基于信号局部特征提取的机械故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对现代化生产系统运行可靠性和安全性越来越高的要求,是机械故障诊断技术产生并迅速发展的原因。随着机械设备向高速化、重载化、大型化和和复杂化方向发展,传统故障诊断技术越来越难以满足诊断需求。信号分析技术和人工智能方法的发展为提高故障诊断水平提供了有力工具。本文结合“车辆变速箱检测试验台”、“车辆分动器检测试验台”、“车辆变速箱齿轮检测试验台”等项目,针对机械设备发生故障时振动信号往往表现出时变性、非平稳性特点,以齿轮和轴承为对象,围绕故障特征信息提取和智能诊断方法这两个核心问题开展研究,重点在于基于信号局部特征的分析方法和基于AIS(Artificial Immune System)的智能诊断模型及其应用。主要工作和研究成果如下:
     (1)介绍了研究对象的主要故障形式、振动产生机理和信号特点,以及实际中振动信号的测量和传播路径的影响,为后续章节奠定基础。
     (2)针对测得的信号中伴有背景信号和噪声,研究了形态小波降噪和特征提取方法。基于形态小波的一般框架构造了极值提升形态小波和复合结构元素形态非抽样小波两种形态小波,将其用于冲击信号特征的提取,具有比传统小波和解调分析更强的特征提取能力;将极值提升形态小波应用于齿轮和轴承的小波灰度矩分析,结果表明极大改善了其对信号局部时频能量分布特征的刻画能力。
     (3)针对一般方法的基对信号局部特征不具有自适应性,研究了基于局域波的特征提取方法。提出了一种改进局域波分解特征提取性能的方法,根据局域波互信息剔除噪声分量和虚假分量,并引入形态小波分析,以抑制模态混叠和虚假分量,提高了信号分解的准确性和瞬时参数提取的时效性。在此基础上,提出局域波域的信息熵特征分析方法,用于定量刻画信号在基本模式空间中分布的复杂度。用实例验证了其有效性。
     (4)针对特征的重要性不同及其相关性和冗余性,结合局域波分析,从特征提取和特征选择两个方面研究了获得对分类有利的特征子集、改善分类性能的方法:核主元分析-最小二乘支持向量机和贝叶斯证据框架-序列后向选择-最小二乘支持向量机。前者通过核主元分析将数据映射到高维特征空间,在抑制冗余度和噪声的基础上进行特征提取;后者运用启发式搜索策略,在分类器学习过程中实现自适应的多特征子集选择优化。用实例验证了以上方法在提高分类器的学习和泛化性能上的有效性。
     (5)AIS本质上是模拟生物体自身的故障诊断机制,具有很好的可解释性。基于免疫识别和免疫网络隐喻机制,提出了基于V-detector算法的故障诊断模型和RS-ABNet故障诊断模型,前者适于处理低维空间问题,后者在处理高维空间问题时更具优势。通过对齿轮和轴承的故障诊断,证实了以上方法的实用性和有效性,为机械故障诊断提供了新的智能方法。
The higher and higher demands for operational reliability and safety of the modern production system is the reason for generation and rapid development of the mechanical fault diagnosis technology. With the development of the mechanical equipment towards high speed, heavy load, large scale and complication, traditional fault diagnosis technology can't meet the requirement for equipment diagnosis. Development of signal analysis and artificial intelligence technology supplies powerful tools for improving the fault diagnosis level. Focusing on time-varying and non-stationary feature of vibration signal when faults occur, based on projects of vehicle gear-box testing system, vehicle power transfer testing system, vehicle gear-box gear testing system, and on the research subjects of gear and bearing, research was carried out around the two core problems of fault diagnosis, feature extraction and intelligent diagnosis method. Research keys were the analysis method based on signal local characteristics and intelligent diagnosis model and its application based on artificial immune system (AIS). The main research works are as follows:
     (1) The main fault types, vibration generating principle and signal feature of the research subjects were introduced, and influences of practical measure and transmitting path on vibration signal were analyzed, which is the basis for latter chapters.
     (2) Focusing on practical data interfered by noises and background signal, the denoising and feature extraction methods based on morphological wavelet were researched. Two morphological wavelets, minimax-lifting morphological wavelet (MLMW) and multi-element morphological undecimated wavelet decomposition (MMUWD), were constructed based on the general frame of morphological wavelet, then they were used to extract shocking signal's feature, show stronger feature extraction capability than that of traditional wavelet and demodulation analysis. Using MLMW to the CWT grey moment analysis of gear and bearing, results show that MLMW greatly improves the describing capability of CWT grey moment for signal's local time-frequency energy distribution characteristics.
     (3) Aiming at general analysis methods' basis being not adaptive for signal's local feature, the feature extraction method based on local-wave was researched. A method improving the feature extraction capability of local-wave was proposed, in which noise components and pseudo-components were removed by calculating local-wave mutual information, and morphological wavelet analysis was combined to constrain mode mixing and pseudo-components. With which the decomposition quality and feature extraction capability are improved. Then the information entropy feature analysis method based on local-wave was proposed, which was used to describe signal's complexity in the intrinsic mode space. Simulation and practical data prove the proposed methods' effectiveness.
     (4) Focusing on features' different importance, correlation and redundancy, and combining local-wave analysis, methods of obtaining feature subset preferable for classification and improving classification ability were introduced from feature extraction and feature selection, and the models of KPCA(kernel principal component analysis) - LSSVM (least squares support vector machines) and BEF(Bayesian evidence framework)- SBS (sequential backward selection)- LSSVM were proposed correspondingly. The former mapped data to high dimension feature space through KPCA, and extracted features on the basis of constraining redundancy and noises. While the latter adopted heuristic searching strategy, and realized adaptive multi-feature subsets selection and optimization. The practical data proves the proposed methods' effectiveness in improving learning and generalization performance of LSSVM.
     (5) In nature, AIS stimulates biological fault diagnosis mechanism for itself, and has good interpretation. Based on immune identification and immune net metaphor mechanism, the fault diagnosis models based on V-detector algorithm and RS-ABNet fault diagnosis model were proposed. The former is suitable for processing low dimension space problem, while the latter has advantage in processing high dimension space problem. The fault diagnosis of gear and bearing prove the practicability and effectiveness of the above methods, and it will supply a new intelligent method for mechanical fault diagnosis.
引文
[1]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [2]徐敏等.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [3]楼应候,蒋亚南.机械设备故障诊断与监测技术的发展趋势[J].机床与液压,2002,4:7-9.
    [4]Newland D E.Wavelet analysis of vibration,part 1:Theory,Transactions of the ASME[J].Journal of vibration and acoustics,1994,116:409-416.
    [5]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及其应用[M].北京:高等教育出版社,2000.
    [6]陈进.信号处理在机械设备故障诊断中的应用[J].振动与冲击,1999,18(4):84-87.
    [7]吴剑,代冀阳,孙秀霞.非平稳振动信号的角域重采样小波解调分析方法[J].振动与冲击,2009,28(5):131-136.
    [8]臧玉萍,张德江,王维正.基于小波变换技术的发动机异响故障诊断[J].机械工程学报,2009,45(6):239-245.
    [9]冯志鹏,褚福磊.基于Chirplet变换的水轮机非平稳振动信号分析[J].机械工程学报,2005,41(10):11-16.
    [10]熊国良,张龙,陈慧.TVAR在非平稳工况转子故障诊断中的应用[J].振动、测试与诊断,2007,27(2):108-111.
    [11]谢平,刘彬,王霄.多重分形熵及其在非平稳信号分析中的应用研究[J].仪器仪表学报,2005,26(8)增:610-612.
    [12]Belouchrani A,Abed-Meraim K,Admin M G.Blind separation of nonstationary sources[J].IEEE Signal Processing Letters,2004,11(7):605-608.
    [13]Gabor D.Theory of communication[J].Proc IEE,1946,93:452-457.
    [14]Potter R K,Kopp G,Green H C.Visible speech[M].New York:Van Nostrand,1947.
    [15]Ville J.Theorie et applications de la notion de signal analytique[J].Cables et Transmission,1948,2A:61-74.
    [16]Morlet J.Wave propagation and sampling theory and complex waves[J].Geophysics,1982,47(2):222-236.
    [17]Pei S C,Yeh M H.Fractional time-frequency distributions[J].ISCAS,1997,4:2673-2676.
    [18]Cohen L.Time-Frequency distributions:a review[J].IEEE Proc,July 1989,77(7):941-981.
    [19]Classen T C M,Mecklenbrauker W F G.The Wigner distribution-part Ⅰ[J].Philips Res.J.,1980,35:217-250
    [20]Rioul O,Flandran P.Time-scale energy distributions:a general class extending wavelet transforms[J].IEEE Trans on Signal Processing,1992,40:1746-1757.
    [21]Auger F,Flandrin P.Improving the readability of time-frequency and time-scale representations by reassignment method[J].IEEE Trans SP,1995,43(5):1746-1757.
    [22]Baraniuk R G,Jones D L.Signal dependent time-frequency analysis using a radialy Gaussian kernel[J].IEEE Trans Signal Processing,1993,32:263-84.
    [23]Stanknovic L J,Stanknovic S,Djuurovic I.An architecture for realization of the cross-terms free polynomial Wigner-Ville distribution[J].ICASSP,1997,3:2053-2056.
    [24]Wood J C,Barry D T.Radon transform of time-frequency distributions for analysis of multi-component signals[J].IEEE Trans.Signal Processing,1994,42(11):3166-3177.
    [25]Xu C G,Gao X B,Xie W X.Localized Radon-Wigner transform[C].Proceedings of the 6th IEEE Intelligent Signal Processing and Communication Systems,ISPACS'98.Melbourne,Australia,1998,2:757-761.
    [26]Qian S,Chen D.Deeomposition of the Wigner-Ville Distribution and Time-Frequency Distribution Series[J].IEEE Trans on SP,1994,42(10):2836-2842.
    [27]Mallat S G,Zhang Z F.Matching pursuits with time-frequency dictionaries[J].IEEE Transon on SP,1993,41(12):3397-3415.
    [28]Mann S,Haykin S.Chirplets and warblets:novel time-frequency methods[J],Electron Lett,1992,28:114-116.
    [29]Mann S,Haykin S.The chirplet transform:Physical considerations[J].IEEE Trans on SP,1995,43:2745-2761.
    [30]Baraniuk R G,Jones D L.Wigner-based furmulation of the chirplets transform[J].IEEE Trans on SP,1995,44:3129-3135.
    [31]殷勤业,倪志芳,钱世愕.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58.
    [32]邹红星,戴琼海.Dopplerlet变换及其匹配收敛性分析阴[J].电子与信息学报,2001,23(5):417-424.
    [33]Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
    [34]Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[C].Proc Roy Soc London A,1998,454:903-995.
    [35]马孝江,余伯,张志新.一种新的时频分析方法-局域波法[J].振动工程学报,2000,13(9):24-29.
    [36]孙晖,朱善安.基于自适应滤波的滚动轴承故障诊断研究[J].浙江大学学报(工学版),2005,39(11):1746-1749.
    [37]Yu B,Ma X J,A new method for the analysis of non-stationary nonlinear vibration signal and its use in machine fault diagnosis[C].Proc.of ICVE.Dalian,1998:668-671.
    [38]盖强.局域波时频分析的理论研究与应用[D].大连:大连理工大学,2001.
    [39]Huang N E,Shen Z,Long S R.A new view of nonlinear water waves:the Hilbert spectrum[J].A Rev.Fluid Mech,1999,31:417-457.
    [40]Flandrin P,Rifling G,Gonealves P.On empirical mode decomposition as a filter bank[J].IEEE Signal Processing Lett,2004,11(2):112-114.
    [41]王凤利,马孝江.基于局域波时频分析的齿轮故障诊断[J].农业机械学报,2006,37(12):221-225.
    [42]苑宇,马孝江.局域波时频域多重分形在故障诊断中的应用[J].振动与冲击,2007,26(5):60-63.
    [43]王珍,马孝江.局域波时频法在柴油机缸套活塞磨损诊断中的应用研究[J].内燃机学报,2002,20(2):157-160.
    [44]王珍,马孝江,李吉,等.基于局域波法和K-L信息量的柴油机故障诊断方法[J].大连理工大学学报,2003,43(4):461-465.
    [45]王珍,丁子佳,李玉光,等.局域波自回归谱及其在柴油机故障诊断中的应用研究[J].内燃机工程,2004,25(3):51-53.
    [46]王凤利,马孝江.基于局域波时频谱的旋转机械早期故障诊断技术[J].农业机械学报,2005,36(1):117-120.
    [47]王凤利,马孝江.局域波分形动力学在旋转机械故障诊断中的应用[J].农业机械学报,2004,35(2):134-137.
    [48]王奉涛,马孝江,张勇.基于局域波-粗糙集-神经网络的故障诊断方法研究[J].内燃机工程,2007,28(2):80-84.
    [49]郝志华,马孝江.局域波法和独立成分分析在转子系统故障诊断上的应用[J].中国电机工程学报,2005,25(3):84-88.
    [50]王孝通,盖强,张海勇.局域波自适应时频分析特性研究[J].电子学报,2005,33(12):2187-2190.
    [51]胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120.
    [52]Hampson F J,Pesquet J C.M-band nonlinear decomposition with perfect reconstruction[J].IEEE Trans on Image Processing,1998,7:1574-1560.
    [53]段晨东,何正嘉,姜洪开.非线性小波变换在故障特征提取中的应用[J].振动工程学报,2005,18(1):129-132.
    [54]Heijmans H J A M,Goutsias J.Multi-resolution signal decomposition schemes-Part Ⅱ:Morphological wavelets[J].IEEE Trans Image Processing,2000,9(11):1897-1913.
    [55]Pei S C,Chen F C.Hierarchical image representation by morphological morphology sub-band decomposition[J].Pattern Recognition,1995,16:183-192.
    [56]Egger O,Li U W.Very low bit rate image coding using morphological operators and adaptive decomposition[J].Proc Int Conf Image Processing,Austin.TX,1994:331-335.
    [57]Cha H,Chaparro L F.Adaptive morphological representation of signals:polynomial and wavelet methods[J].Multidimen Syst Signal Processing,1997,8:249-271.
    [58]Huang X S,Yang X F,Wang Y S.The construction of multidimensional morphological wavelets based on lifting scheme[J].自动化学报,2003,29(5):726-732.
    [59]陈丽安,张培铭.基于形态小波的低压系统短路故障早期检测[J].中国电机工程学报,2005,25(10):24-28.
    [60]Zhang J F,Smith J S,Wu Q H.Morphological undecimated wavelet decomposition for fault location on power transmission lines[J].IEEE Transactions on Circuits and Systems-Ⅰ:Regular Papers,2006,53(6):1395-1402.
    [61]Zhang L J,Xu J W,Yang D B,et al.Fault feature extraction to equipments using morphological wavelet denoising[C].Proceedings of ICMT 2006,Beijing:Science Press,2006,2:1320-1324.
    [62]章立军,杨德斌,徐金梧.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75.
    [63]王文波,羿旭明,费浦生.具有更新自适应性形态小波的构造[J].武汉大学学报,2007,32(9):804-807.
    [64]Hao R J,Chu F L.Morphological undecimated wavelet decomposition for fault diagnostics of rolling element bearings[J].Journal of Sound and Vibration,2009,320:1164-1177.
    [65]Burrel P,Inman D.An expert system for the analysis of faults in an electricity supply network:problems and achievements[J].Computers in Industry,1998,37:113-123.
    [66]Yager R R,Filev D P.Gereration of fuzzy rules by mountain clustering[J].Journal of Intelligent and Fuzzy Systems,1994,2:209-219.
    [67]Pawlak Z.Rough sets[J].International Journal of Information and Computer Science,1982,11:341-356.
    [68]Vapnik V.The nature of statistical learning theory[M].New York:Spring-Verlag,1995.
    [69]Vapnik V N,Smola G S.Support vector method for function approximation,regression estimation and signal processing[C].M.C.Mozer,M.I.Jodan,and T.Petsche,editors,Advances in Neural Information Processing Systems 9.Cambridge,MA,MIT Press,1997:281-287.
    [70]Boser B E,Guyon I M,Vapnik V N.A train algorithm for optimal margin classifiers[C].In D.Haussler,editors,Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory,Pittsburgh,PA.1992:144-152.
    [71]Osuna E,Freund R,Girosi F.Training support vector machines,an application to face detection[C].Proc.of CVPR 97.Puerto Rico 1997.
    [72]Platt J C.Sequential Minimal Optimization:a fast algorithm for training support vector machines[R].Technical Report SR-TR-98-14,Microsoft Research,1998.
    [73]Dong J X,Ching Y S,Adam K.Fast SVM train algorithm[J].International Journal of Pattern Recognition and Artificial Intelligence,2003,17(3):367-384.
    [74]Keerthi S S,Shevade S K,Bhattacharyya C,et al.A fast iterative nearest point algorithm to support vector machine classifier design[R].Technical Report TR-ISL-99-03,India:India Institute of Science,1999.
    [75]Suykens J A K,Vandewalle J.Least square support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
    [76]Pavlov D,Mao J,Dom B.Scaling-up support vector machines using boosting algorithm[C].Proceedings of the 15th International Conference on Pattern Recognition,ICPR-2000,2000,2:219-222.
    [77]Syed N A,Syed H,Liu,K,et al.Incremental learning with support machine[C].Proe Int Joint Confon Artificial Intelligence,IJCAI-99.Stockholm,Sweden,1999.
    [78]Cauwenberghs G,Poggio T.Incremental and decremental support vector machine learning[C].Advances in Neural Information Processing Systems,NIPS-2001.Cambridge MA:MIT Press,2001,13:409-415.
    [79]Lau K W,Wu Q H.Online training of support vector classifier[J].Patten Recognition,2003,36:1913-1920.
    [80]张英,苏宏业,褚健.一种基于支持向量机增量学习的软测量建模方法化[J].化工自动化及仪表,2005,32(3):22-25.
    [81]Timmis J,Knight T.Artificial immunes system:using the immune system as inspiration for data mining[C].Abbass H A,Sarker R A,Newton C S eds.Data Mining:A Heuristic Approach.Hershey:Idea Publishing Group,2001:209-230.
    [82]Forrest S,Hofmeyr S A.Immunology as information processing[C].Segel L A,Cohen I,eds.Design Principles for the Immune System and Other Distributed Autonomous Systems.New York:Oxford University Press,2000:361-387.
    [83]De Castro L N,Von Zuben F J.Clonal selection algorithm with engineering applications[C].Proc GECCO'00.Las Vegas,Nevada,USA,2000:36-37.
    [84]Ishida Y.An immune network model and it s applications to process diagnosis[J].Systems and Computers in Japan,1993,24(6):646-651.
    [85]Jerne N K.Towards a network theory of the immune system[J].Annual Immunology,1974,125C:373-389.
    [86]Ishiguro A,Shirai Y,Kondo T,et al.Immunoid:An architecture for behavior arbitration based on the immune networks[C].Proe IEEE/RSJ International Conference on Intelligent Robots and Systems.Osaka,Japan,1996:1730-1738.
    [87]Tang Z,Yamaguchi T,Tashima K,et al.Multiple-valued immune network model and its simulations[C].Proc 27th Inter-national Symposium on Multiple-Valued Logic,Antigonish,Nova Scotia.Canada,1997:519-524.
    [88]De Castro L N,Von Zuben F J.An evolutionary immune net-work for data clustering[C].Proc 6th Brazilian Symposium on Neural Networks.Rio de Janeiro,Brazil,2000:84-89.
    [89]De Castro L N,Von Zuben F J.Artificial immune system:Part Ⅰ:basic theory and application[R].School of Electrical and Computer Engineering,State University of Campinas,Campinas-SR,Brazil:Technical Report RT-DCA 01,1999.
    [90]刘树林,黄文虎,王日新,等.基于免疫系统的往复泵在线故障诊断方法[J].中国机械工程,2002,13(8):686-689.
    [91]Dasgupta D K,Wong K D,Berry M.Negative selection algorithm for aireraft fault detection[C].Proceedings of Third International Conference on Artificial Immune Systems(ICARIS 2004).2004:1-13.
    [92]Gao X Z,Ovaska S J,Wang X L.Negative selection algorithm with applications in motor fault detection[J].Soft Computing Applications in Industry,2008:93-115.
    [93]Niu H F,Jiang W L,Liu S Y.Research on the hybrid fault diagnosis approach based on artificial immune algorithm[J].IEEE Computer Society,2008,6:666-670.
    [94]李伟.基于免疫机理的可重构诊断系统研究[D].重庆:重庆大学博士学位论文,2005.
    [95]梁霖,徐光华.基于克隆选择的粗糙集属性约简方法[J].西安交通大学学报,2005,39(11):1231-1235.
    [96]侯胜利,李应红,尉询楷,等.基于免疫聚类分析的特征提取及其在发动机故障诊断中的应用[J]. 推进技术,2006,27(12):554-558.
    [97]彭良玉,禹旺兵.基于小波分析和克隆选择算法的模拟电路故障诊断[J].电工技术学报,2007,22(6):12-16.
    [98]廖章珍,陈强.基于克隆选择原理的故障诊断技术[J].机械工程及自动化,2008,147(2):94-97.
    [99]Ishiguro A,Watanabe Y,Uchikawa Y.Fault diagnosis of plant systems using immune networks[C].Proc IEEE International Conference on Multi-Sensor Fusion and Integration for Intelligent Systems.Las Vegas,NV,1994.34-42.
    [100]Hunt J E,Timmis J,Cooke D E.et al.Jisys:The development of artificial immune system for real world applications[C].Dasgupta Ded.Artificial Immune System and Their Applications.Berlin:Springer-Verlag,1999:157-186.
    [101]Garain U,Chakraborty M P,Dasgupta D.Recognition of handwritten indic script using cional selection algorithm[J].ICARIS,2006:256-266.
    [102]刘忠.基于人工免疫系统的水电机组智能诊断方法研究[D].武汉:华中科技大学,2007.
    [103]Strackeljan J,Leivisk(a|¨) K.Artificial immune system approach for the fault detection in rotating machinery[C].Proceedings of the International Conference on Condition Monitoring & Machinery Failure Prevention Technologies.Edinburgh,UK,2008.
    [104]李国华,张永忠.机械故障诊断[M].北京:化学工业出版社,1999,126-127.
    [105]王玉芳,童忠钫.齿轮误差对齿轮加速度噪声的影响[J].振动、测试与诊断,1993,13(4):1-10..
    [106]唐增宝,钟毅芳,周建荣.直齿圆柱齿轮传动系统的振动分析[J].机械工程学报,1992,(4):86-93.
    [107]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [108]盛兆顺,尹琦岭.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.
    [109]王新晴.齿轮箱不解体诊断技术研究[D].天津:天津大学,1998.
    [110]梅宏斌.滚动轴承振动监测与诊断:理论·方法·系统[M].北京:机械工业出版社,1995.
    [111]余红英.机械系统故障信号特征提取技术研究[D].太原:中北大学,2005.
    [112]Case Western Reserve University,Bearing Data Center[DB/OL].[2008-8-29].http://www.eecs.cwru.edu/laboratory/bearing.
    [113]赵春晖.数字形态滤波器理论及其算法研究[M].北京:高等教育出版社,2002.
    [114]崔屹.图像处理与分析—数学形态学方法及应用[M].北京:科学出版社,2002.
    [115]陈平,李庆民.基于数学形态学的数字滤波器设计与分析[J].中国电机工程学报,2005,25(11):60-65.
    [116]唐长青.数学形态学方法及应用[M].北京:科学出版社,1990.
    [117]李庚银,罗艳,周明,等.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30.
    [118]林湘宁,刘沛,刘世明,等.电力系统超高速保护的形态学—小波综合滤波算法[J].中国电机工程学报,2002,22(9):19-24.
    [119]马从兵.形态学滤波在压电陀螺信号处理中的应用[J].压电与声光,2007,29(5):527-529.
    [120]Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Assoc,1995,90(432):1200-1224.
    [121]刘占生,窦唯.基于旋转机械振动参数图形融合灰度共生矩阵的故障诊断方法[J].中国电机工程学报,2008,28(2):88-95.
    [122]侯敬宏,黄树红,申弢,等.基于小波分析的旋转机械振动信号定量特征研究[J].机械工程学报,2004,40(1):131-135.
    [123]Zhang Y P,Huang S H,Hou J H,et al.Continuous wavelet grey moment approach for vibration analysis of rotating machinery[J].Mechanical Systems and Signal Processing,2006,20:1202-1220.
    [124]邹岩.局域波分析的理论方法研究及应用[D].大连:大连理工大学,2004.
    [125]杨金显,袁赣南,周卫东.基于局域波分解的微机械陀螺信号提取研究[J].宇航学报,2008,29(4):1341-1344.
    [126]Huang N E,Wu M L,Qu W,et al.Applications of Hilbert-Huang transform non-tationary financial time series analysis[J].Applied Stochastic Models in Business and Industry,2003,361(19):245-268.
    [127]Huang N E.A new view of nonlinear waves:The Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,31:417-457.
    [128]Gao Y C,Ge G T,Sheng Z Y,et al.Analysis and Solution to the Mode Mixing Phenomenon in EMD[C].Congress on Image and Signal Processing,CISP-2008.Sanya,China,2008,5:223-227.
    [129]Stevenson N,Mesbah M,Boashash B.A sampling limit for the empirical mode decomposition[J].Proc of International Symposium on Signal Processing and its Applications ISSPA-05,2005:647-650.
    [130]于大鹏,赵德有.时廷法相空间重构双参数联合估计方法研究[J].大连理工大学学报,2009,49(4):540-544.
    [131]陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择[J].系统仿真大学学报,2007,19(11):2527-2529.
    [132]秦太龙,杨勇,程珩.基于IMF能量矩和神经网络的轴承故障诊断[J].振动、测试与诊断,2008,28(3):32-36.
    [133]Liu H,Yu L.Towards integrating feature selection algorithms for classification and clustering[J].IEEE Trans.on Knowledge and Data Engineering,2005,17(4):491-502.
    [134]陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138.
    [135]Mlka S,Raitseh G,Weston J.Fisher discriminant analysis with kemels[C].Neural Networks for Signal Processing IX,IEEE.1999:41-48.
    [136]Scholkope B,Smola A,Muller K R.Nonliaear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
    [137]Chih W H,Chih J L.A comparison of methods for multi-class support vector machines[J].Neural Networks,2002,13(2):415-425.
    [138]Sehlogl A.A comparison of multivariate autoregressive estimators[J].Signal Processing,2006,86:2426-2429.
    [139]Kim H S,Eykholt R,Salas J D.Nonlinear dynamics,delay times,and embedding windows[J].Physica D(S0167o 2789),1999,127(2):45-60.
    [140]Mackay D J C.Probable network and plausible predictions-A review of practical Bayesian methods for supervised neural networks[J].Network Computation in Neural Systems,1995,6:469-505.
    [141]阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528.
    [142]Sun Z H,Bebis G,Miller R.Object detection using feature subset selection[J].Pattern Recognition,2004,37:2165-2176.
    [143]于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-345.
    [144]Forrest S,Perelson S,Allen L,et al.Self-nonself discrimination in a computer[C].Proc of the IEEE symposium on research in security and privacy.IEEE Computer Society Press,1994:202-212.
    [145]Gonzalez F,Dasgupta D,Kozma R.Combining negative selection and classification techniques for anomaly detection[C].Congress on Evolutionary Computation.IEEE Press,2002:705-710.
    [146]Zhou J,Dasgupta D.Rea-valued negative selection algorithm with variable-sized detectors[C].Genetic and Evolutionary Computation.Seattle:IEEE Press,2004:287-298.
    [147]Zhou J,Dasgupta D.Estimating the detector coverage in a negative selection algorithm[C].Genetic and Evolutionary Computation.Washington:IEEE Press,2005:88-97.
    [148]UCI Machine Learning Repository:Iris Data Set[DB/OL].[2009-3-23].http://arehive.ies.uci.edu/ml/datasets/Iris
    [149]Grassberger P,Procaecia I.Characterization of strange attractors[J].Phys Rev Lett,1983,50(5):346-349.
    [150]Hoa S,Nguyen H S.Some effeicent algorithms for Rough Set methods[C].Proc Of the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems.Granana,Spain,1996:1451-1456.
    [151]Vinterbo S,Ohrn A.Minimal approximate hitting sets and rule templates[J].International Journal of Approximate Reasoning,2000,25(2):123-143.
    [152]申弢,黄树红,韩守木.旋转机械振动信号的信息熵特征[J].机械工程学报,2001,37(6):94-98.
    [153]朱启兵.基于小波理论的非平稳信号特征提取与智能诊断方法研究[D].沈阳:东北大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700