用户名: 密码: 验证码:
板栗疫病菌cpsr1基因与cphyma基因的克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低毒病毒/板栗疫病菌系统是一个具有独特优点的、崭新的研究病毒与宿主相互作用的模型系统。在前期的cDNA芯片杂交试验中,本实验室发现2个受低毒病毒调控,可能与分生孢子形成相关的基因cpsr1与cphyma。在此基础上,本论文克隆了这2个基因,用RNA干扰及基因敲除技术分别研究了这2个基因在板栗疫病菌中的功能。荧光定量PCR分析表明,在cpsr1基因的RNA干扰株中,cpsr1基因表达量明显降低,最高干扰程度达到了90%,干扰株的分生孢子数量呈下降趋势,与对照株△cpku80相比,敲除cphyma基因的缺失株分生孢子量显著减少,菌落生长缓慢,菌落边缘不规则,菌株颜色偏浅。本研究证明了基因cpsr1与cphyma在板栗疫病菌分生孢子形成中起作用。
Hypovirus/Cryphonectria parasitica system is a novel model inthe investigation of virus-host interaction. By cDNA array analysis,two hypovirus-regulated C. parasitica genes cpsr1 and cphyma wereimplied in conidial production. Here we report the cloning andfunctional identification of cpsr1 gene by RNA interference (RNAi)and cphyma by gene disruption. RNA quantification by real-timePCR of the transformants derived from the transformation of cpsr1RNAi construct revealed that they exhibited RNA interference withup to 90% reduction in RNA accumulation for cpsr1. Compared withthe parental strain△cpku80 and the EP155, the selectedtransformants with cpsr1 interfered have significant fewer number ofconidial spores. Deletion of cphyma gene in C. parasitica resulted in aphenotype of lowered asexual sporulation, reduced growth rate,irregular colony edge and reduced orange pigment. This workprovides evidence that both cpsr1 and cphyma genes are involved in asexual spore development in C. parasitica.
引文
1. Hebard F V, Griffin G J, Elkins J R. Developmental Histopathology of Cankers Incited by Hypovirulent and Virulent Isolates of Endothia-Parasitica on Susceptible and Resistant Chestnut Trees. Phytopathology, 1984, 74(2): p.140-149.
    2.杨旺,韩光明,罗晓芳.我国板栗疫病研究初报.北京林学院学报,1979,1:p.74-77.
    3.周而勋,王克荣,陆家云.中国东部11省(市)栗疫病的发生条件.南京农业大学学报,1993,16(3):44-49.
    4.王万章,鄂从军,李海菊.板栗干枯病防治实验.林业科技通讯,1990,2:p.25-26.
    5. Anagnostakis, S L. Chestnut Blight-the Classical Problem of an Introduced Pathogen. Mycologia, 1987, 79(1): p.23-37.
    6.汪樟春,余建民,顾伟民等.桐庐县板栗主要病虫为害现状及防治.浙江林业科技,2001,21(3):p.56-60.
    7. Griffin G. Chestnut blight and its control. Horticultural reviews, 1986, 8: p. 291-335.
    8.周而勋,王克荣,陆家云.栗疫病研究进展.果树科学,1999,16(1):p.66-71.
    9.王克荣,周而勋,陆家云.栗疫病菌的培养性状、毒力与dsRNA的关系.植物病理学报,1996,26(4):p.341-346.
    10. Biraghi A. Possible active resistance to Endothia parasitica in Castaneasativa. Rep ConCγ Int Union For Res 1953, 11: p. 149-157.
    11. Grente J. Les formes hypovirulentes d'Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. C R Acad A Gric France, 1965, 51 : p. 1033-1036.
    12. Nuss D L, Koltin Y. Significance of dsRNA genetic elements in plant pathogenic fungi. Annual Review of Phytopathology, 1990, 28: p. 37-58.
    13. Grente J, Sauret S. L'hypovirulence exclusive, est-elle control par des determinants cytoplasmiques. C R Acad Sci Paris Ser D, 1969, 268: p. 3173-3176.
    14. Grente J, Berthelay S. Biological control of chestnut blight in France, Proceedings of the American Chestnut Symposium. West Virginia University, Morgantown, 1978, 12: p. 30-34.
    15. Day P R, Dodds J A, Elliston J E., et al. Double-stranded RNA in Endothia parasitica. Phytopathology, 1977, 67: p. 1393-1396
    16. Anagnostakis S L, Day P R. Hypovirulence conversion in Endothia parasitica. Phytopathology, 1979, 69: p. 1226-1229.
    17. Dodds J A. Association of Type-1 Viral-Like Dsrna with Club-Shaped Particles in Hypovirulent Strains of Endothia-Parasitica. Virology, 1980, 107(1): p. 1-12.
    18. Hansen D R, VanAlfen N K. Naked dsRNA associated with hypovirulence of Endothia paracitica is packaged in fungal vesicles. Gen Virol, 1985, 66: p. 2605-2614.
    19. Shapira R., Choi G H, Nuss D L. Virus-Like Genetic Organization and Expression Strategy for a Double-Stranded-Rna Genetic Element Associated with Biological-Control of Chestriut Blight. Embo Journal, 1991, 10(4): p. 731-739.
    20. Choi G H, Nuss D L. Hypovirulence of Chestnut Blight Fungus Conferred by an Infectious Viral Cdna. Science, 1992, 257: p. 800-803.
    21. McBratney S, Chen C Y, Sarnow P. Internal initiation of translation. Curr Opin Cell Biol, 1993, 5(6): p. 961-965.
    22. Koonin E V, Choi G H, Nuss D L, et al. Evidence for Common Ancestry of a Chestnut Blight Hypovirulence-Associated Double-Stranded-Rna and a Group of Positive-Strand Rna Plant-Viruses. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(23): p. 10647-10651.
    23. Chen B, Gao S, Choi G H, et.al. Extensive alternationof fungal gene transcript accumulation and elevation of G-proteinregulated cAMP levels by a virulence-attenuating hypovirus. Proc Natl Acad Sci USA, 1996. 93: p. 7996-8000.
    24. Lin H, Lan x, Liao H, et al. Genome sequence, full-length infectious cDNA clone, and mapping of viral double-stranded RNA accumulation determinant of hypovirus CHV1-EP721. J Virol, 2007, 81(4): p. 1813-1820.
    25. Chen B, Nuss D L., Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J Virol, 1999, 73(2): p. 985-92.
    26. Elliston J E. Characteristics of Dsrna-Free and dsRNA-Containing Strains of Endothia-Parasitica in Relation to Hypovirulence. Phytopathology, 1985, 75(2): p. 151-158.
    27. Elliston J E, Jaynes R A, Day P R, et al. A native American hypovirulent strain of Endothia parisitica. Proc Amer Phytopathol Soc, 1977,4: p. 111-115.
    28. Macdonald W L, Fulbright D W. Biological-Control of Chestnut Blight - Use and Limitations of Transmissible Hypovirulence. Plant Disease, 1991, 75(7): p. 656-661.
    29. Larson T G, Choi G H., Nuss D L. Regulatory Pathways Governing Modulation of Fungal Gene-Expression by a Virulence-Attenuating Mycovirus. Embo Journal, 1992, 11(12): p. 4539-4548.
    30. Rigling D, Vanalfen N K. Regulation of Laccase Biosynthesis in the Plant-Pathogenic Fungus Cryphonectria-Parasitica by Double-Stranded-Rna. Journal of Bacteriology, 1991, 173(24): p. 8000-8003.
    31. Kazmierczak P, Pfeiffer P, zhang L, et al. Transcriptional repression of specific host genes by the mycovirus Cryphonectria hypovirus 1. Journal of Virology, 1996, 70(2): p. 1137-1142.
    32. Wang P, Nuss D L. Induction of Cryphonectria parasitica cellobiohydrolase I genes suppressed by hypovirus infection and regulation by a G-protein linked signaling pathway involved in fungal pathogenesis. Pro. Natl Acad Sci USA, 1995, 92: p. 11529-11533.
    33. Chen B S, Geletka L M, Nuss D L. Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. Journal of Virology, 2000, 74(16): p. 7562-7567.
    34. Kim DH, Rigling D, Zhang L, et al. A New Extracellular Laccase of Cryphonectria Parasitica is Revealed by Deletion of Lacl. Molecular Plant-Microbe Interactions, 1995, 8(2): p.259-266
    35. Gao S J, Nuss D L. Distinct roles for two G protein alpha subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): p. 14122-14127.
    36. Kasahara S, Nuss D L. Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Molecular Plant-Microbe Interactions, 1997, 10(8): p. 984-993.
    37. Kasahara S, Wang P, Nuss D L. Identification of bdm-1, a gene involved in G protein beta-subunit function and alpha-subunit accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(1): p. 412-417.
    38. Anagnostakis S L. Improved chestnut tree condition maintained in two Connecticut plots after treatments with hypovirulent strains of the chestnut blight fungus. Forest Science, 1990, 36: p. 113-124.
    39. Liu Y C, Milgroom M G. Correlation between hypovirus transmission and the number of vegetative incompatibility(vic) genes different among isolate from natural population of Cryphonectria parasitica. Phytopathol, 1996, 86: p. 79-86.
    40. Ohshima K, Taniyama T, Yamanaka T, et al. Isolation of a mutant of Arabidopsis thliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology, 1998, 243: p. 472-481.
    41. Venter C. Shotgun Sequencing of the Human Genome. Science, 1998, 282: p. 994-1002.
    42. Hamer J E, Talbot N J. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol, 1998, 1 (6): p. 693-7.
    43. Foster A J, Jenkinson J M, Talbot N J. Trehalose Synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. The European Molecular Biology Organization Journal, 2003, 22(2): p. 225~235.
    44. Lau G W, Hamer J E. Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol, 1998, 24(1-2): p. 228-39.
    45. Shi Z, Leung H. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol Plant Microbe Interact, 1995, 8: p. 949-959.
    46. Shi Z, Leung H. Genetic interactions between Spore morphogenetic mutations affect cell types Sporulation and pathogenesis in Magnaporthe grisea. Molecular Plant Microbe Interactions, 1998, 11(3): p. 199-207.
    47. Zhu H, Whitehead D S, Lee Y H, et al, Genetic analysis of developmental mutants and rapid chromosome mapping of APPI, a gene required for appressorium formation in Magnaporthe grisea. Mol Plant Microbe Interact, 1996, 9: p. 767-774.
    48. Silue D, Tharreau D, Talbot N J, et al. Identification and characterization of apfl(-)in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Mol Plant Pathol, 1998, 53: p. 239-251.
    49.刘树俊,魏荣宣,有江力等.稻瘟病菌致病变突体REM1诱变与鉴定.生物工程学报,1998,14(3):p.254-258.
    50.王洪凯,林福呈,柴荣耀等.稻瘟病菌温度敏感型突变体的筛选.中国水稻科学,2004,18(4):p.357~361.
    51.李宏宇,潘初沂,陈涵等.稻瘟病菌T-DNA插入方法优化及其突变体分析.生物工程学报,2003,19(4):p.419~423.
    52.王刚,杨之为,鹏友良等.稻瘟病菌产孢和生长基因的鉴定.河南大学学报,2002,32(3):p.11~15.
    53. Wieser J, Yu J H, Adams T H. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Current Genetic, 1997, 32(3): p. 218-224.
    54. Han S, Adams T H. Complex control of the developmental regulatory locus brlA in Aspergillus nidulans. Mol Genet Genomics, 2001, 266(2): p. 260-70.
    55. Karos M, Fischer R. Molecular characterization of Cphyma, an evolutionarily highly conserved and highly expressed protein of Aspergillus nidulans. Mol Gen Genet, 1999, 260(6): p. 510-21.
    56. Culp D W, Dodge C L, Miao Y, et al. Dodge CL, et al The chsA gene from Aspergillus nidulans is necessary for maximal conidiation. FEMS Microbiol Lett, 2000, 182(2): p. 349-353.
    57. Westfall P J, Momany M. Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol Biol Cell, 2002, 13(1): p. 110-118.
    58. Park B C, Park Y H, Park H M. Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol Lett, 2003, 220(2): p. 241-246.
    59. Ng R K, Lau C Y L, Lee S M Y. cDNA microarray analysis of early gene expression profiles associated with hepatitis B virus X protein-mediated hepatocarcinogenesis. Biochemical and Biophysical Research Communications, 2004, 322(3): p. 827-835.
    60.吴晓松,商巾杰,范云燕等.大规模板栗疫病菌cDNA文库的特征和冗余序列的排除.广西农业生物科学,2005,24(4):p.257-282.
    61. Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell, 1990, 2(4): p. 279-289.
    62. van der Krol A R, Mur L A, de L P, et al. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol, 1990, 14(4): p. 457-466.
    63. Romano N M G. Quelling trancient mactivation of gene expression in Neurospora crassa by transformation with homologous sequence. Mol. Microbiol, 1992, 6: p. 3343-3353.
    64. Fire A, Xu S, Montgomery M K, et al. Montgomery MK, Kostas SA, et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391 p. 806-811
    65. J, M. Interfering with gene expression Science, 2000. 288: p. 1370-1372.
    66. Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411: p. 494-498.
    67. Nakayashiki H, Hanada S, Nguyen B Q, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol, 2005, 42(4): p. 275-283.
    68. Mouyna I, Henry C, Doering T L, et al. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol.Lett, 2004, 237(2): p. 317-324.
    69. Langfelder K, Jahn B, Gehringer H, et al. Identification of a potyketide synthase gene (pksP)ofAspergillus furnigatus involved in conidial pigment biosynthesis and virulence. Microbiol.Immunol. (Berl), 1998, 187(2): p. 79-89.
    70. Tsai H F, Chang Y C, Washburn R G, et al. The developmentally regulated albl gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J.Bacteriol, 1998, 180(12): p. 3031-3038.
    71. Beauvais A, Drake R, Ng K, et al. Characterization of the 1,3-beta-glucan synthase of Aspergillus furnigatus. J.Gen.Microbiol, 1993, 139(12): p. 3071-3078.
    72. Beauvais A, Bruneau J M, Mol P C, et al. Glucan synthase complex of Aspergillus fumigatus J.Bacteriol, 2001, 183(7): p. 2273-2279.
    73. Firon A, Beauvais A, Latge J P, et al. Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics 2002, 161(3): p. 1077-1087.
    74. Cogoni C, Irelan J T, Schumacher M, et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J, 1996, 15: p. 3153-3163.
    75. Liu H., Cottrell T R, Pierini L M. et al. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics, 2002, 160: p. 463-470.
    76. kadotani N, Nakayashiki H, Yosa Y, et al. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol. Plant-Microbe Interact, 2003, 16: p. 769-776.
    77. Fitzgerald A, Van Kan J A, Plummer K M. Plummer, K.M., Simultaneous silencing of multiple genes in the apple scab fungus,Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fung Genet Biol, 2004, 41: p. 963-971.
    78. Latijnhouwers M, Ligterink W, Vleeshouwers V G, et al. A Galpha subunit controls zoospore, motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol, 2004, 51(4): p. 925-936.
    79. Boutros M, Kiger A A, Armknecht S, et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science, 2004, 303(5659): p. 832-5.
    80. Kamath R S, Fraser A G, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421: p. 231-237.
    81.蓝瑛,板栗疫病菌RNA干扰系统的建立:[学位论文],广西南宁:广西大学,2006.
    82. Lorenz M C, Muir R S, Lim E, et al. Gene disruption with PCR Products in Saccharomyces cerevisiae. Gene, 1995, 158 (1): p. 113-117.
    83. Guledner U, Heck S, Pleder T, et al. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Ren, 1996, 24(13): p. 2519-2524.
    84. Lau P C Y, Sung C K, Lee J H, et al. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods, 2002, 49(2): p. 193-205.
    85.张部昌,赵志虎,王以光等.糖多孢红霉菌同源片段长度与染色体重组率关系的研究.生物工程学报,2003,19(1):p.13-18.
    86. Gao S, Choi G H, Shain L, et al. Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl Envir Microbiol, 1996, 62(6): p. 1984-1990.
    87. Chung H J, Kim M J, Lim J Y, et al. A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lacl expression. Fungal Genet Biol, 2006, 43(5): p. 326-36.
    88. Kazmierczak P, Kim D H, Turina M, et al. A Hydrophobin of the Chestnut Blight Fungus, Cryphonectria parasitica, Is Required for Stromal Pustule Eruption. Eukaryot Cell, 2005, 4(5): p. 931-936.
    89. Park S M, Choi E S, Kim M J, et al. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol, 2004, 51(5): p. 1267-77.
    90. Choi S, Chung H J, Kim M J, et al. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectriaparasitica. Microbiology, 2005, 151(5): p. 1349-1358.
    91. Kim M J, Park S M, Kim Y H, et al. Deletion of a hypoviral-regulated cppkl gene in a chestnut blight fungus, Cryphonectria parasitica, results in microcolonies. Fungal Genet Biol, 2004, 41(5): p. 482-92.
    92. Segers G C, Regier J C, Nuss D L. Evidence for a Role of the Regulator of G-Protein Signaling Protein CPRGS-1 in G{alpha} Subunit CPG-1-Mediated Regulation of Fungal Virulence, Conidiation, and Hydrophobin Synthesis in the Chestnut Blight Fungus Cryphonectria parasitica. Eukaryot Cell, 2004, 3(6): p. 1454-1463.
    93. Deng F, Allen T D, Nuss D L. Stel2 transcription factor, homologue CpST12 is. down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell, 2007, 6(2): p. 235-44.
    94. Parsley T B, Segers G C, Nuss D L, et al. Analysis of altered G-protein subunit accumulation in Cryphonectria parasitica reveals a third Galpha homologue. Curr Genet, 2003, 43(1): p. 24-33.
    95. Jara P, Gilbert S, Delmas P, et al. Cloning and characterization of the eapB and eapC genes of Cryphonectria parasitica encoding two new acid proteinases, and disruption of eapC. Mol Gen Genet, 1996, 250(1): p. 97-105.
    96. Turina M., Prodi A., Allen N K. Role of the Mfl-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol, 2003, 40(3): p. 242-251.
    97. Kim J H., Kim D H. Cloning and characterization of a thioredoxin gene, CpTrxl, from the chestnut blight fungus Cryphonectria parasitica. J Microbiol, 2006, 44(5): p. 556-561.
    98.马先勇,姚开泰.同源重组技术研究进展.生物工程进展,1996,16(3):p.16-23.
    99. Kamisugi Y, Cuming A C, Cove D J. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Research, 2005, 33(19): p. 1-10.
    100. Nakanishi Y, Ishii C, Inoue H. An effect of homology length on gene disruption in Neurospora crassa. Fungal Genetics Newsletter, 2005, 52: p. 5-6.
    101. Yu J H, Hamari Z, Han K H, Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 41(11): p. 973-981.
    102. Takahashi T, Masuda T, Koyama Y. Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics, 2006, 275(5): p. 460-70.
    103. Puhalla J E, Anagnostakis S L. Genetics and Nutritional Requirements of Endothia parasitica. Phytopathology, 1971, 61: p. 169-173.
    104.萨姆布鲁克等著.分子克隆实验指南.金冬雁等译.第三版,北京:科学出版社,2002.
    105.F.奥斯伯等著,精编分子生物学实验指南.颜子颖等译.第四版,北京:科学出版社,2005.
    106. Churchill A C L, Ciuffetti L M, Hansen D R. Transformation of the Fungal Pathogen Cryphonectria-Parasitica with a Variety of Heterologous Plasmids. Current Genetics, 1990, 17(1): p. 25-31.
    107. Choi G H, Nuss D L. A Viral Gene Confers Hypovirulence-Associated Traits to the Chestnut Blight Fungus. Embo Journal, 1992, 11(2): p. 473-477.
    108. Suzuki N, Nuss D L. Contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. Journal of Virology, 2002, 76(15): p. 7747-7759.
    109. Nicolas F E, Torres-Martinez S, Ruiz-Vazquez RM. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. Embo J, 2003.22(15): p. 3983-91.
    110. Tanguay P, Bozza S, Breuil C. Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae. Fungal Genet Biol, 2006, 43(12): p. 804-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700