用户名: 密码: 验证码:
驻波型热声发动机性能强化及其驱动脉管制冷特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声发动机利用热声效应把热能转换为声能,具有结构简单、运行可靠、以热能驱动和工质环保等突出优点,与脉管制冷机耦合在一起可构成从室温到低温完全没有运动部件的热驱动制冷系统,是一项具有应用前景的新技术。为进一步强化热声发动机的输出性能,进而降低热声驱动脉管制冷机的制冷温度,本文针对以下几个方面开展了理论和实验研究工作:
     1.采用锥形谐振管的热声发动机的数值模拟和实验研究利用线性热声理论,对一台采用锥形谐振管的驻波型热声发动机进行了数值模拟,发现采用锥形谐振管可有效降低工质气体的速度振幅,进而减小在谐振管中声功率的损失;与一台在相同频率下工作的采用等直径圆柱谐振管的驻波型热声发动机进行了实验对比,结果表明,在使用锥形管作为谐振管的热声发动机系统中,谐振管中的非线性效应得到了明显的抑制,热声发动机在基频模式下稳定运行,压比增大而加热温度降低。
     2.声压放大器的声学原理分析及数值模拟和实验研究从声学原理出发,分析得出对于一根长四分之一波长的理想声压放大器,可以在其封闭端得到一个明显高于开口端的压比。根据线性热声理论的数值模拟和实验研究都验证了声压放大器对压力波的放大作用,考虑到非理想条件下声压放大器内部的各种损失,其末端压力振幅取得最大值所对应的长度小于理论分析得出的四分之一波长。
     3.热声发动机驱动RC负载的理论和实验研究利用线性热声理论对热声发动机驱动RC负载进行了数值模拟,着重分析了负载阻抗对RC负载入口处和板叠热端处各参数的影响,实验研究了RC负载阻抗以及平均压力对热声驱动RC负载的影响。此外还进行了带声压放大器的热声发动机驱动RC负载的数值模拟和实验研究。通过理论计算初步总结了带声压放大器的热声发动机与RC负载的耦合关系,指出声压放大器的长度对热声发动机驱动RC负载具有重要影响,不同长度的声压放大器有可能会在其入口处产生反向的压力振动;当热声发动机向RC负载传递的声功率最大时,RC负载入口处压力振动与速度振动的相位差不再为-45°。
     4.带声压放大器的驻波型热声发动机驱动脉管制冷机实验研究采用声压放大器作为热声发动机与脉管制冷机的新耦合机制,有利于脉管制冷机获得更低的制冷温度。当加热功率为1.4kW,采用长3.3m内径8mm的声压放大器时,脉管制冷机回热器入口处的压力振幅达到0.181MPa,压比1.152,脉管制冷机最低制冷温度从88.6K降为79.7K,在120K获得了2.436W的制冷量。通过对热声发动机加热器、水冷却器和高温气库的改进,采用长3.4m内径8mm的声压放大器耦合新设计的U型脉管制冷机,当加热功率为1.8kW时,脉管制冷机回热器入口处的压力振幅达到0.214MPa,压比1.179,脉管制冷机最低制冷温度56.4 K,是目前国内外公开报道采用驻波型热声发动机驱动脉管制冷机所获得的最低制冷温度。
A thermoacoustic engine, which converts heat energy to acoustic work, occupies advantages of structure simplicity, reliability, heat-driven mechanism, environmental friendliness and so on. Due to no moving components from ambient to cryogenic temperatures, the novel technology of thermoacoustically driven pulse tube refrigerator has a bright prospect of application. In order to enhance the performance of the thermoacoustic engine and to decrease the refrigerating temperature, the theoretical and experimental work of this dissertation focuses on the following sections:
     1. Numerical Simulation and Experimental Investigation on A Thermoacoustic Engine with Tapered Resonance Tube A symmetrical standing-wave thermoacoustic engine with tapered resonance tube has been numerically simulated with liner thermoacoustics. The simulation shows that using tapered resonance tube in thermoacoustic engine could decrease the velocity amplitude and lower the total acoustic power loss in the resonance tube. The experimental results indicate that the harmonic was suppressed effectively by using the tapered resonance tube, and the pressure ratio was improved.
     2. Acoustics Principle Analysis, Numerical Simulation and Experimental Investigation on an Acoustic Pressure Amplifier Based on acoustics principle, for an ideal one quarter wavelength acoustic pressure amplifier with one end open and the other closed, a much bigger pressure ratio could be obtained at the closed end. The amplification effect of the acoustic pressure amplifier has been validated by numerical simulation with linear thermoacoustics and experiments. Taking the dissipation in the acoustic pressure amplifier into account, the length of the acoustic pressure amplifier for the maximal pressure ratio is less than one quarter wavelength.
     3. Numerical Simulation and Experimental Investigation on Thermoacoustically driven RC load The standing-wave thermoacoustic engine connected with an RC (resistance and compliance) load has been numerically simulated with linear thermoacoustics. According to the computed results, the influence of the impedance of RC load on the parameters at RC load inlet and at the hot end of the stack has been analyzed. The influence of impedance of RC load and mean pressure on the performance of thermoacoustically driven RC load have been experimentally carried out. Numerical simulation and experimental investigation on thermoacoustically driven RC load with an acoustic pressure amplifier has been performed. The coupling relation of the thermoacoustic engine with an acoustic pressure amplifier and the RC load has been discussed. The acoustic pressure amplifier length plays an important role in the system. Reversed pressure oscillation may occur at the inlet of the acoustic pressure amplifier with different acoustic pressure amplifier length. When a maximal acoustic power is delivered to the RC load, the phase difference is no longer of -45°between pressure and velocity oscillation at the load inlet.
     4. Experimental Investigation on thermoacoustically driven pulse tube refrigerator with an acoustic pressure amplifier Incorporating with an acoustic pressure amplifier in a standing-wave thermoacoustically driven pulse tube refrigerator system is propitious to further decrease the cooling temperature. With 1.4 kW heating power, a copper tube of 3.3 m in length and 8 mm in inner diameter as the acoustic pressure amplifier, a pressure amplitude of 0.181 MPa, a pressure ratio of 1.152 have been obtained at the inlet of the pulse tube refrigerator. A cooling temperature of 79.7 K (decreased from 88.6 K) and a cooling power of 2.436 W at 120 K were reached. Modifications of the hot end heat exchanger, the water cooler and the hot buffer of the thermoacoustic engine were carried out to improve the performance. Coupling a newly designed U-shaped pulse tube refrigerator with an acoustic pressure amplifier of 3.4 m in length and 8 mm in inner diameter, 1.8 kW heating power, the pressure amplitude of 0.214 MPa and pressure ratio of 1.179 have been obtained. As a result, a cooling temperature as low as 56.4 K was obtained, which is the lowest so far achieved by a standing-wave thermoacoustically driven pulse tube refrigerator.
引文
1. Radebaugh R. A review of pulse tube refrigeration. Advances in Cryogenic Engineering. New York: Plenum Press. 1990, 35(B): 1191-1205.
    2. Radebaugh R. Advances in cryocoolers. Proceedings of the 16th International Cryogenic Engineering Conference/International Cryogenic Materials Conference. Oxford: Elsevier Science. 1997, 1: 33-44.
    3. Radebaugh R. The development and application of cryocoolers since 1985 Cryogenics and Refrigeration-Proceedings of ICCR'2003. Beijing: International Academic Publishers. 2003: 858-870.
    4. Gifford W. E. The Gifford-McMahon cycle. Advances in Cryogenic Engineering. New York: Plenum Press. 1966, 11: 152-159.
    5. Walker G. Stirling engines. Oxford: Oxford University Press, 1980.
    6. Organ A. J. Thermodynamics and gas dynamics of the Stifling cycle machine. Cambridge: Cambridge University Press, 1992.
    7. Jiang N., Lindemann U., Giebeler F., et al. A He-3 pulse tube cooler operating down to 1.3 K. Cryogenics, 2004, 44(11): 809-816.
    8. Garrett S. L., Hofler T. J. Thermoacoustic refrigeration. ASHRAE Journal, 1992, 34(12): 28-36.
    9. Backhaus S., Swift G. W. A thermoacoustic Stirling heat engine. Nature, 1999, 399(6734): 335-338.
    10. Radebaugh R., McDermott K. M., Swift G W., et al. Development of a thermoacoustically driven orifice pulse tube refi'igerator. Proceedings of 4th Interagency Meeting on Cryocoolers. Plymouth MA: David Taylor Research Center. 1990: 205-220.
    11. Hu J. Y., Luo E. C., Dai W., et al. A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature. Chinese Science Bulletin, 2007, 52(4): 574-576.
    12.胡剑英,罗二仓,戴巍等.突破液氢温度的热驱动热声制冷机.科学通报,2006, 51(23):2823-2824.
    13.罗二仓,黄云,戴巍等.高性能室温行波热声制冷机.科学通报,2005,50(2):192-194.
    14. Luo E. C., Dai W., Zhang Y., et al. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles. Applied Physics Letters, 2006, 88(7): 074102.
    15. Dai W., Luo E. C., Zhang Y., et al. Detailed study of a traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine. Journal of the Acoustical Society of America, 2006, 119(5): 2686-2692.
    16. Putnam A. A., Dennis W. R. Survey of organ-pipe oscillations in combustion systems. Journal of the Acoustical Society of America, 1956, 28(2): 246-259.
    17.马大猷.热声学的基本理论和非线性,Ⅰ热声学.声学学报(中文版),1999,24(4):337-350.
    18. Zinn B. T. Pulsating Combustion. Advanced Combustion Methods. London: Academic Press, 1986: 113.
    19. Swift G W. Thermoacoustic engines. Journal of the Acoustical Society of America, 1988, 84(4): 1145-1180.
    20. Feldman K. T. Review of the literature on Sondhauss thermoacoustic phenomena. Journal of Sound and Vibration, 1968, 7(1): 71-82.
    21. Feldman K. T. Review of the literature on Rijke thermoacoustic phenomena. Journal of Sound and Vibration, 1968, 7(1): 83-89.
    22.金滔,颜鹏达,甘智华等.可视化aijke型热声振荡演示器的研制.低温与超导,1998,26(3):42-45.
    23. Feldman K. T. A study of heat generated pressure oscillations in a closed end pipe[D]. University of Missouri, 1966.
    24. Wheatley J., Cox A. N. Natural engines. Physics Today, 1985, 38(8): 50-58.
    25. Swift G. W. Analysis and performance of a large thermoacoustic engine. Journal of the Acoustical Society of America, 1992, 92(3): 1551-1563.
    26. Zhu S. W., Matsubara Y. Theoretical and experimental study of thermal acoustic engine. Proceedings of 7th international conference on Stirling cycle machines. Tokyo. 1995: 579-584.
    27. Zhou S. L., Matsubara Y. Experimental research of thermoacoustic prime mover. Cryogenics, 1998, 38(8): 813-822.
    28. Chen R. L., Garrett S. L. Solar/heat-driven thermoacoustic engine. Journal of the Acoustical Society of America, 1998, 103(5): 2841.
    29. Garrett S. L., Chen R. L. Build an 'Acoustic Laser'. Echoes, 2000, 10(3): 4-5.
    30. Garrett S. L., Backhaus S. The power of sound. American Scientist, 2000, 88(6): 516-525.
    31. Chen G., Jin T., Bai X., et al. Experimental study on a thermoacoustic engine with brass screen stack matrix. Advances in Cryogenic Engineering. New York: Plenum Press. 1998, 43(A): 713-718.
    32.邱利民,蒋宁,陈国邦.丝网热声板叠的最佳填充率.太阳能学报,2001,22(3): 322-326.
    33. Chen G B., Jin T. Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover. Cryogenics, 1999, 39(10): 843-846.
    34. Chen G. B., Jiang J. P., Shi J. L., et al. Influence of buffer on resonance frequency of thermoacoustic engine. Cryogenics, 2002, 42(3-4): 223-227.
    35. Tang K., Chen G. B., Jin T., et al. Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator. Cryogenics, 2005, 45(3): 185-191.
    36.汤珂,孔博,陈国邦.黄铜与不锈钢丝网板叠性能比较分析.低温工程,2003,(6): 5-9.
    37.金滔.热声驱动器及其驱动的脉管制冷研究[D].杭州:浙江大学,2001.
    38. Ceperley P. H. A pistonless Stirling engine-traveling wave heat engine. Journal of the Acoustical Society of America, 1979, 66(5): 1508-1513.
    39. Ceperley P. H. Gain and efficiency of a short traveling wave heat engine. Journal of the Acoustical Society of America, 1985, 77(3): 1239-1244.
    40. Yazaki T., Iwata A., Maekawa T., et al. Traveling wave thermoacoustic engine in a looped tube. Physical Review Letters, 1998, 81(15): 3128-3131.
    41. Backhaus S., Swift G. W. A thermoacoustic-Stirling heat engine: Detailed study. Journal of the Acoustical Society of America, 2000, 107(6): 3148-3166.
    42. Gedeon D. DC gas flows in Stirling and pulse tube refrigerators. Cryocoolers 9. New York: Plenum Press. 1997: 385-392.
    43. Olson J. R., Swift G. W. Acoustic streaming in pulse tube refrigerators: tapered pulse tubes. Cryogenics, 1997, 37(12): 769-776.
    44. http://www.lanl.gov/thermoacoustics/.
    45.张晓青.热声热机系统的仿真与优化研究——仿真软件的研制与实验验证[D].武汉:华中科技大学,2001.
    46.刘海东.行波型热声发动机的热力分析和试验研究[D].北京:中国科学院低温技术实验中心,2001.
    47. Biwa T., Ueda Y., Yazaki T., et al. Work flow measurements in a thermoacoustic engine. Cryogenics, 2001, 41(5-6): 305-310.
    48. Yang M., Luo E., Li X., et al. Experimental study on a coaxial traveling wave thermoacoustic engine Cryogenics and Refrigeration-Proceedings of ICCR'2003. Beijing: International Academic Publishers. 2003: 132-135.
    49.邱利民,孙大明,张武等.大型多功能热声发动机的研制及初步实验 第一部分:热声发动机的研制.低温工程,2003,(2):1-7.
    50.邱利民,张武,孙大明等.大型多功能热声发动机的研制及初步实验 第二部分:热声发动机的初步实验.低温工程,2003,(3):1-6.
    51. Matsubara Y., Dai W., Onishi T., et al. Thermally actuated pressure wave generators for pulse tube cooler. Cryogenics and Refrigeration-Proceedings of ICCR'2003. Beijing: International Academic Publishers. 2003: 57-60.
    52. Penelet G., Gaviot E., Gusev V., et al. Experimental investigation of transient nonlinear phenomena in an annular thermoacoustic prime-mover: observation of a double-threshold effect. Cryogenics, 2002, 42(9): 527-532.
    53.孙大明.行波热声发动机及其驱动的脉管制冷机研究[D].杭州:浙江大学,2005.
    54. Qiu L. M., Sun D. M., Tan Y. X., et al. Effect of pressure disturbance on onset processes in thermoacoustic engine. Energy Conversion and Management, 2006, 47(11-12): 1383-1390.
    55. Luo E. C., Ling H., Dai W., et al. A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator. Chinese Science Bulletin, 2005, 50(3): 284-286.
    56.罗二仓,凌虹,戴巍等.采用锥形谐振管的高压比聚能型热声发动机.科学通报, 2005,50(6):605-607.
    57. Yu G. Y., Luo E. C., Dai W., et al. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40. Cryogenics, 2007, 47(2): 132-134.
    58. Gardner D. L., Swift G. W. A cascade thermoacoustic engine. Journal of the Acoustical Society of America, 2003, 114(4): 1905-1919.
    59. Hu Z. J., Li Q., Xie X. J., et al. Design and experiment on a mini cascade thermoacoustic engine. Ultrasonics, 2006, 44(S1): e 1515-e 1517.
    60. Hu Z. J., Li Q., Li Q., et al. A high frequency cascade thermoacoustic engine. Cryogenics, 2006, 46(11): 771-777.
    61.陈国邦等.最新低温制冷技术.第二版.北京:机械工业出版社,2003.
    62. Gifford W. E., Longsworth R. C. Pulse tube refrigeration. Trans. of the ASME, Journal of Engineering for Industry, 1964, 86: 264-270.
    63. Gifford W. E., Longsworth R. C. Pulse tube refrigeration progress. Advances in Cryogenic Engineering. New York: Plenum Press. 1965, 10(B): 69-79.
    64. Gifford W. E., Kyanka G H. Reversible pulse tube refrigeration. Advances in Cryogenic Engineering. New York: Plenum Press. 1967, 12: 619-630.
    65. Mikulin E. I., Tarasov A. A., Shkrebyonock M. P. Low-temperature expansion pulse tube. Advances in Cryogenic Engineering. New York: Plenum Press. 1984, 29: 629-637.
    66. Radebaugh R., Zimmerman J., Smith D. R., et al. A comparison of three types pulse tube refrigerators: new methods for reaching 60K. Advances in Cryogenic Engineering. New York: Plenum Press. 1986, 31: 779-789.
    67. Liang J., Zhou Y., Zhu W. Development of a single stage pulse tube refrigerator capable of reaching 49K. Cryogenics, 1990, 30(1): 49-51.
    68. Zhu S. W., Wu R Y., Chen Z. Q., et al. A single stage double inlet pulse tube refrigerator capable of reaching 42K. Proceedings of the 13th International Cryogenic Engineering Conference, Cryogenics, 1990, 30(Supp.): 257-261.
    69.朱绍伟.脉管制冷机的热力学原理及其重要改进:双向进气脉管制冷机[D].西安: 西安交通大学,1991.
    70. Ravex A., Rolland P., Liang J. Experimental study and modelisation of a pulse tube refrigerator. Proceedings of the 14th International Cryogenic Engineering Conference, Cryogenics, 1992, 32(Supp.): 9-12.
    71. Chan C. K., Jaco C. B., Raab J., et al. Miniature pulse tube cooler. Cryocoolers 7. New York: Plenum Press. 1993: 113-124.
    72. Qiu L. M., He Y. L., Gan Z. H., et al. Regenerator performance improvement of a single-stage pulse tube cooler reached 11.1 K. Cryogenics, 2007, 47(1): 49-55.
    73. Kanao K., Watanabe N., Kanazawa Y. A miniature pulse tube refrigerator for temperature below 100K. Cryogenics, 1994, 34(Supp. 1): 167-170.
    74. Godshalk K., Jin C., Kwong Y., et al. Characterization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. Advances in Cryogenic Engineering. New York: Plenum Press. 1996, 41: 1411-1418.
    75. Radebaugh R. Pulse tube cryocoolers for cooling infrared sensors. Proceedings of SPIE, The International Society for Optical Engineering, Infrared Technology and Applications ⅩⅩⅥ, 2000, 4130: 363-379.
    76. Gardner D. L., Swift G. W. Use of inertance in orifice pulse tube refrigerators. Cryogenics, 1997, 37(2): 117-121.
    77. Matsubara Y., Miyake A. Alternative methods of the orifice pulse tube refrigerator. Cryocoolers 5. New York: Plenum Press. 1988: 127-135.
    78. Ishizaki Y., Ishizaki E. Experimental performance of modified pulse tube refrigerator below 80K down to 23K. Cryocoolers 7. New York: Plenum Press. 1992: 140-146.
    79. Cai J. H., Wang J. J., Zhu W. X., et al. Experimental analysis of the multi-bypass principle in pulse tube refrigerators. Cryogenics, 1994, 34(9): 713-715.
    80. Wang C., Cai J. H., Zhou Y., et al. Numerical analysis and experimental verification of multi-bypass pulse tube refrigerator. Advances in Cryogenic Engineering. New York: Plenum Press. 1996, 41(B): 1389-1394.
    81.巨永林.脉冲管制冷机内部交变气流动态实验和数值模拟计算研究[D].北京:中国科学研究院低温技术实验中心,1998.
    82. Matsubara Y., Tanida K., Gao J. L., et al. Four-valve pulse tube refrigerator. Proceedings of the 4th Japanese-Sino Joint Seminar on Cryocooler and Its Applications. Beijing, China, 1993: 54-58.
    83. Li R., Kanao K., Watanabe N., et al. A single stage four-valve pulse tube cryocooler with a cooling power over 30W at 80K. Proceedings of the 5th Japanese-Sino Joint Seminar on Cryocooler and Its Applications. Osaka, Japan, 1997: 60-65.
    84. Zhu S. W., Kakimi Y., Matsubara Y. Active-buffer pulse tube refrigerator. Proceedings of the 16th International Cryogenic Engineering Conference/International Cryogenic Materials Conference. Oxford: Elsevier Science. 1997: 291-294.
    85. Zhu S. W., Kakimi Y., Matsubara Y. Investigation of active-buffer pulse tube refrigerator. Cryogenics, 1997, 37(8): 461-471.
    86. Gao J. L., Matsubara Y. An inter-phasing pulse tube refrigerator for high refrigeration efficiency. Proceedings of the 16th International Cryogenic Engineering Conference/International Cryogenic Materials Conference. Oxford: Elsevier Science. 1997: 295-298.
    87. Peters M. M., Peskett G. D., Brito M. C. Isothermal model of a warm expander pulse tube. Cryocoolers 9. New York: Plenum Press. 1997:319-326.
    88. Kuriyama F., Fukasaku Y. Increase in reservoir pressure of orifice pulse tube refrigerators. Proceedings of the 16th International Cryogenic Engineering Conference/International Cryogenic Materials Conference. Oxford: Elsevier Science. 1997: 279-282.
    89.陈登科.双阀双小孔脉管制冷机.低温与超导,1996,24(1):1-4.
    90. Swift G. W. Thermoacoustic natural gas liquefier. DOE Natural Gas Conference, Houston, 1997: 1-5.
    91. Arman B., Wollan J. J., Swift G. W., et al. Thermoacoustic natural gas liquefiers and recent developments. Cryogenics and Refrigeration-Proceedings of ICCR'2003. Beijing: International Academic Publishers. 2003: 123-127.
    92. Jin T., Chen G B., Shen Y. A thermoacoustically driven pulse tube refrigerator capable of working below 120 K. Cryogenics, 2001, 41(8): 595-601.
    93. Qiu L. M., Chen G. B., Jiang N. Optimum packing factor of the stack in a standing-wave thermoacoustic prime mover. International Journal of Energy Research, 2002, 26(8): 729-735.
    94.汤珂,陈国邦,金滔等.采用混合工质的热声驱动脉管制冷实验研究.太阳能学报. 2003,24(5):595-600.
    95. Dai W., Luo E. C., Hu J. Y., et al. A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier. Chinese Science Bulletin, 2005, 50(18): 2112-2114.
    96. Luo E. C., Hu J. Y., Dai W., et al. An acoustical pump capable of significantly increasing pressure ratio of thermoacoustic heat engines. Chinese Science Bulletin, 2006, 51(8): 1014-1016.
    97.戴巍,罗二仓,胡剑英等.用于热声驱动脉冲管制冷机的新耦合机制:声学放大器. 科学通报,2005,50(19):2178-2179.
    98.罗二仓,胡剑英,戴巍等.一种大幅度提高热声发动机压比的“声学泵”.科学通报, 2005,50(17):1926-1928.
    99. Bao R., Chen G. B., Tang K., et al. Therrnoacoustically driven pulse tube refrigeration below 80 K by introducing an acoustic pressure amplifier. Applied Physics Letters, 2006, 89(21): 211915.
    100. Dai W., Luo E. C., Zhou Y., et al. Characteristics of a miniature pulse tube cooler driven by thermoacoustic standing wave engine. Proceedings of the 20th International Cryogenic Engineering Conference, 2004:309-312.
    101.朱尚龙,余国瑶,戴巍等.300 Hz脉冲管制冷机特性研究.低温工程,2007,(1):1-4.
    102. Qiu L. M., Sun D. M., Yan W. L., et al. Investigation on a thermo acoustically driven pulse tube cooler working at 80 K. Cryogenics, 2005, 45(5): 380-385.
    103. Luo E. C., Liu H., Sun Y., et al. Experimental study on thermoacoustic refrigerators driven by a travelling-wave thermoacoustic engine. Advances in Cryogenic Engineering. New York: American Institute of Physics. 2002, 47:815-821.
    104. Dai W., Luo E. C., Hu J. Y., et al. A heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature. Applied Physics Letters, 2005, 86(22): 224103.
    105. Hu J. Y., Dai W., Luo E. C. Thermoacoustically driven pulse tube coolers with acoustic amplifiers. Advances in Cryogenic Engineering. New York: American Institute of Physics. 2006, 51(B): 1564-1571.
    106.汤珂.热声驱动脉管制冷特性的理论与实验研究[D].杭州:浙江大学,2005.
    107. Rayleigh L. The theory of sound. 2nd ed. J. W. Strutt and B.Rayleigh. New York: Dover Publications, 1945, Ⅱ: Sec. 322f-322k.
    108. Rott N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Zeitschrift fur Angewandte Mathematik und Physik, 1969, 20(2): 230-243.
    109. Rott N. Thermally driven acoustic oscillations, Part II: Stability limit for helium. Zeitschrift fur Angewandte Mathematik und Physik, 1973,24(1): 54-72.
    110. Rott N. Thermally driven acoustic oscillations, Part III: Second-order heat flux. Zeitschrift fur Angewandte Mathematik und Physik 1975, 26(1): 43-49
    111. Rott N., Zouzoulas G Thermally driven acoustic oscillations, Part IV: Tubes with variable cross-section. Zeitschrift fur Angewandte Mathematik und Physik, 1976, 27(2): 197-224.
    112. Zouzoulas G, Rott N. Thermally driven acoustic oscillations, Part V: Gas-liquid oscillations. Zeitschrift fur Angewandte Mathematik und Physik, 1976,27(3): 325-334.
    113. Miiller U. A., Rott N. Thermally driven acoustic oscillations, Part VI: Excitation and power. Zeitschrift fur Angewandte Mathematik und Physik, 1983, 34(5): 609-626.
    114. Rott N. The influence of heat conduction on acoustic streaming. Zeitschrift fur Angewandte Mathematik und Physik, 1974, 25(3): 417-421.
    115. Rott N. The heating effect connected with non-linear oscillations in a resonance tube. Zeitschrift fur Angewandte Mathematik und Physik, 1974, 25(5): 619-634.
    116. Rott N. Thermoacoustics. Advances in Applied Mechanics, 1980,20: 135-175.
    117. Taconis K. W., Beenakker J. J. M., Nier A. O., et al. Measurements concerning vapor-liquid equilibrium of solutions of He3 in He4 below 2.19 K. Physica, 1949, 15(8-9): 733.
    118. Xiao J. H. Thermoacoustic theory for cyclic flow regenerators. Part 1: Fundamentals. Cryogenics, 1992, 32(10): 895-901.
    119.邓晓辉,胡晓,郭方中.回热器的热声网络模型.低温工程,1996,(2):6-13.
    120. Olson J. R., Swift G W. Similitude in thermoacoustics. Journal of the Acoustical Society of America, 1994, 95(3): 1405-1412.
    121. Swift G W., Ward W. C. Simple harmonic analysis of regenerators. Journal of Thermophysics and Heat Transfer, 1996,10(4): 652-662.
    122. Garrett S. L. Book reviews: Thermoacoustics: A unifying perspective for some engines and refrigerators. Journal of the Acoustical Society of America, 2003, 113(5): 2379-2381.
    123. Swift G W. Thermoacoustics: A unifying perspective for some engines and refrigerators. New York: American Institute of Physics Press, 2002.
    124. Ward W. C., Swift G. W. Design environment for low-amplitude thermoacoustic engines. Journal of the Acoustical Society of America, 1994, 95(6): 3671-3672.
    125. Lawrenson C. C., Lipkens B., Lucas T. S., et al. Measurements of macrosonic standing waves in oscillating closed cavities. Journal of the Acoustical Society of America, 1998, 104(2): 623-636.
    126.李晓明,凌虹,戴巍等.谐振管几何形状对热声发动机工作性能的影响.低温工程, 2005,(3):11-15.
    127. Tang K., Chen G. B., Jin T., et al. Performance comparison of thermoacoustic engines with constant-diameter resonant tube and tapered resonant tube. Cryogenics, 2006, 46(10): 699-704.
    128.罗志昌.流体网络理论.北京:机械工业出版社,1988.
    129.杜功焕,朱哲民,龚秀芬.声学基础.第2版.南京:南京大学出版社,2001.
    130. Tu Q., Li Q., Wu F., et al. Network model approach for calculating oscillating frequency of thermoacoustic prime mover. Cryogenics, 2003, 43(6): 351-357.
    131. Dai W., Luo E. C., Ling H., et al. A thermoacoustically driven cooler capable of reaching temperature below 77 K with no moving part. Chinese Science Bulletin, 2005, 50(4): 383-384.
    132. Luo E. C., Huang Y., Dai W., et al. A high-performance thermoacoustic refrigerator operating in room-temperature range. Chinese Science Bulletin, 2005, 50(22): 2662-2664.
    133. Olson J. R., Swift G W. A loaded thermoacoustic engine. Journal of the Acoustical Society of America, 1995, 98(5): 2690-2693.
    134.伍继浩,李青,张晓青等.热声热机系统的测量与实验研究.低温工程,2000,(4): 35-39.
    135. Dai W., Luo E. C., Zhou Y., et al. Building a high-efficiency and compact-sized thermoacoustically-driven pulse tube cooler. Cryocoolers 13. New York: Plenum Press. 2005: 195-199.
    136.贾正中.驻波型热声发动机性能的理论与实验研究[D].杭州:浙江大学,2006.
    137.曹卫华.驻波型热声发动机性能强化研究[D].杭州:浙江大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700