用户名: 密码: 验证码:
双列杂交分析与QTL定位分析之间关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双列杂交分析是经典数量遗传学中应用最为广泛的一种重要的遗传分析方法,推动了遗传研究与育种实践的发展。QTL定位分析则属于分子数量遗传学范畴,是数量遗传学与分子遗传学相结合的产物,是当今遗传学研究中的一个热点。这两种分析方法都属于数量遗传学的研究范畴,都是用来研究数量性状遗传规律的遗传分析方法,在遗传分析中都起着举足轻重的作用,它们有着许多相似之处;但是双列杂交分析是将控制性状的所有基因作为一个整体来研究的,而QTL定位分析则是将控制性状的多个基因单个剖析开来加以研究的,因此二者又有许多不同之处。双列杂交分析与QTL定位分析之间究竟存在什么样的关系以及二者结合起来能否提供更多的遗传信息,是一个令人感兴趣的课题。但是目前没有看到相关研究的报道。
     本文就是针对双列杂交分析与QTL定位分析之间的关系进行了探讨。主要运用了Monte Carlo模拟方法对双列杂交分析与QTL定位分析之间的关系进行了模拟研究,同时用水稻珍汕97B×明恢63所衍生的重组自交系(RIL)群体和永久F_2(IF_2)群体的性状数据与分子标记信息,进行了实例分析。本文研究的主要内容分为两大部分:一是模拟研究部分;二是实例分析部分。
     在模拟研究部分,运用Monte Carlo模拟的方法,主要研究了影响双列杂交分析与QTL定位分析之间关系的多种因素。在研究中,引入了相关系数来衡量双列杂交分析与QTL定位分析之间的关系。模拟研究的主要内容与部分结论如下:
     (1) 双列杂交分析与QTL定位分析分别采用不同遗传效应的定义,这会影响二者之间的相关性;当遗传方差比例相同或遗传效应相同时,一般加性效应的相关性最大,其次为显性效应的相关性,而加加上位性效应的相关性最小;(2) 随着某遗传方差在总方差中所占比例的增加,它的相关性就明显增大;但当该遗传效应在总方差中所占的比例大到一定程度时,该遗传效应的相关性增大的幅度就变的越来越小,甚至不再增加,最后进入“平台期”;(3) 各遗传效应相互之间对彼此相关性存在一定的影响,但残差对二者之间遗传效应相关性的影响最为明显;(4) 当各遗传方差所占比例不变时,QTL连锁与QTL数目不会影响相关性;(5) 在一定的范围内,DH群体与IF_2群体样本容量之间的比例越大,相关性就越小;(6) 在QTL定位分析中,QTL效应值与位置的偏差程度越大,二者的相关性就越低;(7)QTL定位时选择不同的概率Threshold对二者之间的相关性有一定的影响。(8) 多基因遗传体系的差异对双列杂交分析与QTL定位分析之间的相关性有很大的影响;微效多基因的存在,会使双列杂交分析与QTL定位分析之间的相关性降低;微效基因的遗传方差所占的比例越大,相关性就越低;反之,根据双列杂交分析与QTL定位分析之间的相关性大小也可以判断控制性状的基因遗传体系的类型,结合遗传方差分析,也可以粗略地判断微效基因与主效基因之间的方差比例。(9) 如果有微效多基因存在时,双列杂交分析的结果比QTL定位分析结果更接近于真值。
     在实例分析部分,对水稻的株高、千粒重和产量等三个性状进行了双列杂交与QTL定位进行了分析与比较;并根据模拟研究中得到的结果,对水稻三个性状进行了双列杂交与QTL定位之间的相关性分析,推断出了控制它们的遗传体系的特点,得到了一些对遗传研究与育种实践有指导意义的结论。
Diallel analysis has been broadly used as an important tool of genetic analysis in classical quantitative genetics, which advanced the development of genetics studies and breeding practices. Being a hotspot in genetic studies, QTL mapping is a powerful tool in molecular quantitative genetics, which is an inter-discipline between quantitative genetics and molecular genetics. Both tools serve as the key methods of genetic analysis for investigating the genetic natures of quantitative traits, and play important roles in the studies of quantitative genetics. Therefore, there were many similarities between the two methods. In diallel analysis, those genes controlling a quantitative trait were analyzed as a whole. However, those genes controlling a quantitative trait could be dissected into single genes and be studied individually using the method of QTL mapping. Therefore, there also were many differences between the two methods. What's the relationship between diallel analysis and QTL mapping? Could more interesting informations be provided if diallel analysis and QTL mapping were jointly applied to analyzing the same set of data. This was an interesting problem. Up to now, no reports on this was seen.The present studies were conducted to investigate the relationship between diallel analysis and QTL mapping. Monte Carlo simulations were employed for this purpose. Both tools were used to analyze a real set of data including quantitative trait and molecular marker information of an immortalized F2 (IF2) population of rice, which was constructed by random mating among RIL hues derived from Zhenshan97B x Minghui63. The dissertation consists of two sections: simulation studies and a worked example.In the section of simulation studies, Monte Carlo simulations were conducted to study the relationship between diallel analysis and QTL mapping. The section was mainly involved in studying the factors influencing the relationship between diallel analysis and QTL mapping. The correlation coefficient was introduced into present studies for measuring the relationship between diallel analysis and QTL mapping. The main contents and conclusions of the simulation studies are as follows:(1) Diallel analysis and QTL mapping adopted different definations of genetic effect respectively. This had an influence on the correlation between diallel analysis and QTL mapping. When genetic variance or genetic effect was equal, the ranking of the correlation from large to small was additive, dominance and additive by additive in turn.(2) When genetic variance increased relative to total variance, its correlation between diallel analysis and QTL mapping also obviously aggrandized; But when the genetic effect increased to certain level, the speed of aggrandizement of its correlation changed more and more slow, and the correlation curse entered into a platform stage finally.(3) The correlation of each genetic effect was influenced by other genetic effects. Among the genetic components, residual variance had the most remarkable influence on the correlation between diallel analysis and QTL mapping.(4) The linkage of QTLs and number of QTLs showed no effects on the correlation
    between diallel analysis and QTL mapping when genetic variances were not changed.(5) The sample proportion of DH to IF2 was bigger; the correlation between diallel analysis and QTL mapping was lower.(6) In the results of QTL mapping, either biased effects or biased positions were capable of affecting the correlation between diallel analysis and QTL mapping. The bias was larger, the correlation was lower.(7) Selecting different thresholds in QTL mapping had certain influence to the correlation between diallel analysis and QTL mapping.(8) The different of polygenic system was the main factor influencing the correlation between diallel analysis and QTL mapping. Because of the existence of polygenes, the correlation between diallel analysis and QTL mapping was lower. The variance proportion of polygenes to major genes was larger, the correlation was lower. On the contrary, according to
引文
1.陈建国,朱军.籼梗交稻米蛋白质含量的基因型与环境互作效应的分析[J].作物学报,1999,25(5):579-584
    2.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    3.高用明,朱军.植物QTL定位方法研究进展.遗传,2002,22(3):175-179
    4.高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究[D].浙江大学博士学位论文.2001
    5.高之仁.数量遗传学[M].四川大学出版社,1986
    6.黎裕,贾继增,王天宇,分子标记的种类及其发展[J].生物技术通报,1999,4:19-22
    7.刘鹏渊,朱军.2001.标记辅助选择改良数量性状的研究进展[J].遗传,23(4):375-380
    8.楼向阳.Opaque-2及其修饰基因对玉米籽粒品质性状影响的遗传研究[D].浙江农业大学博士论文.1997
    9.莫惠栋.谷类作物胚乳品质性状的遗传研究[J].中国农业科学,1995a,28(2):1-7
    10.莫惠栋.谷类作物胚乳性状遗传控制的鉴别[J].遗传学报,1995b,22(2):306-313
    11.莫惠栋.胚乳性状的双列模型及其分析[J].江苏农学院学报,1988,9(3):1-10
    12.莫惠栋.胚乳性状的遗传模型和世代平均数[J].遗传学报,1989,16(2):116-117
    13.芮重庆,赵安常.籼稻粒重及粒形性状F_1遗传特性的双列分析[J].中国农业科学,1993,5:14-20
    14.芮重庆,赵安常.籼稻主要数量性状配合力的研究[J].安徽农业科学(水稻数量遗传论文专辑),1981,79-83
    15.石春海,何慈信,朱军.稻米碾磨品质性状遗传主效应及其与环境互作的遗传分析[J].遗传学报,1998,25(1):46-53
    16.石春海,朱军.籼稻稻米蒸煮品质的种子和母体遗传效应分析[J].中国水稻科学,1994,8(3):129-134
    17.宋佑胜.水稻株高与穗长的QTL定位与杂种优势预测[D].浙江大学硕士学位论文.2001
    18.万平,刘大钧.SSRs标记与植物遗传育种研究[J].安徽农业大学学报.1998,25(1):92-95
    19.王建康.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究[D].南京农业大学博士学位论文.1996
    20.王林济,俞志隆.大麦籽粒蛋白质和赖氨酸含量的配合力分析[J].杭州大学学报.1989,16(3):318-327
    21.徐静斐,汪路应.水稻杂种优势和配合力的初步研究[J].遗传,1980,2:11-15
    22.徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994
    23.许自成.复交方式遗传模型构建及杂种预测方法研究[D].浙江大学博士学位论文.2001
    24.闫新浦.大麦营养和酿造品质性状的遗传效应研究[D].浙江大学博士学位论文.1998
    25.杨永霞.水稻苗期与耐冷性有关的几个性状的动态基因定位[D].浙江大学硕士学位论文.2004
    26.英姿,毛盛贤.基因型与环境互作研究的新进展[J].作物学报,1992,18(2):116-125
    27.郑康乐.禾谷类作物的比较基因组研究[J].中国农业科学,1996,29(6):1-7
    28.朱红岩,莫惠栋,黄祖方.大麦籽粒蛋白质和麦胶含量的遗传分析[J].江苏农学院学报,1995,16(2):39-46
    29.朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮、戴景瑞(主编).全国作物育种学术讨论会文集[C].北京:中国农业科技出版社,1998,19-20
    30.朱军.遗传模型分析方法[M].北京:中国农业出版社.1997.
    31.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327-344
    32.左清凡.多环境下非等试验设计水稻数量性状的遗传分析[D].浙江大学博士学位论文.1997
    33. Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB. Integration of simple sequence repeat (SSR) DNA markers into a soybean linkage map [J]. Crop Sci. 1995, 35: 1439-1445.
    34. Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice[J]. Theor. Appl. Genet. 2000, 101: 756-766.
    35. Allard RW, Bradshaw AD. Implications of genotype-environmental interactions in applied plant breeding [J]. Crop Sci. 1964, 4: 503-508.
    36. Baes P, Cntsem. PV. Electrophoretic analysis of eleven isozyme systems and their possible use as biochemical markers in breeding of Chicory cichorium-intybus L [J]. Plant Breeding. 1993, 110: 16-23.
    37. Baker RJ, Bendelow, VM, Buchccmmom KW. Early Generation inheritance of malting quality characters in a barley [J]. J. Sci. Food Agric. 1968, 28: 157-104.
    38. Ball RD. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion [J]. Genetics. 2001, 159: 1351-1364.
    39. Bateson W. Mendel's Pronciples of Heredity[M]. University Press, Cambridge. 1909.
    40. Beavis WD, Pollak E, Freg KJ. A theoretical model for quantitaticely inherited traits influenced by nuclear-cytoplasmic interactions [J]. Theor. Appl. Genet. 1987, 74: 571-578.
    41. Becker HC. Correlations among some statistical measures of phenotypic stability [J]. Euphytica. 1981, 30: 835-840.
    42. Becket J, Vos P, Kuiper M, Salamini F, Heun M. Combined mapping of AFLP and RFLP markers in barley [J]. Mol. Gen. Genet. 1995, 249: 65-73.
    43. Bell CJ, Ecker JR. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis [J]. Genomics. 1994, 19: 137-144.
    44. Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S. Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D and Tanksley S. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium [J]. Theor. Appl. Genet. 1998, 91: 170-180.
    45. Bernacchi D, Tanksley SD. In interspecific backcross of Lysopersicon esculentunx L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits [J]. Genetics. 1997, 147: 861-877.
    46. Bernatzky R, Tanksley SD. Toward a saturated linkage map in tomato based on isozymes and randomcDNA sequences [J]. Genetics. 1986a, 112: 887-898.
    47. Bink MCAM, Janss LLG, Quaas RL. Markov chain Monte Carlo for mapping a quantitative trait locus in outbred populations [J]. Genet Res. 2000, 75: 231-241.
    48. Bogyo TP, Lance RCM, Chevalier P, Nilan RA. Genetic models for quantitatively inherited endosperm characters [J]. Heredity. 1988, 60: 61-67.
    49. Botstein D, White RL, Skonick M, Davis RW. Construction of a genetic linkage map using restriction fragment length polymorphism [J]. Amer. J. Human. Genet. 1980 , 32: 314-33
    50. Bradshaw HD, Stettler RF. Molecular genetics of growth and development in Populus. IV Mapping QTLs with large effects on growth, form, and phenology of traits [J]. Genetics. 1995, 139: 963-973.
    51. Briggs KG. Combining ability for kernel plumpness in a diallel cross of five Canadian barley cultivars. Canadian.J.Plant.Sci. 1974. 54:605-609.
    52. Bubeck DM, Goodman MM, Beavis WD, Grant D. Quantitative trait loci controlling resistance to gray leaf spot in maize [J]. Crop Sci. 1993, 33: 838-847.
    53. Burow MD, Blake TK. Molecular tools for the study of complex traits [A]. A. H. Paterson. Molecular Dissection of Complex Traits [C]. CRC press, Boca Raton, New York. 1997, 13-30.
    54. Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW. Gene mapping with recombinant inbreds in maize [J]. Genetics. 1988, 118: 519-526.
    55. Burr B, Burr FA. Recombinant inbreds for molecular mapping in maize: 86, theoretical and practical considerations [J]. Trends Genet. 1991, 7: 55-60.
    56. Causse MA, Fulton TM, Cho YG.. Saturated molecular map of the rice genome based on an interspecific backcross population[J]. Genet. 1994,138: 1251-1274
    57. Chang C, Bowman JL, DeJohn AW, Lander ES, Meyerowitz EM. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana [J]. Pro. Natl. Acad. Sci. USA. 1988, 85: 6856-6860.
    58. Chase K, Adler FR, Lark KG. EPISTAT: a computer program for identifying and testing interactions between pairs of quantitative trait loci [J]. Theor. Appl. Genet. 1997, 94: 724-730.
    59. Cocherham CC. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present [J]. Genetics. 1954, 39: 859-882.
    60. Cockerham CC, Weir BS. Quadratic analyses of reciprocal crosses [J]. Biometrics. 1977, 33: 187-203.
    61. Cockerham CC, Zeng ZB. Design III with marker loci [J]. Genetics. 1996, 143: 1437-1456.
    62. Cockerham CC. Random and fixed effects in plant genetics [J]. Theor.Apple.Genet. 1980, 56:119-131.
    63. Comstock RE, Moll RH. Genotypic-environment interactions In Statistical Genetics and Plant Breeding [J]. Nat. Acad. Sci. 1963, 169-196.
    64. Comstock RE, Robinson HF. Estimation of average dominance of genes [A]. Griowan J.W. Hererosis [C]. Ames. Iowa: Iowa State University Press. 1952, 494-516.
    65. Cooper M, Delacy IH. Relationships aming analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding
    66. Cregan PB, Bhagwat AA, Akkaya MS, Jiang RW. Microsatellite fingerprinting and mapping of soybean. Methods MoL [J]. Cell Biol. 1994, 5: 49-61.
    67. Curnow RN. Sampling the diallel crosses [J]. Biometrics. 1963, 19: 398-306.
    68. Daw EW, Heath SC, Wijsman EM. Multiple oligogenic analysis of age-at-onset data with applications to Alzheimer disease pedigrees [J]. Am. J. Hum. Genet. 1999, 64: 839-851.
    69. Delourme R, Eber F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.) [J]. Theor. Appl. Genet. 1992, 85: 222-228.
    70. Doebley J, Stec S, Gustus C. Teosinte branchedl and the origin of maize: evidence for epistasis and the evolution of dominance [J]. Genetics. 1995, 141: 333-346.
    71. Donino P, Elias ML, Bougourd SM, Koebner RMD. AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs [J]. Genome. 1997, 40: 521-526
    72. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TB, Bowden DW, Smith DR, Lander ES, Botstein D, Akots G, Rediker KS, Gravius T, Brown VA, Rising MB, Parker C, Powers JA, Watt DE, Kauffman ER, Bricker A, Phipps P, Muller- Kahle H, Fulton TR, Ng S, Schumm JW, Braman RC, Knowlton RG Barker DF, Crooks SW, Lincoln SE, Daly MJ, Abrahamson J. A genetic linkage map of the human genome [J]. Cell. 1987, 51(23): 319-337.
    73. Eberhart S A, Russell WA. Stability parameters for comparing varieties [J]. Crop Sci. 1966, 6: 36-40.
    74. Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action [J]. Genetics. 1987, 116: 113-125
    75. Eisen EJ, Horstgen_Schwark G, Saxton AM, Bandy TR. Genetic interpretation and analysis of diallie crosses with animals [J]. Theor.Appl.Genet. 1983, 65:17-23.
    76. Everson EH, Schaller CW. The genetics of yield differences associated with awn barbing in the barley hybrid (Lion x AtlaslO) x Atlas [J]. Agron. J. 1955, 47: 276-280.
    77. Falconer DS, Introduction to Quantitative Genetics. 2nd edn [M]. Longman Press, New York. 1981.
    78. Falconer DS. Introduction to Quantitative Genetics. 1st ED [M]. Oliver and Boyd, Edinburgh, UK. 1960
    79. Fatokun CA, Menancio-Hauter DI, Danesh D, Young ND. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping [J]. Genetics. 1992, 132: 841-846.
    80. Fernando RL, Grossman M. Marker-assisted selection using best linear unbiased prediction[J]. Genet. Sel. Evol. 1989,21: 467-477.
    81. Fijneman RJA, Devries SS, Jansen RC, Demant R. Complex interactions of new quantitative trait loci, slucl, sluc2, sluc3, and sluc4, that influence the susceptibility to lung-cancer in the mouse [J]. Nature Genetics 1996, 14: 465-467.
    82. Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance [J]. R.Soc.Trans. 1918, 52: 399-575
    83. Fooladk MR, Jones RA. Models to estimate maternally controlled genetic variation in quantitative seed characters [J]. Theor. Appl.Genet. 1992, 83: 360-366.
    84. Freeman GH, Perkins JM. Environmental and genotype-environmental components of variablity: VIII. Relations between genotypes grown in different environments and measures of these environments [J]. Heredity. 1971, 27: 15-23.
    85. Fu YB, Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression [J]. Genetics. 1996, 144: 339-348.
    86. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species [J]. Theor. Appl. Genet. 1997, 95: 881-894.
    87. Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities [J]. J. Am Stat. Assoc. 1990, 85:398-409.
    88. Gimelfarb A, Lande R. Simulation of marker-assisted selection in hybrid populations[J]. Genet. Res.1994, 63: 124-136.
    89. Goddard ME. A mixed model for analyses of data on multiple genetic markers [J]. Theor.Appl. Genet. 1992, 83: 878-886.
    90. Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J]. Biometrika. 1995, 82: 711-732.
    91. Greenberg DC. A diallel cross analysis of gum content in barley(Hordeum Valgare) [J].Theor.Appl,Genet. 1977, 50: 41-46.
    92. Grilling B. Concept of general and specific combining ability in relation to diallel crossing systems [J]. Aust. J. Biol. Sci. 1956, 15: 5-14.
    93. Haley C, Knott S. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity. 1992, 69: 315-324.
    94. Haley C, Knott S. A simple regression method for mapping quantitative trait loci of linked factors [J]. J Genetics. 1992, 8: 299-309.
    95. Halward T, Stalker T, LaRue E, Kochert G. Use of single-primer DNA amplifications in the genetic studies of peanut (Arachis hypogaea L.) [J]. Plant Mol. Biol. 1992, 18: 325-325.
    96. Harushima Y, Yano M, Shomura A, Sato M. A high density rice genetic map with 2275 markers using a single F2 population[J]. Genet. 1998, 148: 479-494
    97. Hayman BI. Interaction, heterosis and diallel crosses [J]. Genetics. 1957, 42: 336-355.
    98. Hayman BI. The analysis of variance of diallil tables. Biometrics [J]. 1954b, 10: 235-244.
    99. Hayman, BI. The theory and analysis of diallel cross [J]. Genetics. 1954a , 39: 789-809.
    100. Hayman, BI. The theory and analysis of diallel cross [J]. Genetics. 1958, 43: 65-85.
    101. Heath SC. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models [J]. Am J. Hum Genet. 1997, 61: 748-760.
    102. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms [J]. Theor. Appl. Genet. 1986, 72: 761-769.
    103. Helentjaris T. A genetic linkage map for maize based on RFLPs [J]. Trends Genet. 1987, 3: 217-221.
    104. Hilbert P, Lindpainter K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julie C, Takahasi S, Vincent M, Ganten D, Georges M, Lathrop GM. Chromosomal mapping of two genetic loci associated with blood-presume regulation in hereditary hypertensive rats [J]. Nature. 1991, 353:521-529.
    105. Hockett EA, Cook AF, Khsn MA, Martin JM, Jone BL. Hybrid performance and combining ability for yield and malt quality in a diallel cross of barley, Crop Sci. 1993, 33(6)1239-1243.
    106. Holland JB. EPISTACY: A SAS program for detecting two-locus epistatic interactions using genetic marker information [J]. J. Hered. 1998, 89: 374-375.
    107. Horvat S, Medrano JF. Interval mapping of high growth (gh), a major locus that increases weight gain in mice [J]. Genetics. 1995, 139: 1737-1748.
    108. Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A. More on the efficiency of marker-assisted selection[J]. Theor. Appl. Genet. 1997, 95: 1181-1189.
    109. Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF. Genetic Dissection of an Elite Rice Hybrid Revealed That Heterozygotes Are Not Always Advantageous for Performance [J]. Genetics. 2002, 162: 1885-1895
    110. Huehn M. Nonparametric measures of phenotypic stability, part I: theory [J]. Euphytica. 1990, 47: 189-194.
    111. Huhn M, Lotito S, Piepho HP. Relationships between genotypexenvironment interactions and rank orders for a set of genotypes tested in different environments [J]. Theor. Appl. Genet. 1993, 86: 943-950.
    112. Hunter R L, Markert CL. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels [J]. Science. 1957, 125: 1294-1295.
    113. Hurme P, Sillanpaa MJ, Arjas E, Repo T, Savolainen O. Genetic basis of climatic adaption in Scots pine by Bayesian quantitative trait locus analysis [J]. Genetics 2000, 156: 1309-1322.
    114. Itoh Y, Yamada Y. Relationships between genotypexenvironment interaction genetic correlation of the same trait measured in different environments [J]. Theor. Appl. Genet. 1990,80: 11-16.
    115. Jacob HJ, Lindpainter K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES. Genetic mapping of a gene causing hypertension in the stroke-prone rat [J]. Cell. 1991,67:213-224.
    116. Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping [J]. Genetics. 1994, 136: 1447-1455.
    117. Jansen RC, Van Ooijen JW, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci [J]. Theor. Appl. Genet. 1995, 91: 33-37.
    118. Jansen RC. A general mixture model for mapping quantitative trait loci by using molecular markers [J]. Theor Appl Genet. 1992, 85: 252-260.
    119. Jansen RC. Controlling the type I and type II errors in mapping quantitative trait loci [J]. Genetics. 1994, 138: 871-881.
    120. Jansen RC. Interval mapping of multiple quantitative trait loci [J]. Genetics. 1993, 135: 205-211.
    121. Jayakar SD. On the detection and estimation of linkage between a locus influencing a quantitative character and a marker locus [J]. Biometrics. 1970, 26: 451-464.
    122. Jiang CJ, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics. 1995, 140: 1111-1127.
    123. Jinks JL, Pooni SH. Non-linear genotypexenvironment interactions arising from response thresholds: I. Parents, Fls and selections [J]. Heredity. 1979, 43: 57-70.
    124. Jinks JL. The analysis continuous variation in a diallel cross of Nicotiana rustica varieties. I [J]. The analysis of F1 data. Genetics. 1954, 39: 767-788.
    125. Jinks JL. The F2 and backcross generations from a set of diallel crosses [J]. Heredity. 1956, 10: 1-30.
    126. Johannsen W. Elemente der exakten Erblichkeitslehre [J]. Fischer, Jena. 1909
    127. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci [J]. Genetics. 1999, 152: 1203-1216.
    128. Kawchuk LM, Lynch DR, Thomas J, Penner B, Sillito D, Kulcsar F. Characterization of Solanum tuberosum simple sequence repeats and application to potato cultivar identification [J]. American potato J. 1996, 73: 325-335.
    129. Keim P, Schupp JM , Travis SE, Clayton K, Zhou T, Shi L , Ferreira A, Webb DM. A high-density soybean genetic map based on AFLP markers [J]. Crop Sci. 1997, 37: 537-543
    130. Kempthorne O, Curnow, RN. The partial diallel cross [J]. Biometrics. 1961, 17: 229-250.
    131. Kindiger B, Vierling RA. Comparative isozyme polymorphisms of North American eastern gamagrass, Tripsacum dactyloides var. dactyloides and maize [J], Zea mays L. Genetica . 1994, 94: 77-83.
    132. Knapp SJ. Marker-assisted selection as a strategy for increasing the probability of selection superior genotypes[J]. Crop Sci. 1998, 38: 1164-1174.
    133. Knapp SJ. Using molecular markers to map multiple quantitative trait loci: model for backcross, recombinant inbred, and double-haploid progeny [J]. Theor Appl Genet. 1991, 81: 333-338.
    134. Knott SA, Haley CS. Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses [J]. Genet Res. 1992, 60: 139-151.
    135. Korol AB, Ronin YI, Nevo E. Approximated analysis of QTL-environmental interaction with no limits on the number of environments [J]. Genetics. 1998b, 148: 2015-2028.
    136. Kresovich S, Szewe -McFadden AK, Bliek SM, McFerson JR. Abundance and characterization of simple sequence repeats (SSRs) isolated from a size -fractionated genomic library of Brassica napus L [J]. Thoer. Appl. Genet. 1995, 91: 206-211.
    137. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasakii K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences[J]. Nature Genetics .1994, 8:365-372.
    138. Lalitha Sunil Kumar. DNAmarkers in plant improvement [J]. An overview. 1999, 17: 143-182. 139. Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics. 1990, 124: 743-756.
    140. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics. 1989, 121: 185-199.
    141. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations [J]. Genomics. 1987, 1: 174-181.
    142. Landry BS, Kesseli RV, Farrara B, Michelmore RW. Agenetic map of lettuce (lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers [J]. Genetics. 1987b, 116: 331-337.
    143. Lark KG, Chase K, Adler F, Mansur LM, Orf JH. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another [J]. Proc. Natl. Acad. Sci. U.S.A. 1995, 92: 4656-4660.
    144. Lefebvre V, Chevre AM. Tools for marking plant disease and pest resistance genes [J]. a review. Agronomic 1995, 15:3-19.
    145. Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid [J]. Theor. Appl. Genet. 2000, 101: 248-254.
    146. LI ZK, Pinson SRM, Marchetti MA, Stansel JW, Park WD. Characterization of quantitative trait loci contributing to field resistance ot sheath blight (Rhizonctonia solani) in rice [J]. Theor. Appl. Genet. 1995b, 91: 382-388.
    147. Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel. JW. Epistasis for three grain yield components in rice (Oryza sativa L.) [J]. Genetics 1997b, 145: 453-465.
    148. Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.) population [J]. Genetics. 1997a, 145: 1139-1148.
    149. Li ZK, Pinson SRM, Stansel. JW, Park WD. Identification of QTL for heading date and plant height in rice using RFLP markers [J]. Theor. Appl. Genet. 1995a, 91: 374-381.
    150. Li ZK. Molecular analysis of epistasis affecting complex traits [A]. Paterson AH. Molecular dissection of complex traits[C]. CRC Press, Boca Raton, New York, 1997, 119-130.
    151. Lin CS, Thompson B. An empirical method of grouping genotypes based on a linear function ofb the genotype-environment interaction [J]. Heredity. 1975, 34: 255-263.
    152. Lukens LN, Doebley J. Epistatic and environmental interactions for quantitative trait loci involved in maize evolution [J]. Genet. Res. 1999, 74: 291-302.
    153. Markert CL, Moller F. Multiple forms of enzymes:tissue ontogenetic,and species specific patterns [J]. Proc.Natl.Acad.Sci.USA. 1959, 45: 753-763.
    154. Martinez 0, Curnow RN. Estimation the locations and the sizes of the effects of quantitative trait loci using flanking markers [J]. Theor Appl Genet. 1992, 85: 480-488.
    155. Martinez O, Curnow RN. Missing markers when estimating quantitative trait loci using regression mapping [J]. Heredity. 1994, 73: 198-206.
    156. Mather K, Jinks JL. Biometrical Genetics[M]. Chapman and Hall. 1982.
    157. Mather K. Biometrical Genetics [M]. Champman and Hall,London. 1949
    158. Mather,K.and J. L. Jinks. Biometrical Genetics [M]. Champman and Hall,London. 1971.
    159. Maughan PJ, Saghai Maroof MA, Buss GR. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean [J]. Genome. 1995, 38: 715-723.
    160. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman, WR, Tanksley SD. Molecular mapping of rice chromosomes [J]. Theor. Appl. Genet. 1988, 76: 815-829.
    161. McCouch SR, Kochert G, Yu ZH. Molecular mapping of rice chromosomes[J]. Theor.Appl. Genet. 1988,76: 815-829
    162. McCouch SR, Temnykh S, Lukashova A. Microsatellite markers in rice: abundance, diversity, and application[C]. Rice Genetics IV.Eds: Khush GS, BrarDS, Hardy B. IRRI. 2004,117-136
    163. Mckenzie KS, Rutger SJ. Genetic analysis of amylase content alkali spreading score and grain dimension in rice [J]. Crop Sci. 1996, 23(2): 306-313.
    164. McMillan I, Robertson A. The power of methods for the detection of major gene affecting quantitative characters [J]. Heredity. 1974, 32: 349-356.
    165. Meuwissen TH, Goddard EME. Estimation of effects of quantitative trait loci in large complex pedigrees [J]. Genetics. 1997, 146: 409-416.
    166. Mo HD. Genetic expression of endosperm traits[A]. Weir BS, Elsen EJ, Goodman MM, Namkoong GN (eds) Proc 2nd Int Conf Quant Genet. Sinauer Assoc, Boston, Mass. 1988, pp 478-487
    167. Moreau L, Charcrosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size[J]. Genetics. 1998, 148: 1353-1365.
    168. Moreno-Gonzalez J. Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques [J]. Theor. Appl. Genet. 1992, 85: 435-444.
    169. Morgante M, Olivieri AM. PCR-based microsatellites as markers in plant genetics [J]. Plant J. 1993,3: 175-182
    170. multi-environment experiments [J]. Theor. Appl. Genet. 1994, 88: 561-572.
    171. NealeDB, Sederoff RR. Genome mapping in gymnosperms: A case study in loblolly pine (Pinus taeda L.) [A]. A. H. Paterson, R. G. Genome mapping in plants[C], Landes Company and Academic Press, Georgetown,Texas. 1996, 308-319.
    172. Newburg. MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populations [J]. Genomics. 1987, 1: 174-181.
    173. Niemann-Sorenson A, Robertson A. The association between blood groups and several production characters in three Danish cattle breeds [J]. Acta Agric. Sxcand. 1961, 11: 163-196.
    174. Ohno Y, Tanase H, Nabika T, Otsuda K, Sasaki T, Suzawa T, Korii T, Yamori Y, Saruta T. Selective genotyping with epistasis can be utilized for a major quantitative trait locus mapping in hypertension in rats [J]. Genetics. 2000, 155: 785-792.
    175. Oslen OA. Inheritance of protein and lysine content in barley, Hordeum Valgare L. and their relationships to other characters [J]. Hereditas. 1980, 92: 85-111.
    176. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments [J]. Genetics. 1991, 127: 181-197.
    177. Paterson AH, Lander ES, Lincoln S, Hewitt J, Peterson S, Tanksley SD. Resolution of quantitative traits into Mendelian factors using a complete RFLP linkage map [J]. Nature. 1988, 335: 721-726
    178. Paterson AH. Comparative mapping of plant phenotypes [J]. Plant Breed. Rev. 1997, 14: 13-37.
    179. Paul S, Wachira FN, Powell W, Waugh R. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers [J]. Theor. Appl. Genet. 1997, 94: 255-263.
    180. Piepho HP. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data [J]. Genetics. 2000, 156: 2043-2050.
    181. Pooni HS, Coombs DJ, Jinks PS. Detection of epistatsis and linkage of interacting genes in the presence of reciprocal differences [J]. Heredity. 1987, 58: 257-266.
    182. Pooni,HS, Kumar I, Khush GS. A comprehensive model for disomically inherited metrical traits expressed in triploid tissues [J]. Heredity. 1992, 69: 166-171.
    183. Powell W, Mrgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalsky A. The comparison of RFLP, RAPD, AFLP, and SSR (Microsatellite) markers for germplasm analysis [J]. Mol.Breed. 1996. 2: 225-238.
    184. Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV Generating and using DNA markers in plants, Nonmammalian Genomic Analysis: A Practical Guide [M]. Academic Press. 1996, 75-134.
    185. Rasmusson JM. A contribution to the theory of quantitative character inheritance [J]. Hereditas. 1933, 18:245-26 1.
    186. Rasmusson, JM. Studies on the inheritance of quantitative characters in Pisum: I. Preliminary note on the genetics of flowering [J]. Heriditas. 1935, 20: 161-180.
    187. Reiter RS, Cors JG, Sussman MR, Gabelman WH. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms [J]. Theor. Appl. Genet. 1991, 82: 561-568.
    188. Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity [J]. Genetics. 1993, 134: 1277-1288.
    189. Romagosa I, Ullrich SE, Han F, Hayes DF. Use of the additive main effefcts and multiplicative interaction model in QTL mapping for adaptation in barley [J]. Theor. Appl. Genet. 1996, 93: 30-37.
    190. Rongwen J, Akkaya MS, Lavi U, Cregan PB. The use of microsatellite DNA markers for soybean genotype identification [J]. Theor. Appl. Genet. 1995, 90: 43-48.
    191. Routman EJ, Cheverud JM. Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL [J]. Evolution 1997, 51: 1654-1662.
    192. Sari-Gorla M, Calinski T, Kaczmarek Z, Krajewski P. Detection of QTL xenvironment interaction in maize by a least squares interval mapping method [J]. Heredity. 1997, 78: 146-4-157.
    193. Satagopan JM, Yandell BS, Newton MA, Osborn TC. Markov chain Monte Carlo approach to detect polygene loci for complex traits [J]. Genetics. 1996, 144: 805-816.
    194. Satagopan JM, Yandell BS. Estimating the number of quantitative trait loci via Bayesian model determination [A]. Special Contributed Paper Session on Genetic Analysis of Quantitative Traits and Complex Diseases [C], Biometric Section, Joint Statistical Meetings, Chicago, IL. 1996.
    195. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseoulus vulgaris [J]. Genetics. 1923, 8: 552-560.
    196. Schneider K. Douches DS. Assessment of PCR-based simple sequence repeats to fingerprint north American potato cultivars [J]. American Potato Journal. 1997, 74(3): 149-160.
    197. Schon CC, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG, Seitzer JG. RFLP mapping in maize: Quantitative trait loci affecting ttestcross performance of elite European flint lines [J]. Crop Sci. 1994, 34: 378-389.
    198. Sen S, Churchill GA. A statistical framework for quantitative trait mapping [J]. Genetics. 2001, 159: 371-387.
    199. Shukla GK. some statistical aspects of partitioning genotype-environmental components of variability [J]. Heredity. 1972. 29: 237-245.
    200. Sillanpaa MJ, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data [J]. Genetics. 1998, 148: 1373-1388.
    201. Sillanpaa MJ, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data [J]. Genetics. 1999, 151: 1605-1619.
    202. Sillanpaa MJ, Corander J. Model choice in gene mapping: what and why [J]. Trends in Genetics. 2002, 18: 301-307.
    203. Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines [J]. Theor Appl Genet. 1976, 47: 35-39.
    204. Spickett SG, Thoday JM. Regular response to selection. 3. Interaction between located polygenes [J]. Genet Res. 1966, 7: 96-121.
    205. Sprangue GE, Tatum LA. General versus specific combining ability in single corn [J]. J.Amer.Soc.Agron. 1942, 34: 923-932.
    206. Staub JE, Kuhns LJ, May B, Grun P. Stability of potato tuber isozymes under different storage regimes [J]. J.AmSci. 1982, 107: 405-8.
    207. Staub JE, Serquen FC. Genetic markers, map construction and their application in plant breeding [J]. Hort Sci. 1996, 31: 729-41.
    208. Stephens DA, Fisch RD. Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo [J]. Biometrics. 1998, 54: 1334-1347.
    209. Stratton DA. Reaction norm functions and QTL-environment interactions for flowering time in Arabidopsis thaliana [J]. Heredity. 1998, 81: 144-155.
    210. Stuber CW, Edwards MD, Wendel JF. Molecular marker-facilitated investigations of quantitative trait in maize. II. Factors influencing yield and its component traits [J]. Crop Sci. 1987b, 27: 639-648.
    211. Stuber CW, Edwards MD, Wendel JF. Molecular marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action [J]. Genetics. 1987a, 116: 113-248.
    212. Stuber CW, Edwards MD. Genotypic selection for improvement of quantitative traits in corn using molecular marker loci [J]. Proc. 41st Annual Corn and Sorghum Res. Conf. Am. Seed Trde. Assoc. 1986,41:40-83.
    213. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J]. Genetics. 1992, 132: 823-839.
    214. Stuber CW. Biochemical and molecular markers in plant breeding [J]. Plant Breed. Rev. 1992, 9: 37-61.
    215. Stuber CW. Isozymes as markers for studying and manipulating quantittive traits [A]. S. Soltis, P. Soltis. Isozymes in Plant Biology [C] . Dioscordies Press, Portland, OR. 1989a, 206-220.
    216. Tanase H, Suzuki Y, Ooshima A, Yamori Y, Okamoto K. Genetic analysis of blood pressure in spontaneously hypertensive rats [J]. Jpn. Circ. J. 1970, 34: 1197-1212.
    217. Tanksley SD, Bernatzky R, Lapitan NL, Prince JR Conservation of gene repertoire but not gene order in pepper and tomato [J]. Proc. Natl. Acad. Sci. USA. 1988, 85: 6419-6423.
    218. Tanksley SD, Hewitt JD. Use of molecular markers in breeding for soluble solids in tomato—a re-examination [J]. Theor. Appl. Genet. 1988, 75: 811-823
    219. Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild [J]. Science. 1997, 277: 1063-1066.
    220. Tanksley SD, Medina-Filho H, Rick CM. Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato [J]. Heredity. 1982, 49: 11-25.
    221. Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines [J]. Theor. Appl. Genet. 1996, 92: 191-203.
    222. Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theor. Appl. Genet. 1996, 92: 191-203.
    223. Tanksley SD, Rick CM. Isozymic gene linkage map of the tomato: Applications in genetic and breeding [J]. Theor. Appl. Genet. 1980, 57: 161-170.
    224. Tanksley SD. Molecular markers in plant breeding [R]. Plant Mol Biol Rep. 1983, 1: 3-8.
    225. Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation [J]. J. Am. Stat. Assoc. 1987, 82: 528-549.
    226. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res. 1989, 17: 6463-6471.
    227. Thoday JM. Location of polygenes [J]. Nature. 1961, 191: 368-370.
    228. Thomas DC, Cortessis V. A Gibbs sampling approach to linkage analysis [J]. Hum Hered. . 1992, 42: 63-76.
    229. Thomas MR, Scott NS. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence tagged sites (STSs) [J]. Theor. Appl. Genet. 1993, 86: 985-990.
    230. Tinker NA, a Mather DE. Methods for QTL analysis with progeny replicated in multiple environments [J]. JQTL (http://probe.gig.usda.gov:8000/otherdocs/jqtl/) 1995, 1 (1).
    231. Tophamm PB. Diallel analysis involving maternal and maternal interaction effects [J]. Heredity. 1966, 21: 665-674.
    232. Uimari R Hoeschele I. Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms [J]. Genetics. 1997, 146: 735-743.
    233. Utz HF, Melchinger AE. PLABQTL: A program for composite interval mapping of QTL [J]. JQTL (http://probe.gig.usda.gov:8000/otherdocs/jqtl/) 1996, 2 (1).
    234. Veldboom LR, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components [J]. Crop Sci. 1996a, 36: 1310-1319.
    235. Veldboom LR, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: Ⅱ. Plant height and flowering [J]. Crop Sci. 1996b, 36: 1320-1327
    236. Vieira C, Pasyukova EG, ZengZB, Hackett JB, Lyman RF, Machay TFC. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster [J]. Genetics. 2000, 154: 213-227.
    237. Vodenicharova M. Use of proteins as molecular-genetic markers in plants [J]. Genet Sel. 1989, 22: 269-77.
    238. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Res. 1995, 23: 4407-4414.
    239. Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTL with epistatic effects and QTLxenvironment interactions by mixed linear model approaches [J]. Theor Appl Genet. 1999, 99: 1255-1264.
    240. Wang DL. A mixed model approach for mapping QTLs with epistatic effects[D]. A dissertation of Ph. D. Zhejiang Agricultural University. 1998
    241. Weber JL and May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction [J]. Am J. Hum. Genet. 1989, 44: 388-396.
    242. Weller JI, Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers [J]. Biometrics. 1986, 42: 627-640.
    243. Weller JI, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum Lycopersicon pimpinellifolium) by means of genetic markers [J]. Genetics. 1988, 118: 329-339.
    244. Westcott B. Some methods of analyzing genotype-environment interaction [J]. Heredity. 1986, 56: 243-253.
    245. Wu R Zhang G, Huang N, Ladha JK. Non-additive interaction conditioning spikelet sterility in an F2 population of indica/japonica cross in rice [J]. Theor. Appl. Genet. 1995, 91: 825-829.
    246. Xiao J, Li J, Yuan LP, Tanksley SD, Dominance is the major genetic basis of hetrerosis in rice as revealed by QTL analysis using molecular markers [J]. Genetics 1995b, 140: 745-754.
    247. Xie C, Xu S. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits[J]. Heredity. 1998, 80: 489-498.
    248. Xu YB. Global view of QT/QTL: Rice as a model. Proceedings of Quantitatives Genetics and Plant Breeding in the 21st Century—An International Symposiurn[C]. Baton Rouge, LA, USA. 1994, March 26-28: p1-16
    249. Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors [J]. Theor. Appl. Genet. 1998, 97: 37-44.
    250. Yah JQ, Zhu J, He CX, Benmoussa M, R Wu. Molecular marker-assisted dissection of genotype x environment interaction for plant type traits in rice (Oryza sativa L.) [J]. Crop Sci. 1999, 39: 538-544.
    251. Yan JQ. Molecular dissection of genotype by environment interaction for some agronomy traits in rice [D]. A dissertation of Ph.D. Zhejiang Agricultural University. 1998.
    252. Yang J, and Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects[J]. Theor. Appl. Genet. 2005, 110: 1268-1274
    253. Yi N, Xu S, Allison, David B. Bayesian Model Choice and Search Strategies for Mapping Interacting Quantitative Trait Loci [J].Genetics. 2003, 165: 867-883
    254. Yi N, Xu S. Bayesian mapping of quantitative trait loci for complex binary traits [J]. Genetics. 2000a, 155: 1391-1403.
    255. Yi N, Xu S. Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model [J]. Genetics. 2000b, 156: 411-422.
    256. Young ND. Plant gene mapping [J]. Encyclopedia of Agricultural Science. 1994, 3: 275-82.
    257. Yu SB, Li, JS, Xu CG, Y-F. Tan YJ, Gao XH, Li Q. Zhang MA. Saghai Maroof. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA. 1997,94:9226-9231
    258. Yuan B, Neuman R, Duan SH, Weber JL, Kwok PY, Saccone NL, Wu JS, Liu KY, Schonfeld G. Linkage of a gene for familial hypobetaliproteinemia to chromosome 3p21.1-22 [J]. Am. J. Hum. Genet. 2000, 66: 1699-1704
    259. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting [P]. European Patent Application number 92402629-7, publication number 0 534 858 A1. 1993.
    260. Zamir D, Tanksley SD. Tomato genome is comprised largely of fast-evolving, low copy-number sequences [J]. Mol. Gen. Genet. 1988, 213: 254-261.
    261. Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics. 1994, 136: 1457-1468.
    262. Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Nat Acad Sci USA. 1993, 90: 10972-10976.
    263. Zhu J, Weir BS. Analysis of cytoplasmic and maternal effects. I .a genetic model for diploid plant and animals [J]. Theor.Apple. Genet. 1994a,89: 153-159.
    264. Zhu J, Weir BS. Mixed-model approaches for genetic analysis of quantitative traits [A]. Chen LS, Ruan SG, and Zhu J . Advanced topics in biomathematics [C]. Proc Inter Conf on Mathematical Biol. World Scientific Publishing Co., Singapore, 1998, 321-330
    265. Zhu J. Mixed model approaches for estimating genetic variances and covariance [J]. J.Biomath., 1992,7(1): 1-11.
    266. Zhu J. Mixed-model approaches of mapping genes for complex quantitative traits [A]. Wang LZ, Dai JR . Proc Genet and Crop Breed of China [C]. Chinese Agricultural Science and Technology Publication House, Beijing, 1998, 19-20
    267. Zhu.J, Weir BS. Analysis of cytoplasmic and maternal effects. II. Genetic model for triploid endosperms [J]. Theor.Apple. Genet. 1994b, 89: 160-166.
    268. Zhu.J. Mixed model approaches for estimating genetic covariances between two traits with unequal design matrices [J]. J.Biomath., 1993, 8(3):24-30.
    269. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. Analysis of QTLxenvironment interaction for yield components and plant height in rice [J]. Theor. Appl. Genet. 1997, 95: 799-808.
    270. Zobel RW, Wright JM, Gauch HGJ. Statistical analysis of a yield trial [J]. Agronomy Journal. 1988, 80: 388-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700