,林红波.检测地震勘探微弱同相轴的混沌振子算法.地球物理学报,2005,48(6):1428-1433
    [39]王书明 , 王家映.高阶统计量在大地电磁测深数据处理中的应用研究.地球物理学报,2004,47(5):928-934
    [40]王润秋,郑桂娟,付洪洲,李青。地震资料处理中的形态滤波去噪方法。石油地球物理勘探,2005, 40(3): 277-282
    [41]付燕,赵荣椿.消除叠后地震记录相干噪声的时-空变倾角K-L变换.物探与化探,2002,26(2):143-147
    [42]付燕,赵荣椿.应用改进的 K-L 变换提高叠后地震记录信噪比.煤田地质与勘探,2002, 30(3):49-53
    [43]Jones I, Levy S. Signal-to-noise ratio enhancement in multichannel seismic data via the Karhunen-Loeve transform. Geophysical Prospecting, 1987, 35:12~32
    [44]周洁玲.利用 K-L 变换提高地震记录的信噪比. 西南石油学院学报,2003,25(3):5-8
    [45] 付 燕 , 赵 荣 椿 . 应 用 时 空 变 β 倾 角 扫 描 叠 加 . 物 探 化 探 计 算 技 术 ,2001,23(4):303-307
    [46] 刘保童,朱光明.地震记录快速KL滤波的自组织神经网络方法.石油地球物理勘探,2005,40(12): 632-636
    [47] Harris P E, White R E. Improving the performace of f-x prediction filtering at low signal-to-noise radio. Geophysical Prospecting, 1997, 45(2): 269-362
    [48] Abma R,Claerbout J. Lateral prediction for noise attenuation by t-x and f-x techniques. Geophysics, 1995, 60(6):63-65
    [49] NECATI G. Noncasused spatial prediction filtering for random noise reduction on 3-D post stack data.Geophysics,2000, 65(5):1641-1653
    [50] 陈湛文,刘勇,王春梅.基于空间变换的 F-X 域地震去噪新方法.大庆石油地质开发,2002,21(3):74-75
    [51] 康冶,于承业,甲卧,王春梅,陈颖. f-x 域去噪方法研究.石油地球物理勘探,2003,38(2):136-138
    [52] 国九英、周兴元、杨慧珠. 三维f-x, y域随机噪声衰减. 石油地球物理勘探, 1995, 30(2): 207-215.
    [53]Yanghua Wang. Seismic trace interpolation in the f-x-y domain. Geophysics, 2002, 67(4):1232-1239
    [54] 陈必远,马在田.优势频率约束下的递推f-x去噪和谱均衡方法. 石油地球物理勘探,1997,32(4): 575-582
    [55] Spitzer R, Nitsche F O, Green A G. Reducing source-generated noise in shallow seismicdata using linear and hyperbolic & tau-p transformations. Geophysics, 2001, 66(5):1612-1621.
    [56]孙明、林君.τ-p变换去除金属矿地震资料中的线性干扰. 物探与化探, 2001, 25(6): 432-436
    [57]Herrman, P., T. Mojesky, P. Hugonnet. De-Aliased, High-Resolution Radon Transforms. Society of Exploration Geophysicists 70th Annual International Meeting, 2000:1953-1956
    [58]王西文,刘全新,高静怀,刘洪,李幼铭.地震资料在小波域的分频处理与重构.石油地球物理勘探,2001,36(1):78-85
    [59]石 玉 梅,刘 天 放,谢 桂 生.基于小波分析及 CB 形态滤波的地震同相轴检测.2000, 35(5):565-570
    [60]杨立强,郝天珧,宋海斌,江为为.应用小波变换和 C3 相干算法检测地震剖面同相轴.物探化探计算技术,2004, 26(4):302-305
    [61]付燕.基于小波变换的地震信号分时分频相关去噪。2002, 30(6):52-54
    [62]Donobo D. De-noise by soft-Thresholding. IEEE.Trans. on information Theory, 1995,3:613-627
    [63]章珂,刘贵忠,邹大文、钱俊生、李凤歧. 二进小波变换方法的地震信号分时分频去噪处理.地球物理学报,1996,39(2):265-271
    [64]杨立强、宋海斌、郝天瑶、江为为. 基于二维小波变换的随机噪声压制方法研究. 石油物探, 2005, 44(1): 4-6
    [65]Cao Siyuan and Chen Xiangpeng. The Second-generation Wavelet Transform and its Application in Denoising of Seismic Data. APPLIED GEOPHYSICS, 2005, 2(2):70-74
    [66]王振国,周熙襄,李晶.基于小波变换的最小光滑滤波去噪.石油地球物理勘探,2002, 37(6): 594-600
    [67]Yanghua Wang. A stable and efficient approach of inverse Q filtering. Geophysics, 2002,67(2):657-663
    [68]Wang Y. Quantifying the effectiveness of stabilized inverse Q filtering. Geophysics, 2003, 68: 337-345
    [69]董恩清,刘贵忠,张宗平.基于离散 Gabor 变换迭代时变滤波实现地震信号去噪.煤田地质勘探,2000, 28(6):48-51
    [70] 吴 剑 华 . 用 Gabor 展 开 进 行 地 震 数 据 的 滤 波 . 电 子 与 信 息 学 报 ,1999,21(5):713-717
    [71] Carlos A. Montana,Margrave G. F. Phase correction in Gabor deconvolution. 75th Ann. Internat. Mtg: SEG Expanded Abstracts 2005,24: 2173-2176
    [72]C Robert Pinnegar, Lalu Mansinha. The S-transform with windows of arbitrary and varying shape. Geophysics ,2003 ,68(1) :381-385
    [73] 高静怀,满蔚仕,陈树民.广义 S 变换域有色噪声与信号识别方法.地球物理学报,2004, 47(5):869-875
    [74] 邹文,陈爱萍,顾汉明.地震信号的时频分析方法.世界地质,2004, 23(1):95-99
    [75]Sankar Kumar Nath,Pawan Dewangan. Detection of seismic reflections from seismic attributes through fractal analysis.Geophysical Prospecting,2002, 50 (3):341–360
    [76] Jiao L, W M Moon. Detection of seismic refraction signals using a variance fractal dimension technique. Geophysics, 2000, 65: 719-734.
    [77]黄德芹,贾玉亮,方江雪.模型约束方法在低信噪比地震资料处理中的应用.工程地球物理学报,2006, 3(3): 167-171
    [78]Hakan Karsli, Deman Dondurur, Günay Cifci. Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement. Geophysics,2006,71(3):79-86
    [79]金雷,李月,杨宝俊.用时频峰值滤波方法消减地震勘探资料中随机噪声的初步研究.地球物理学进展,2005,20(3):724-728
    [80] 杨宝俊,李月,赵雪平,林红波,路鹏,胡艳飞.混沌理论基础及其在勘探地震学中应用的几个基本问题.地震学研究新进展(见张中杰等主编),北京:石油工业出版社,2004
    [81]Taekhyun Kim, Yong-June Shin, Edward J. Powers, Nungsoo Kim, Cheung Hun Kim. Joint time-frequency properties of freak waves. Proceedings of the 14th international offshore and polar engineering conference,France, 2004:2004-JSC-438
    [82]S. Chandra, Thippur V. Sreenivas. Auditory motivated Level-crossing approach to instantaneous frequency estimation. IEEE Tans. on Signal Processing, 2005, 53(4):1450-1462
    [83]A. K. Barros and N. Ohnishi. Heart Instantaneous Frequency (HIF):an alternative approach to extract heart rate variability. IEEE Trans. Biomed. Engg, 2001,48(8):850–855
    [84]Hamid Hassanpour, William Williams, Mostefa Mesbah, Boualem Boashash. Time-frequency extraction of egg spike events for seizure detection in neonate.ISSPA, Kuala Lumpur, Malaysia,13-16 August, 2001:246-249
    [85]Skander Soltani. On the use of wavelet decomposition for time series prediction. Neurocomputing 2002,48:267-277
    [86]Israel Cohen. Speech spectral modeling and enhancement based on autoregressive conditional heteroscedasticity models. Signal processing, 2006,86(4):698-709
    [87]V. K. Madan. Analysis of spoken words employing Gabor transform. Workshop on spoken language processing an ISCA-suppored event India,WSLP-2003:67-71
    [88] Jordan B. Camp, John K. Cannizzo, Kenji Numata.Application of the Hilbert-Huang Transform to the Search for Gravitational Waves.eprint arXiv:gr-qc/0701148.2007
    [89]Sridhar Krishnan. A New Approach for Estimation of Instantaneous Mean Frequency of a Time-Varying Signal. EURASIP Journal on Applied Signal Processing 2005,17:2848–2855
    [90]S. Chandra Sekhar, T.V. Sreenivas. Adaptive spectrogram vs. adaptive pseudo-Wigner-Ville distribution for instantaneous frequency estimation. Signal Processing 2003, 83(7): 1529-1543
    [91]Gabor, D.. Theory of communication. Journal of the Institution of Electrical Engineers .1946, 93 (3): 429-457
    [92] Wigner E P.On the quantum correction for the thermodynamic equilibrium.Phys Rev,1932,40:749-759
    [93] J. Ville. Theorie et applications de la notion de signal analytique. Cable et Trans, 1948, 2(1):61-74
    [94]L. Cohen. Generalized phase-space distribution functions. J.Math. Phys., l966,7(5):781-786
    [95] L. Cohen. Time-Frequency distribution–A Review. Proceedings of IEEE. 1989, 77:941-981
    [96]Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Tans. SP, 1995,43(3):1068-1089
    [97]Baraniuk R G, Jones D L. A signal –dependent time-frequency representation: optimal kernel design. IEEE Trans. SP, 1993, 41 (4) : 1589-1602
    [98]Wang J, Zhou J. Chirlet-based signal approximation for strong earthquake ground motion model. IEEE signal proessing magazine.1996, 16 (2): 94-99
    [99]User M, Thevenaz P, Aldroubi A. Shift-orthogonal wavelet bases. IEEE Trans. SP, 1998, 46 (7): 1827-1832
    [100]Mallat S G. A theory for multidimension signal decomposition: the wavelet represent -tation IEEE Trans. PAMI, 1989, 11 (3): 674-693
    [101]Daubechics I. Orthogonal bases of compactly supported wavelet. Comm. On Pure and Appl Math. 1998, 41(3):909-996
    [102]Chan Y L, Ho K C. Multiresolution analysis, its link to the discrete parameter wavelet transform, and its initialization. IEEE Trans. SP, 1996, 44 (4):1001-1006
    [103] M. J. Arnold, M. Rossgen, B. Boashash. Filtering real signals through modulation and peak detection in the time-frequency plane. In Proceedings of the IEEE international Conference on Acoustics, Apeech and Signal Processing, ICASSP 94, III:345-348
    [104] Adelaide,Australia, M. Arnold, B. Boashash, Time frequency peak filtering: A non-model based signal enhancement scheme. in International Symposium on Information Theory and its Applications (ISITA-94) Sydney, Australia, November,1994: 671-676
    [105]M. Mesbh, B. Boashash. Reduced bias time-frequency peak filtering. 6TH international symposium on signal processing and its applications, Kuala Lumour,2001, 1:327-330
    [106] M. Roessgen, B. Boashash. An investigation of time-frequency peak filtering applied to FSK signals. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia, USA, October 1994
    [107] M. Roessgen. B. Boashash, M. Deriche. Preprocessing noisy EEG data using time-frequency peak filtering. Proceedings of 15th Annual International Conference of the IEEE Medicine and Biology Society, San Diego, California, USA, October 1993: 28-31
    [108] Boashesh B, Mestefa M. Signal enhancement by time-frequency peak filtering. IEEE Transactions on Signal Processing, 2004, 52(4): 929-937
    [109] 张明友,吕明.近代信号处理理论与方法.国防工业出版社,2005
    [110] 张贤达,保铮.非平稳信号分析与处理.国防工业出版社,1998
    [111] Boashash B. Estimating and interpreting the instantaneous frequency of a signal—Part 1: fundamentals; part 2: algorithms and applications, Proc. IEEE, 1992,80:520-538
    [112] Ostlund N, Yu J, Karsson J S. Improved maximum frequency estimation with application to instantaneous mean frequency estimation of surface electromyography. IEEE Trans. Biomed Eng. 2004, 51 (9):1541-1546
    [113] Zahir M. Hussain B. Boashash. Adaptive Instantaneous frequency estimation of multicomponent FM signal using quadratic time-frequency distributions . IEEE Trans. Signal Processing. 2000,50(8): 657~660
    [114] Borda, Monica, Nafornita, Ioan, Isar, Alexandru. A new instantaneous frequency estimation method based on the use of image processing techniques. Image Processing: Algorithms and Systems II. Proceedings of the SPIE, 2003, 5014:147-156
    [115]Hamid Hassanpour, Mostefa Meshah, Boualem Boashash. Time-frequency basednewborn EEG seizure detection using low and high frequency signatures. Physiol. Meas. 2004, 25:935-944
    [116]Gruchala, H, Czyzewski, M. The instantaneous frequency measurement receiver in the complex electromagnetic environment Microwaves, Radar and Wireless Communications. MIKON-2004 15th International Conference,2004, 1(17-19) on: 155 – 158
    [117]F. Berizzi, G. Pinelli. Maximum-likehood ISAR image atutofocusing technique based on instantaneous frequency estimation. IEE Proceedings-Radar, Sonar and Navigation,1977, 144(5): 284-292
    [118] Langley K, Fleet D, Atherton T. Multiple motions from instantaneous frequency. Proc Int Conf. CVPR, 1992:846-849
    [119]Boualem Boashash, Peter O’Shea. Use of the Cross Wigner-Ville Distribution for Estimation of Instantaneous Frequency. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41(3):1439-1445
    [120]L.J. Stankovic, V. Katkovnik.Algorithm for the instantaneous frequency estimation using time-frequency distributions with adaptive window width. IEEE Signal Processing Letters, 1998, 5(9):224-227
    [121]S. Chandra Sekhar, T. V. Sreenivas. Adaptive window zero-crossing-based instantaneous frequency estimation. EURASIP Journal on applied signal processing, 2004, 12:1791-1806
    [122] B. Barkat,B. Boashash, L.J. Stankovic. Adaptive window in the PWVD for the IF estimation of FM signals in additive Gaussian noise. Proceedings of the IEEE ICASSP, 1999:1317-1320
    [123] LJubisa Stankovic, Vladimir Katkovnik. The Wigner distribution of noisy signals with adaptive time-frequency varying window. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47(4):1099-1108
    [124]Boashash B, O’Shea P J. Polynomial Wigner–Ville distributions and their relationship to time-varying higher order spectra. IEEE Trans.Signal Processing, 1992, 42:216-220
    [125] Barkat B, Boashash B. Design of higher order polynomial Wigner–Ville distributions. IEEE Trans. Signal Processing, 1999,47(9):2608-2611
    [126] M. J. Arnold, B. Boashash. Time-frequency peak filtering: analysis and implementation details. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia, USA, October 1994:256-259
    [127]Hess H. H. Seismic anisotropy of the uppermost mantle under oceans. Nature,1964, 203: 629-631
    [128]Crampin S. Seismic wave propagation through a cracked solid: Polarization as apossible dilatancy diagonostic. Geophys. J R. Astr. Soc. 1978, 53:467-496
    [129]Crampin S, Radovich B J. Interpretation of synthetic common depth point gathers for a single anisotropic layer. Geophysics,1982,47(3): 323-335
    [130]Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R Astr. Soc.1984, 76(1):135-145
    [131]Crampin S. Anisotropy in exploration seismic. First Break, 1984, 2(3):19-21
    [132]Crampin S. Evalution of anisotropy by shear-wave splitting. Geophysics, 1985, 50:142-152
    [133]Crampin S. Suggestion for a consistent terminology for seismic anisotropy. Geophysical Prospecting, 1989, 37(7):753-770
    [134]Crampin S, Chastin S. A review of shear-wave splitting in the crack-critical crust. Geophys. J. Int, 2003, 155(1):221-240
    [135]Crampin S, Chesnokov E M, Hipin R G. Seismic anisotropy- the state of the art Ⅱ. Geophys. J.R. Astr. Soc, 1984, 76(1):1-16
    [136]Teng J W. Introduction to solid geophysics. Seismology Press, Beijing, 2003
    [137] 张中杰, 何樵登.含裂隙介质中地震运动学问题正演模拟.石油地球物理勘探,1989, 24(3): 290-300
    [138] 张中杰,何樵登.横向各向同性介质中球腔震源激发的地震波.石油地球物理勘探,1992, 27(1): 45-58
    [139] 张中杰,滕吉文.各向异性介质中地震波前偏微分方程.地球物理学报,1994,37(2):220-227
    [140]Zhang Z J, Teng J W, Zhang Z B, Yang D H. The modified snell law for seismic ray in anisotropic media. Chinese Bulletin, 1995, 40(20):1724-1728
    [141]Liu E, Crampin S, Queen J H. Fracture detection using reverse vertical seismic profiles and cross-hole surveys at the Conoco Borehole Test Facility, Oklahoma. Geophysical Journal International, 1991, 107:449-463
    [142] Li X Y. Fractured reservoir delineation using multicomponent seismic data. Geophysical Prospecting , 1997, 45:39-64
    [143] Li X Y, Liu Y J, Liu E., Shen F., Li Q, Qu S. Fracture detection using land 3D seismic data from the Yellow River Delta, China. The Leading Edge, 2003, 22: 680-683
    [144] Liu E, Crampin S, Queen J H, D. Rizer William. Behavior of shear waves in rocks with two sets of parallel cracks . Geophys J Int, 1993,113(2): 509-517
    [145] Li X Y,Hengchang Dai. Recent advances in converted-wave anisotropic imaging Ⅱ:Velocity analysis:EAP Annual Research Report, 2001, 8 :35-63
    [146] Nur A, Simmon G. Stress induced velocity anisotropy in tock: An experimentalstudy. J Geophys. Res, 1969, 74:6667-6674
    [147]Rai C S, Hanson K E. Shear-wave velocity anisotropy in sedimentary rocks: A laboratory study. Geophysics, 1988, 53:800-806
    [148]魏建新.岩石横波分裂和各向异性的实验室观测.石油物探,1993, 32(1):60-67
    [149]邓富求,唐蔓侯.横波速度各向异性初步探讨——多波勘探资料的应用.石油地球物理勘探,1992,27 (2):247-260
    [150]Boashash B, Black P J. An efficient real-time implementation of the Wigner-Ville distribution. IEEE Trans. Signal Processing, 1987, ASSP-35 (11): 1611-1618
    [151]林红波,李月.基于时频峰值滤波去除地震图像中的随机噪声.哈尔滨工业大学学报,2005.12(37):66-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700