用户名: 密码: 验证码:
自动温控超声波萃取仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声萃取技术是近年来发展起来的一种新型分离技术。与常规的萃取技术相比,超声波萃取技术具有无污染、高效、快速、价廉等特点。目前,超声波萃取技术已广泛用于食品、药物、工业原材料等有机组分或无机组分的分离和提取,但是国内专用于超声萃取的实验设备比较少,而且不具备自动调温功能。对于生化实验来说,温度也是影响实验结果的一个重要因素。本文旨在设计一款能够实时测温控温的超声波萃取仪,该仪器主要由超声波发生系统、测温控温系统两部分组成。
     超声波发生系统是超声波萃取仪的核心,它主要由换能器匹配电路、超声电源和频率跟踪电路三部分组成,其中换能器匹配采用变压器耦合方式,这种方法的好处在于有效机电耦合系数高;超声电源采用全桥推挽逆变电路,具有转换效率高的特点。频率跟踪采用自适应相差反馈式,该方法综合了当前国内外的几种主要方法如电流反馈式、锁相环式、导纳反馈式和自适应方式的优点,实验结果表明,它具有搜索精度高、几乎不存在误跟踪或漏跟踪的情况、频率跟踪算法简单及灵活等优点。
     测温控温系统分成两个单独的模块进行设计。测温采用差分输入方式,精确度可达0.001℃。控温系统采用PID (proportional-integral-derivative,即比例-积分-微分控制)技术自动调节功率,温度上升快、收敛性好、振荡纹波小,控温精度达±1℃(超声波不开的情况下)。
     此外,本系统具有良好的系统架构和人机交互界面,可灵活定制不同的实验方案。仪器采用LCD全程显示实验进程,在实验中可随时修改参数,使实验过程更加简单,实验结果更加理想。
As a kind of new developed technology in recent years, ultrasonic extraction technique is of free from pollution, high efficiency, short extraction time and cheapness compared with other techniques. Nowadays, this technique has been widely used for separation and extraction of organic and inorganic elements from food, medicine and industrial raw material. However, there are very few experimental instruments for ultrasonic extraction in China. Particularly, existing ultrasonic extraction equipments have no ability of adjusting the temperature. It should be noted that temperature plays an important role in biochemistry experimental results. This paper aims at designing an ultrasonic extraction apparatus which can detect the temperature real-time. This apparatus includes the ultrasonic generation system as well as temperature detection and control system.
     As the core part of ultrasonic extraction apparatus, the ultrasonic generation system, which mainly consists of transducer matching circuit, ultrasonic power and frequency tracking circuit. Transformer coupling is adopted for the transducer matching circuit to get a high mechanical-electromagnetic coupling coefficient. Full-bridge push-pull inverter circuit is used in ultrasonic power to get high transformation efficiency. And adaptive phase difference is used in frequency tracking circuit. Numerous researches have been done in the field of frequency tracing domestically and internationally. The main approaches include current feedback, phase locked loop, admittance feedback and adaptive method. Combined with the advantages of these approaches, the adaptive phase difference feedback method for frequency tracking was proposed in this thesis. The experimental results indicate that this approach can realize highly accurate search. In addition, its frequency tracing algorithm is highly flexible and nearly will not track fault frequencies nor miss any correct ones.
     Temperature detection and temperature control are designed in separated modules. Differential input is used in temperature detection with the accuracy of 0.001℃. Temperature control adopts PID to adjust power automatically. It heats quickly with good convergence, small vibration ripple and high accuracy of±1℃in temperature control.
     Moreover, this system has excellent framework structure, good user-friendly interface and high flexibility for experiment designs. LCD can show the whole experiment process. The parameters can be modified any time during the experiment, which makes the experiment easier and more convenient.
引文
[1]张斌,许莉勇.超声萃取技术研究与应用进展.浙江工业大学学报,2008,36(5):558~561
    [2]宋沛然,陈百泉.超声提取技术的现代研究进展.科技速递西部药学,2007,4(6):341~343
    [3] Y.H. Chang, P.K.W. Ng. Extraction of ginsenosides from a blend of wheat flour and ginseng powder. Food Chemistry, 2009, 115(4): 1512~1518
    [4] M.Salisova, S.Toma, T.J.Mason. Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis. Ultrasonics Sonochemistry, 1997, 4:131~134
    [5] L.Paniwnyk, E.Beaufoy, J.P.Lorimer. The extraction of rutin from flower buds of Sophora japonica. Ultrasonics Sonochemistry, 2001, 8:299~301
    [6] Mircea Vinatoru. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 2001, 8:303~313
    [7] S.Albu, E.Joyce, L.Paniwnyk. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 2004, 11:261~265
    [8] Ana Isabel García-Valcárcel, JoséLuis Tadeo. A combination of ultrasonic assisted extraction with LC–MS/MS for the determination of organophosphorus pesticides in sludge. Analytica Chimica Acta, 2009, 641:117~123
    [9] Cucheval, R.C.Y. Chow. A study on the emulsification of oil by power ultrasound. Ultrasonics Sonochemistry, 2008, 15:916~920
    [10] Abismail, J.P.Canselier, A.M.Wilhelm, et al. Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry, 1999, 6:75~83
    [11] Feng Dang, Naoya Enomoto, Junichi Hojo,et al. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrasonics Sonochemistry, 2009,16(5):649~654
    [12]陈传元.超声换能器的匹配.中国医疗器械杂志,1981,4:37~39
    [13]林书玉.压电超声换能器的电端匹配电路及其分析.压电与声光,1992,14(4):29~32
    [14]韩庆帮,林书玉,鲍善惠等.超声换能器电匹配特性研究.陕西师范大学学报(自然科学版),1996,24(4):114~115
    [15]郭林伟,林书玉,许龙.压电换能器静态匹配电路的研究.纺织高校基础科学学报,2008,21(3):361~363
    [16]杨檍,鲍景富.现代频率合成技术的研究进展.电视技术,2007,47(2):1~5
    [17]迟忠君,徐云,常飞.频率合成技术发展概述.现代科学仪器,2006,3:21~24
    [18]徐光争,王晨,纪宝.低相噪数字锁相频率合成器.微波学报,1998,14(4):314~318
    [19]方立军,马骏,章曦.一种C波段低相噪锁相频率合成器.现代电子,2000,73(4):41~45
    [20] Shaojun Wu. A low-noise fast-settling PLL frequency synthesizer for CDMA receivers. In Proceedings of 2004 International Symposium on System-on-Chip,2004.57~60
    [21] Lawrence J. Kushner, Lincoln Laboratory. The Composite DDS -A New Direct Digital Synthesizer Architecture. In 1993 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM,1993,255-260
    [22] Lionel Cordesses. Direct Digital Synthesis: A Tool For Periodic Wave Generation (Part 2).Signal Processing Magazine. IEEE, 2004,21(5):110~112
    [23] Xuefeng Yu, Fa Foster Dai, J. David Irwin, et al. A 9-bit Quadrature Direct Digital Synthesizer Implemented in 0.18-μm SiGe BiCMOS Technology. MicroWave Theory and Technique. IEEE Transactions on. 2008,56(5):1257~1266
    [24] Xuefeng Yu, Fa Foster Dai, J. David Irwin,et al. A 12 GHz 1.9 W Direct Digital Synthesizer MMIC Implemented in 0.18μm SiGe BiCMOS Technology. IEEE Journal of Solid-State Circuits. 2008, 43(6):1384~1393
    [25]朱彬,蔡萍.软开关功率放大电路及其在高频电刀中的应用.电气应用,2007,26(11):65~67
    [26] Itsda Boonyaroonate, Shinsaku Mori. A COMPACT DC/AC INVERTER FOR AUTOMOTIVE APPLICATION.IEEE International Symposium on Circuits and Systems,2002,5:26~29
    [27]田松亚,孙烨,吴冬春,甘正华.全桥逆变电路IGBT模块的实用驱动设计.电焊机,2007,37(4):25~28
    [28]汤才刚,朱红涛,李莉,等.基于PWM的逆变电路分析.现代电子技术,2008,1:159~163
    [29]王艳东.压电换能器在并联谐振频率附近的特性及自动频率跟踪的研究:[硕士学位论文] .陕西师范大学,2006
    [30]黄景荣.超声振动加工中的自动频率跟踪.合肥工业大学学报,1997,20(6):83~87
    [31]鲍善惠,王敏慧.超声发生器的频率跟踪电路.洗净技术,2003,10:3~6
    [32] A.Ramos-Fernandez , F.Montory-Vitini , J.A.Gallego- Juarez. Automatic system for dynamic control of resonance in high power and high Q ultrasonic transducers. Ultrasonic,1985,23(4):151~156
    [33] B.Mortimer, T.du Bruyn, J.Davies, et al. High power resonant tracking amplifier using admittance locking. Ultrasonics, 2001,39:257~261
    [34] Keiichi Komatsu. Constant Vibration Amplitude Method of Piezoelectric Transducer Using A PLL (Phase Locked Loop). Japanese Journal of Applied Physics,1985, 24(1):159~162
    [35] Shin-ichi Furuya, Tom Maruhashi, Yuji Izuno, et al. Load-Adaptive Frequency Tracking Control Implementation of Two-Phase Resonant Inverter for Ultrasonic Motor. IEEE TRANSACTIONS ON POWER ELECTRONICS, 1992,7(3):540~550
    [36] T. Inrmi, H. Yasutsune, Y. J. Kim ,et al. New Inverter-Fed Power Ultrasonic Motor for Speed Tracking Servo Application and Its Feasible Evaluations. IEEE Catalogue, 766~773
    [37] Frederic Coutard, Patrick Schweitzer, Etienne Tisserand. Modeling of an ultrasonic auto-controlled frequency generator in VHDL-AMS language. MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19:1~9
    [38]霍亮生,董丽萍,赵汉英.频率自动跟踪功率超声波发生器研制.微电子学与计算机,1992,1:24~32
    [39]张镜澄.差动变量器桥式自动频率跟踪电路.应用声学,1988,7(4):17~19
    [40]李惠朴.自适应频率跟踪技术研究.无线电工程,1997,27(2):39~41
    [41] Zhang Qixin. Study on Ultrasonic Vibration Drilling in Carbon Fiber Reinforced Polymers.Chinese Journal of Mechanical Engineering(English Edition). 1994, 7(1):72~77
    [42]张其馨,吴建强,冯友彬.电流反馈式超声发生器的频率跟踪研究.哈尔滨工业大学学报,1995,27(6):56~61
    [43]董惠娟,张广玉,董玮等.压电超声换能器电端匹配下的电流反馈式频率跟踪.哈尔滨工业大学学报,2000,32(3):115~117
    [44]张其馨,董惠娟,蔡鹤皋等.超声发生器频率跟踪的控制.电加工,1997,6:13~16
    [45]电力.相位反馈自动频率跟踪发射机.声学与电子工程,1992,1:28~30
    [46]鲍善惠.用锁相环电路跟踪压电换能器并联谐振频率区.应用声学,2001,20(3):1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700