用户名: 密码: 验证码:
免疫促凋亡分子e23sFv-TD-tBID的基因构建、表达及肿瘤靶向杀伤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重组免疫毒素是一类重要的肿瘤靶向性治疗药物。由具有细胞选择性作用的导向分子和细菌或植物毒素组成,它能特异性杀伤靶细胞,而不损伤正常组织细胞,可用于肿瘤、组织器官移植、自身免疫性疾病、HIV感染等免疫相关疾病。尽管重组免疫毒素具有广阔的应用前景,但是在临床应用中仍面临许多挑战,如免疫原性强和穿透性差,解决方法之一就是构建小分子人源化的重组免疫毒素。
     Bid(BH3 -interacting death agonist)是Bcl-2家族BH3亚家族的一个成员,具有促凋亡活性。Bid蛋白只含BH3结构域,全长为195 aa,分子量22 KDa。Bid位于细胞浆,当其被活化的Caspase-8或其他蛋白酶切割后,去除N末端片段,产生的截短体片断(truncated Bid, tBid;15 kDa)从细胞浆转位到线粒体,主要通过控制细胞色素c(Cyt c)和其它促凋亡分子的释放来促进细胞凋亡。
     HER2是癌基因erbB2/neu的表达产物,能传导生长信号而导致细胞的恶性增殖。HER2是目前公认的肿瘤细胞表面特异性标志分子,在乳腺癌等多种肿瘤细胞中高度表达,是一种理想的治疗靶点。
     因此,以抗HER2单链抗体为导向分子,以人活性促凋亡分子tBid为毒性部分构建的重组免疫促凋亡分子是一种潜在的免疫原性低、穿透力强的抗肿瘤药物。
     本研究中构建的重组免疫促凋亡分子由抗HER2单链抗体e23sFv和活性促凋亡分子tBid构成,白喉毒素转位结构域中含有Furin酶切位点的十肽(187 aa-196 aa)插入其间,连接导向分子和毒素分子。将重组基因克隆入原核表达载体pQE30,转化宿主菌,IPTG诱导表达,目的蛋白以包涵体形式存在。经亲和层析纯化、透析复性后,获得e23sFv-TD-tBID融合蛋白。进一步研究其生物学活性。
     细胞ELISA、流式细胞术和间接免疫荧光结果显示,e23sFv-TD-tBID能特异地结合并内化入HER2阳性肿瘤细胞,对HER2阴性的细胞无此作用。MTT结果显示,e23sFv-TD-tBID能明显抑制HER2阳性肿瘤细胞的生长,对HER2高表达的SK-BR-3、SKOV-3细胞杀伤作用最强,这说明e23sFv-TD-tBID对靶细胞的杀伤作用和细胞表面HER2分子表达量密切相关。e23sFv-TD-tBID通过诱导凋亡来抑制肿瘤细胞生长。此外,我们还从乳腺癌病人的胸水中分离培养原代乳腺癌细胞,发现e23sFv-TD-tBID也可以结合并杀伤HER2阳性的原代乳腺癌细胞。
     动物实验结果显示,单独使用e23sFv-TD-tBID治疗可以抑制荷瘤裸鼠肿瘤的生长,这种抑制作用具有剂量依赖性,在治疗期间未见明显的毒副作用。当e23sFv-TD-tBID与化疗药物联合使用时,抑瘤作用更加显著。
     综上所述,本研究构建了重组免疫促凋亡分子e23sFv-TD-tBID,经原核表达、纯化、复性,获得e23sFv-TD-tBID融合蛋白。体外细胞学实验表明,e23sFv-TD-tBID能特异性结合并内化入HER2阳性肿瘤细胞诱导其凋亡,体内抑瘤实验表明,e23sFv-TD-tBID具有一定的抗肿瘤活性,与化疗药物联合使用作用更加显著,为进一步探讨其作为抗肿瘤药物的临床应用奠定了基础。
Recombinant immunotoxin is an important drug of targeted cancer therapy and is composed of a very potent protein toxin and a targeting moiety such as a recombinant antibody fragment or growth factor. Protein toxins commonly used include bacterial toxins such as PE and DT, and plant toxins such as ricin, PAP and saporin. The clinical efficacy of recombinant immunotoxins has been demonstrated in patients with malignant tumors. But the antitumor activity of recombinant immunotoxins in vivo is interfered by many factors, e.g, strong immunogenicity and poor penetration into tumors. One of methods is to develop new type of micromolecule recombinant immunotoxins to reduce their immunogenicity and improve their penetration into tumor cells.
     Bid (BH3-interacting death agonist), one of the BH3 domain-only pro-apoptotic Bcl-2 family member, is recognized as an intracellular linker connecting the death receptors pathway and mitochondrial death machinery through caspase-8 activation. Full-length Bid,normally present in cytosol, is cleaved by activated caspase-8 or other proteases to form tBid (carboxyl-terminal region of Bid) which translocates to the mitochondria causing cytochrome c (Cyt c) and AIF release. Because Bid can link the extrinsic and intrinsic cell death pathways and amplify death receptor signaling, we believe tBid could be a potential candidate for cancer therapy.
     HER2/neu (c-erbB2) proto-oncogene is located on chromosome 17q21 and encodes a Mr 185,000 transmembrane glycoprotein (p185HER2) that belongs to a subfamily of growth factor receptors having intrinsic tyrosine kinase activity. Amplification and overexpression of ERBB-2 is found in 25-30% of primary human breast cancers and is associated with a poor clinical outcome. Increased expression of ErbB2 is also observed in colon, prostate, lung, and gastric cancers, making it a popular therapeutic target for carcinomas. HER2/neu is an attractive target for immunotherapy.
     In this study we constructed a noval human antitumor immunotBID molecule e23sFv-TD-tBID made up of anti-HER2 scFv (e23sFv) and active truncated tBID. A 10-residue spacer, Ala-Gly-Asn-Arg-Val-Arg-Arg-Ser-Val-Gly, containging the recognition site for protease furin from diphtheria toxin translocation domain was incorporated between the antibody fragment and the active truncated BID.
     The recombinant gene was inserted into prokaryotic expression vector pQE30 and transformed into E.coli M15. The recombinant plasmid pQE30-e23sFv-TD-tBID expressed in inclsion body by the induction of IPTG. After purification by Ni-NTA chromatography and renaturation through dialysis, we get the fusion protein.
     In vitro target-specific binding and cytotoxic activity of e23sFv-TD-tBID were show on a variety of HER2-positive cell lines and primary breast tumor cells. On binding to HER2, it was rapidly internalized into the target cells, after proteolytic cleavage, accessed directly to the cytosol. To determine the therapeutic effects of e23sFv-TD-tBID, it was given i.p. to immunodeficient mice bearing s.c. human breast carcinomas. The immunoproapoptotic protein either a single dose or combinations with chemotherapy significantly inhibited tumor growth with no toxic effect on mice. Our results suggest that e23sFv-TD-tBID has therapeutic potential for HER2-positive tumors and deserves further development.
     Conclusion: We produced the fusion protein e23sFv-TD-tBID in E.coli. and described the characterization and antitumor activity in vitro and in vivo. These results show that this molecule may prove to be a valuble agent for immunotherapy of HER2-positive carcinomas.
引文
1. Koler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature,1975,256: 495.
    2. Guang Xu, Howard L M. Strategies for enzyme/prodrug cancer therapy. Clinical Cancer Research, 2001 (7): 3314-3324.
    3. NapierM P, Sharma S K. Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinomal. Clinical Cancer Research, 2000(6): 765-772.
    4. VrouenraetsM B, GerardW M. Targeting of Aluminum (Ⅲ) phthalocyanine tetrasulfonate by use of internalizing monoclonal antibodies: improved efficacy in photodynamic therapy. Cancer Research, 2001, 61 (5): 1970-1975.
    5. Riethmuller G, Schneider-Gadicke E, Schlimock Get al. Randomised trial of monoclonal antibody for adjuvant therapy of rescued Dukes’C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet, 1994, 343: 1172-4.
    6. Antonio J, Grillo L. IDEC-C2E8-A monoclonal antibody with clinical activity in NHL. Symposium of IBC’s seventh annual international conference on antibody engineering. San Diego, USA.
    7. Baselga J, Tripathy D, Mendelsohn J, et al. PhaseⅡstudy of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol, 1996, 14: 737.
    8. VadhanRaj S, CordonCardo C, Carswell Cet al. Phase I trial of a mouse monoclonal antibody against GD3 ganglioside in patients with melanoma: Induction of inflammatory responses at tumor sites. J Clin Oncol, 1988, 6: 1636.
    9. Handgretinger R, Baader P, Dopfer Ret al. A phase I study of neuroblastomawith the anti-GD2 antibody 14.G2a. Cancer Immunol Immunother, 1992, 35: 199.
    10. PressOW, Eary JF, ApplebaumFRet al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med,1993, 329: 1219.
    11. DeNardo GL, O’Donnell, Rose LMet al. Milestones in the development of Lym-1 therapy. Hybridoma, 1999, 18: 11.
    12. Wong JY, Chu DZ, Yamuachi Det al. Dose escalation trial of indium-111-labeled anti-carcinoembryonic antigen chemeric monoclonal antibody (chemeric T84.66) in presurgical colorectal cancer patients. J Nucl Med, 1998, 39(12): 2097.
    13. Denardo SJ, Richman CM , Goldstein DS, et al. Yttrium-90 / indium-111-DOTA-peptide-chimeric L6: pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer. Anticancer Res, 1997, 17: 3B 1735.
    14. Divgi CR, Bander NH, Scott AMet al. Phase I/II radioimmunotherapy trial with iodine-131-labeledmomoclonal antibodyG250 in metastatic renal cell carcinoma. Clin Cancer Res, 1998, 4(11): 2729.
    15. Juweid ME, Hajjar G, Swayne LCet al. Phase I/II trial of 131I-MN-14 F(ab)′2 anti-carcinoembryonic antigen monoclonal antibody in the treatment of patients with metastatic medullary thyroid carcinoma. Cancer, 1999, 15(85): 1828.
    16. Duvic M. Bexarotene and DAB 389 IL- 2 (Denileukin diftitox, ONTAK) in treatment of cutaneous T-cell lymphomas: algorithms. Clin Lymphoma, 2000, 1: S51- S55.
    17. Kreitman R J, Margulies I, Stetler-Stevenson M, et al. Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38(BL22) towardsfresh malignant cells from patients with B-cell leukemias. Clin Cancer Res, 2000, 6: 1476- 1487.
    18. Remsen LG. Enhanced delivery improves the efficacy of a tumor-specific doxorubicin immunoconjugate in a human brain tumor xenograft model. Neurosurgery, 2000, 46 (3): 704-709.
    19. Sjogren HO, Isaksson Willner D, et al. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res, 1997, 57: 4530-4536.
    20. Lode HN, Reisfeld RA, Handgretinger, Nicolaou, G Ga. et al. Targeted therapy with a novel enediyene antibiotic calicheamicin theta (I) 1 effectively suppresses growth and dissemination of liver metastases in a syngeneic model of murine neuroblastoma. Cancer Res, 1998, 58: 2925-2928.
    21. Katrin K, Wolfgang W, et al. Targeted Therapy of Experimental Renal Cell Carcinoma with a Novel Conjugate of Monoclonal Antibody 138H11 and Calicheamicin I1. Cancer Res, 2000, 60: 6089-6094.
    22. Weiner L M. An overview of monoclonal antibody therapy of cancer. Semin Oncol, 1999; 26(4 suppl 12): 41.
    23. Bross P F, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res, 2001; 7: 1490.
    24. Véronique and H. Uri Saragovi. Taxane-Antibody Conjugates Afford Potent Cytotoxicity, Enhanced Solubility, and Tumor Target Selectivity. Cancer Res 2001, 61: 694-699.
    25.顾军,王雅杰.抗体细胞因子融合蛋白治疗肿瘤的研究进展.肿瘤防治杂志, 2003, 10(2): 211.
    26. Penichet ML, Harvill ET, Morrison SL. Antibody-IL-2 fusion proteins: anoval strategy for immune protection. Hum Antibodies, 1997; 8(3): 106-118.
    27. Naramura M, Gillies SD, Menddsohn J, et al. Mechanisms of cellular cytotoxicity mediated by a recombinant antibody-IL-2 fusion protein against human melanoma cells. Immunol Lett, 1993; 39(1): 91-99.
    28. Sabzevari H, Gillies SD, Mueller BM, et al. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc Natl Acad Sci USA, 1994; 91(20): 9626-9630.
    29. Becker JC, Pancook JD, Gillies SD, et al. Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci USA, 1996; 93(7): 2702-2707
    30. Melani C, Figini M, Nicosia D, et al. Targeting of interleukin 2 to human ovarian carcinoma by fusion with a single-chain Fv of antifolate receptor antibody. Cancer Res, 1998; 58(18): 4146-4154.
    31. Tibben BJ, Boerman OC, Massuger LF, et al. Pharmacokinetics, biodistribution and biological effects of intravenously administered bispecific monoclonal antibody OC/TR F(ab’)2 in ovarian carcinoma patients. Int J Cancer, 1996; 66: 477
    32. Posey JA, Raspet R, VermaU, et al. A pilot trial of GM-CSF and MDX-H210 in patients with erbB-2-positive advanced malignancies. J Immunother, 1999, 22: 371.
    33. David MS, George JW and Louis MW. Bispecific antibodies in cancer therapy. Current Opinion in immunology, 1999, 11: 558-562.
    34. Pedley RB, Sharm SK, Boxer GM, et al. Enhancement of antibody-directed enzyme prodrug therapy in colorectal xenografts by an antivascular agent. Cancer Res, 1999, 59: 3998-4003.
    35. Houba PH, et al. Pronounced antitumor efficacy of doxorubicin when given as the prodrug Dox-GA3 in combination with a monoclonal antibody-beta-glucurondase conjugate. Int J Cancer, 2001, 91(4): 550-554.
    36. Hacck K. Detection of cytosine deaminase in genetically modified tumor cells by specific antibodies. Hum Gene Ther, 1997, 8: 1395.
    37. Shabat D, Lode HN, Pertl U, et al. In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy. Proc Natl Acad Sci USA, 2001, 98(13): 7528-7533.)
    38.于会文,陈红亮,范大民,等.肿瘤治疗新方法的研究现状与未来(Ⅰ)———光动力化学疗法在肿瘤治疗中的应用.辽宁大学学报(自然科学版)2001, 28(3): 274-278.
    39.刘建源,鲁琰.血卟啉衍生-癌胚抗原Mab偶联物抗肿瘤特性的研.中华微生物学和免疫学杂志, 2002, 22(1): 88-91.
    40. Cleland L. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnology Progress, 1998, 14: 102-107.
    41. Labhasetwar V, Song C, Humphrey W, et al. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci, 1998, 87(10): 1229-1234.
    42. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxe(Taxol): PLGA nanoparticels containing vitamin E TPGS. J Control Release, 2003, 86(1): 33-48.
    43.龚连生,张阳德,周少波.磁性化疗纳米治疗大鼠移植性肝癌.中国现代医学杂志, 2001, 11(3): 14-17.
    44.徐辉碧.纳米医药.北京:清华大学出版社, 2004: 54.
    45. Panchal RG. Novel therapeutic strategies to selectively kill cancer cells.Biochem Pharmacol. 1998, 55: 247.
    46. Endo Y, Mitsui K, Motizuki M, et al. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J Biol Chem, 1987, 262: 5908-5912.
    47. Bolognesi A, Tazzari P L, Olivieri F, et al. Induction of apoptosis by ribosome-inactivating proteins and related immunotoxins. Int J Cancer, 1996, 68: 349- 355.
    48. Hughes J N, Lindsay C D, Griffiths G D. Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum Exp Toxicol, 1996,15: 443- 451.
    49. Bergamaschi G, Perfetti V, Tonon L, et al. Saporin, a ribosomein-activating protein used to prepare immunotoxins, induces cell death via apoptosis. Br J Haematol, 1996, 93: 789- 794.
    50. Tagge E, Harris B, Burbage C, et al. Synthesis of green fluorescent protein- ricin and monitoring of its intracellular trafficking. Bioconjug Chem, 1997, 8: 743- 750.
    51. Phan L D, Perentesis J P, Bodley J W. Saccharomyces cerevisiae elongation factor 2: mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J Biol Chem, 1993, 268: 8665- 8668.
    52. Kreitman R J. Immunotoxins for targeted cancer therapy. AAPS J, 2006, 8: E532- E551.
    53. Choe S, Bennett M, Fujii G, et al. The crystal structure of diphtheria toxin. Nature, 1992, 357: 216-222.
    54. Pstan I, Chaudhary V, Fitz Gerald DJ. Characterization of RFB4-pseudomonas exotoxin A immunotoxins targeted to CD22 on B-cell malignancies. Bioconjug Chem, 1996, 7(5): 557-563.
    55. Robert J. Kreitman, Ira Pastan. Immunotoxins for targeted cancer therapy. Advanced Drug Delivery Reviews, 1998, 31: 53-88.
    56. Greenfield L, Johnson V G, Youle R J. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science, 1987, 238: 536-539.
    57. Jurcic JG. Immunotherapy for acute myeloid leukemia. Curr Oncol Rep, 2005, 7(5): 339-346.
    58. Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol, 2005, 5(5): 543-549.
    59. Kreitman RJ, Pastan I. Immunotoxins for targeted cancer therapy. Advanced Drug Delivery Reviews, 1998, 31(1): 53-88.
    60. Kreitman RJ. Recombinant immunotoxins for the treatment of patients with chemotherapy-resistant cancer. Eur J Cancer, 2001, 37(3 Suppl): S75-S78.
    61. Xi Y, Zheng L, Sun Y, et al. Molecular design and construction of IL6D24-PE40KDEL, a novel recombinant interleukin 6-pseudomonas exotoxin fusion protein, having targeted cytotoxicity for leukemias expressing interleukin 6 receptors. Hum Immunol, 2003, 64(10 Suppl): S247-S248.
    62. Tur MK, Huhn M, Thepen T, et al. Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res, 2003, 63(23): 8414-8419.
    63. Peipp M, Kupers H, Saul D, et al. A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res, 2002, 62(10): 2848-2855.
    64. Frankel AE, Powell BL, Hall PD, et al. PhaseⅠtrial of a novel Diphtheria toxin/Granulocyte macrophage colony-stimulating factor fusion protein (DT388-GMCSF) for refractory or relapsed acute myeloid leukemia. Clin CancerRes, 2002, 8: 1004-1013.
    65. Panchal RG. Novel therapeutic strategies to selectively kill cancer cells. Biochem Pharmacol, 1998, 55(3): 247-252.
    66. Reiter Y, Pastan I. Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis. Trends Biotechnol, 1998, 16(12): 513-520.
    67. Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother, 2003, 52(5): 338-341.
    68. Kreitman RJ. Recombinant immunotoxins for the treatment of patients with chemotherapy-resistant cancer. Eur J Cancer, 2001, 37(3 Suppl): S75-S78.
    69. Haggerty HG, Waner WA, Comereski CR, et al. BR96 sFv-PE40 immunotoxin: non clinical safety assessment. Toxicol Pathol, 1999, 27(1): 87-94.
    70. Shinohara H, Morita S, Kawai M, et al. Expression of HER2 in human gastric cancer cells directly correlates with antitumor activity of a recombinant disulfide-stabilized anti-HER2 immunotoxin. J Surg Res, 2002,102(2): 169-177.
    71. Di Paolo C, Willuda J, Kubetzko S, et al. A recombinant immunotoxin derived from a humanized epithelial cell adhension molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin Cancer Res, 2003, 9(7): 2837-2848.
    72. Fan D, Yano S, Shinohara H, et al. Targeted therapy against human lung cancer in nude mice by high-affinity recombinant antimesothelin single-chain Fv immunotoxin. Mol Cancer Ther, 2002, 1(8): 595-600.
    73. Bruell D, Stocker M, Huhn M, et al. The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA’suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol, 2003, 23(4): 1179-1186.
    74. Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignantglioma therapy: from bench to bedside. J Neurooncol, 2003, 65(1): 37-48.
    75. Nash KT, Thompson JP, Debinski W. Molecular targeting of malignant glimas with novel multiply-mutated interleukin 13-based cytotoxins. Crit Rev Oncol Hematol, 2001, 39(1/2): 87-98.
    76. Pastan I, Chaudhary V, FitzGerald DJ. Recombinant toxins as novel therapeutic agents. Annu Rev Biochem, 1992, 61: 331-354.
    77. Baluna R, Vitetta ES. Vascular leak syndrome: a side effect of immunotherapy. Immunpharm, 1997, 37(2-3): 117-132.
    78. Falini B, Terenzi A, et al. Targeted antibodies in the treatment of lymphomas. Cancer Surv, 1997, 30: 295-309.
    79. Liu SY, Press OW. The potential for immunoconjugates in lymphoma therapy. Hematol Oncol Clin North Am, 1997, 11(5): 987-1006.
    80. Reiter Y, Pastan I. Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis. Trends Biotechnol, 1998, 16(12): 513-520.
    81. Pastan I, Chaudhary V, FitzGerald DJ. Recombinant toxins as novel therapeutic agents. Annu Rev Biochem, 1992, 61: 331-354.
    82. Panchal RG. Novel therapeutic strategies to selectively kill cancer cells. Biochem Pharmacol, 1998, 55(3): 247-252.
    83. Cater P, Presta L, Gorman C M, et al. Humanization of an anti-P185 HER2 antibody human cancer therapy. PNAS, 1992, 89: 4285-9.
    84. Kipriyanov S M, et al. Recombinant single chain Fv fragments carry C-terminal cysteine residues: production of bivalent and biotinylated minonatibodies. Mol Immunol.1994, 31: 1047-1058.
    85. Owens.R.J. and Young.R.J. The genetic engineering of monoclonal antibodies. J Immunol Methods. 1994, 168: 149-165.
    86. Worm.A. and Pluekthun.A. Mutual stabilization of VL and VH in single-chain antibody fragments investigated with mutants engineered for stability. Biochemistry.1998, 22: 13120-13127.
    87. Krebs B, Rauchenberger R, Reiffert S, et al. High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods. 2001, 254: 67-84.
    88. Siegall CB, Haggerty HG, Warner GL, et al. Prevention of immunotoxin induced immunogenicity by coadministration with CTLA4Ig enhances antitumor efficacy. J Immunol, 1997, 159: 5168-5173.
    89. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric Anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol, 1998, 16: 2825-2833.
    90. Duebel S. Reconstitution of human pancreatic Rnase from two separate fragments fused to Different single chain antibody fragments: On the way to binary immunotoxins. Tumor Targeting, 1999, 4: 37-46.
    91. Susanna M R, Hennie RH, HarryMM, et al. Humanization of immunotoxins. PNAS, 1992, 89: 3165-3169.
    92. Psarras K, Ueda M, Yamamura T, et al. Human pancreatic RNase1-human epidermal growth factor fusion: an entirely human‘immunotoxin analog’with cytotoxic properties against squamous cell carcinomas. Protein Eng, 1998, 11: 1285-92.
    93. Azar Y, Lorberboum G H. GnRH2Bik/ Bax/ Bak chimeric proteins target and kill adenocarcinoma cells: the general use of pro-apoptotic proteins of the Bcl-2 family as novel killing components of targeting chimeric proteins. Apoptosis, 2000, 5(6): 531-542.
    94. Jia LT, Zhang LH, Yu CJ, et al. Specific tumouricidal activity of a secreted pro-apoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res, 2003, 63: 3257–62.
    95. Xu YM, Wang LF, Jia LT, et al. A caspase-6 and anti-human epidermal growth factor receptor-2 (HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumours. J Immunol, 2004, 173: 61–7.
    96. Zhao J, Zhang LH, Jia LT, et al. Secreted antibody/ granzyme B fusion protein stimulates selective killing of HER2-overexpressing tumour cells. J Biol Chem, 2004, 279: 21343–8.
    97. Yu CJ, Jia LT, Meng YL, et al. Selective pro-apoptotic activity of a secreted recombinant antibody/AIF fusion protein in carcinomas overexpressing HER2. Gene Ther, 2006, 13: 313–20.
    98. Xiu-Chun Qiu, Yan-Ming Xu, Fang Wang, et al. Single-chain antibody/activated BID chimeric protein effctively suppresses HER2-positive tumor growth. Mol Cancer Ther, 2008, 7(7): 1890-1899.
    99. Stephen P. Ethier, Michael L. Mahacek, et al. Differential isolation of normal luminal mammary epithelial cells and breast cancer cells from primary and metastatic sites using selective media. Cancer Res, 1993, 53: 627-635.
    100. Antia GOYAl, Janendra K.BATRA. Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins. Biochem. J., 2000, 345: 247-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700