用户名: 密码: 验证码:
重组人IL18-EGF融合基因的构建、表达及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     将人白介素-18(human interleukin 18,hIL18)基因与表皮生长因子受体干扰序列(EGF loop C sequence,EGF)构建IL18-EGF融合基因,利用pET32a/E.coli BL21(DE3)表达IL18-EGF融合基因,通过复性、纯化获得有活性的重组人IL18-EGF融合蛋白,通过体内、体外试验评价IL18-EGF融合蛋白的抗肿瘤活性。
     方法
     1.hIL18 cDNA克隆与rhIL18-EGF融合基因的构建:从1名健康献血者的外周血单个核细胞(PBMC)中提取总RNA,RT-PCR扩增hIL18 cDNA,通过PCR重组技术,将hIL18与EGF序列通过一个中间接头(Gly4Ser)3编码序列融合,IL18-EGF融合基因与pMD18-T载体连接,命名为pFUS-IL18-EGF质粒,并测序鉴定。
     2.IL18-EGF融合蛋白原核表达载体的构建和表达:采用PCR方法,以质粒pFUS-IL18-EGF为模板,扩增IL18-EGF融合基因,将其克隆入原核表达质粒pET32a(+),构建表达载体pET32a-IL18-EGF,限制性内切酶双酶切和测序鉴定质粒构建是否正确。将表达质粒转化E.coli Rosetta(DE3),IPTG诱导其表达,SDS-PAGE和免疫印迹分析表达产物。
     3.IL18-EGF融合蛋白包涵体的复性、纯化:大量表达分离IL18-EGF融合蛋白包涵体,并用2 M尿素和1%Triton X-100反复洗涤。以8M尿素溶解包涵体,将包涵体裂解液上样于弱阴离子交换柱DEAE-52,进行柱上复柱,复性产物进一步用分子筛Sephadex G-75纯化。复性纯化产物与人外周血单个核细胞(PBMC)共培养24h,RT-PCR检测PBMC IFN-γmRNA的表达情况来评价复性效果。
     4.IL18-EGF融合蛋白的体内抗肿瘤活性研究:皮下注射2×10~6人肝癌细胞株SMMC-7721细胞至Balb/c裸鼠右侧腰部;成瘤后,将裸鼠进行随机化分成IL18-EGF组、rhIL18组和生理盐水(NS)空白对照组;待肿瘤直径为0.5~0.7cm时,瘤周注射1×10~6经8Gy放射线处理的NK-92细胞,各组裸鼠再用相应的药物瘤周注射进行治疗,每5天注射NK细胞和药物一次,共持续5次。在治疗开始之前及在各次注射治疗的时间点均测量各移植肿瘤的长短径,计算肿瘤体积。同时观察并记录裸鼠摄食、饮水等其他生长情况。在最后一次治疗的次日,通过拉颈处死全部裸鼠,切除肿瘤组织。一部分肿瘤组织制成单细胞悬液并应用流式细胞术进行细胞周期和凋亡的监测;另一部分肿瘤组织,连同裸鼠的肝、肺、脾等器官一并通过10%福尔马林的固定用于常规病理切片染色和观察。
     5.IL18-EGF融合蛋白的促增殖、诱导分泌IFN-γ和活化免疫细胞的体外研究:从健康志愿者抽取静脉血5ml,密度梯度离心分离外周血单个核细胞(PBMNCs)。利用CCK-8试剂盒测试IL18-EGF对PBMNCs的促增殖作用。应用ELISA法检测IL18-EGF诱导KG-1细胞分泌IFN-γ。应用多参数流式细胞术检测IL18-EGF对SMMC-7721肿瘤抗原和K562细胞抗原致敏的PBMNCs淋巴细胞亚群分布及CD4+和CD8+T细胞活化的影响。
     6.IL18-EGF融合蛋白体内、体外试验的统计学分析:应用SPSS13.0统计软件包、Prism 4.0统计软件进行数据分析,CurveExpert 1.3免费软件用于标准曲线的制作。
     结果
     1.突变型IL18 cDNA的克隆:RT-PCR扩增出人IL18 cDNA,PCR产物经限制性核酸内切酶酶切分析以及测序结果Blast同源性分析证明,该序列与Ushio等报道的序列相比存在G157A(Asp→Asn)、G364A(Met→Val)、G484A(Ala→Thr)等3处有意义突变,属于突变型,GenBank收录(AF380360)。
     2.PCR法构建IL18-EGF融合基因:以IL18-EGF融合基因与pMD18-T载体连接,该质粒命名为pFUS-IL18-EGF质粒。pFUS质粒经SalⅠ/XbaⅠ双酶切和测序验证,IL18-EGF融合基因与原设计的基因序列相符合,GenBank收录(AF454397)。经计算机模拟分析,IL18-EGF融合蛋白与IL18自然成熟胎在分子疏水性、二级结构等理化特性方面相似。
     3.IL18-EGF融合蛋白原核表达载体成功构建和表达:双酶切分析以及测序结果表明原核表达载体pET32a-IL18-EGF与设计相符;工程菌E.coli Rosetta(DE3)/pET32a-IL18-EGF诱导表达后在分子量为37kDa处可产生特异的表达条带,并能够被抗人IL18单克隆抗体所识别,与预期一致。
     4.IL18-EGF融合蛋白包涵体的复性、纯化及其生物学活性测定:变性的IL18-EGF融合蛋白包涵体经阴离子交换层析柱DEAE-52柱上复性和分子筛Sephadex G-75进一步纯化后纯度达95%。RT-PCR检测结果表明复性产物具有诱导人PBMC IFN-γ基因表达的能力。IFN-γELISA结果显示,IL18-EGF融合蛋白具有明显地诱导KG-1细胞产生IFN-γ的能力,但活性低于标准rhIL18。
     5.裸鼠体内IL18-EGF融合蛋白抗肿瘤试验中,瘤周注射IL18-EGF合并NK细胞注射能显著抑制SMMC-7721移植瘤的生长:在治疗结束时,SMMC-7721异种移植瘤的体积在IL18-EGF组、rhIL18组和空白对照组分别为0.063±0.030cm~3,0.212±0.037cm~3和0.432±0.030cm~3空白对照组与IL18-EGF组和rhIL18组的差别是比较明显的(P<0.01)。此外,rhIL18组与IL18-EGF组的差别也具有统计学意义(P=0.05)。细胞周期分析表明,IL18-EGF组有96.11%±1.51%的细胞停滞在G1期,而在rhIL18组和空白对照组则分别是81.3%±2.02%和72.18%±0.46%,前者与后两者相比均有明显的差异(IL18-EGF vs rhIL18:P<0.05;IL18-EGF vs control:P<0.01)。同时,rhIL18组与空白对照组相比也有明显差异(P<0.05)。IL18-EGF组、rhIL18组和空白对照组S期细胞的比例分别为3.69%±0.41%,16.51%±1.25%,和23.85%±1.36%,前者与后两者相比均有明显的差异(IL18-EGF vs rhIL18:P<0.01;IL18-EGF vs control:P<0.01)。同时,rhIL18组与空白对照组相比也有明显差异(P<0.05)。肿瘤细胞自主凋亡发生率在三组中也有明显不同,与空白对照组(7.10%±1.13%)相比,IL18-EGF组(28.05%±3.89%,P<0.05)、rhIL18组(25.48%±5.46%,P<0.05)肿瘤细胞自主凋亡比例明显增高,而IL18-EGF组和rhIL18组间无明显差异。肿瘤标本切片观察未发现各治疗组病理特征有明显差异,在各主要脏器中均未发现肿瘤转移。此外,各治疗组裸鼠在体重、摄食及饮水等方面也无明显改变。
     6.IL18-EGF融合蛋白的促增殖、诱导分泌IFN-γ的体外研究:PBMNCs在IL18-EGF组、rhIL18组和空白对照组中的增殖活性(OD_(450))前两者与空白对照组相比均有明显差异(IL18-EGF vscontrol:P<0.01;IL18 vs control:P<0.05),分别为1.14±0.07,1.02±0.42和0.84±0.01,而IL18-EGF组和rhIL18组间无明显差异。IL18-EGF能有效诱导KG-1细胞合成、分泌IFN-γ。IL18-EGF组、rhIL18组和空白组培养上清中IFN-γ的水平分别为96.67pg/ml、164.0pg/ml及12.33pg/ml。
     7.IL18-EGF融合蛋白活化免疫细胞的体外研究:PBMNCs在
Objective
     To construct IL18-EGF fusion gene harboring human epidermal growth factor receptor interfere sequence(EGF loop C sequence,EGF) and human Interleukin-18(hIL18),to express the IL18-EGF fusion gene in pET32/E.coli BL21(DE3),and to evaluate antineoplastic bioactivities of IL18-EGF fusion protein in vivo and in vitro.
     Methods
     1:Construction of rhIL18-EGF fused gene:Total RNA was extracted from Peripheral Blood Mononuclear Cells(PBMC).After amplification of the hIL18 gene by RT-PCR,we linked it with EGF gene and constructed pFUS-IL18-EGF by gene recombination.
     2:Expression and identification of human IL18-EGF fused gene: Prokaryotic expression vector pET32a-IL18-EGF was constructed by recombinant DNA technique and later identified by BamHⅠ/Bpull02Ⅰdouble digestion and gene sequencing.Then recombinant vector was further transformed into E.coli Rosetta(DE3)for expression under the induction of IPTG at 25℃.SDS-PAGE and Western blot were applied to confirmation of expression product.
     3:Purification and renaturation of the fusion protein:The inclusion body of the fusion protein was washed with 2 M carbamide and 1% Triton X-100 followed dissolving in 8 M carbamide,lysate of inclusion body was renatured by DEAE-52 anion exchange column.Fusion protein was co-cultured with(PBMC)for 24h,then expression levels of mRNA in PBMC IFN-γwas measured by real time RT-PCR.
     4:Antineoplastic activity of the IL18-EGF fusion protein in vivo: 2×10~6 human hepatic carcinoma cell lines SMMC-7721 cells cultured in DMEM(high glucose)supplemented with 10%fetal bovine serum were subcutaneously injected into the right flank of Balb/c nude mice.Balb/c nude mice with established xenograft were randomized into three groups of treatment:IL18-EGF,rhIL18 and blank group.Tumor-bearing mice were treated with peritumoral subcutaneously injection of 1×10~6 NK-92 cells irradiated with 8Gy X-ray followed by peritumoral subcutaneously injection of three groups,every five days for five times.The next morning after the last dosage,all mice were sacrificed through cervical dislocation and the tumor masses and mouse organs(liver,spleen and lung)were completely dissected for further usage.
     5:Abilities to promote proliferation,induce to secrete IFN-γand active immune cells:In vitro experiments,peripheral blood mononucleated cells(PBMNCs)were isolated with gradient centrifugation and the effects of IL18-EGF on proliferation of PBMNCs were measured by CCK-8 kit.IFN-γproduction by KG-1 cells was assayed with ELISA kit.Flow cytometry with the built-in software packages was carried out to observe how IL18-EGF actived SMMC-7721 neoantigen,the distributions of lymphocyte subpopulations sensitized by antigens of K562 cells,and the activation of CD4+and CD8+T lymphocytes..
     6:Statistic analysis:SPSS 13.0 software package,Prism 4.0 software package and Curve Expert 1.3 free software were used for statistic analysis,and P<0.05 was considered significant throughout in this work. Results
     1:Clone of mutant IL18 cDNA:Amplification of IL18 gene by RT-PCR, restriction enzyme zymogram analysis,PCR,DNA sequencing and BLAST search indicated that there were 3 mutations compared with sequences reported by Ushio,including G157A(Asp→Asn),G364A (Met→Val),G484A(Ala→Thr),which have been accepted by GenBank (AF380360).
     2:Construction of IL18-EGF fused gene by PCR:Two-step PCR products of the IL18-EGF fused gene were cloned into pMD18-T vector to construct pFUS-IL18-EGF.Then the plasmid pFUS was confirmed by SalⅠ/XbaⅠdouble digestion and sequencing,accepted by GenBank. (AF454397).Computer simulation analysis showed that physicochemical properties like hydrophobicity and secondary structure of IL18 structural domain of IL18-EGF fusion protein were familiar with that of the natural IL18 structural domain.
     3:Prokaryotic expression vector was constructed and fusion protein was expressed successfully:Double digestion and sequencing confirmed the previous design of the prokaryotic expression vector,and expressed fusion protein with 37kDa was effectively identified by IL18 monoclonal antibody.
     4:Purification and renaturation of the IL18-EGF fusion protein and measurement of its activity:Purity of fusion protein reached 95%after purification and renaturation by DEAE-52 anion exchange column and Sephadex G-75 molecular sieve.RT-PCR indicated that purified product could induce the expression of the PBMC IFN-γgene.Moreover,IFN-γELISA tests showed fusion protein had effectively induced KG-1 cells to secret IFN-γ,even though the ability was lower than the standard IL18.
     5:Subcutaneous injection of IL18-EGF and NK cells adjacent to tumor significantly inhibited the growth of SMMC-7721transplantation tumor:Before the end of therapy,we found volume of xenograft tumor was(0.063±0.030)mm3 in IL18-EGF group,(0.212±0.037)mm3 in rhIL18 group,and(0.432±0.030)mm3 in control group respectively.Compared to control,SMMC-7721 xenograft growth in Balb/c nude mice was markedly inhibited with peritumoral injection of IL18-EGF(P<0.01).Furthermore,the inhibitory effect of IL18-EGF on SMMC-7721 growth in vivo was more profound than that of rhIL18(P=0.05).Meanwhile,more tumor cells were arrested in G1 phase in IL18-EGF group(96.11±1.51%),compared to rhIL18 group (81.3±2.02%,P<0.05)as well as to control(72.18±0.46%,P<0.01).The difference on the percentage of G1 phase between rhIL18 group and control was also significant(P<0.05).The percentages of S phase in IL18-EGF group,rhIL18 group and control were 3.69±0.41%, 16.51±1.25%,and 23.85±1.36%,respectively(IL18-EGF vs rhIL18:P<0.01;IL18-EGF vs control:P<0.01;IL18 vs control:P<0.05).Tumor spontaneous apoptotic rates in IL18-EGF,rhIL18 and medium group were 28.05±3.89%(P<0.05,compared to control),25.48±5.46%(P<0.05,compared to control)and 7.10±1.13%,respectively.And there was still not significant difference between IL18-EGF and rhIL18 group on spontaneous apoptosis induction.No significant difference was observed on pathologic features of SMMC-7721 xenograft grown in Balb/c nude mice treated with IL18-EGF,rhIL18 and control,respectively.In addition, no apparent unwanted reaction was detected in mice treated with IL18-EGF as demonstrated in mice weight comparison undertaken at the end of treatment.
     6:IL18-EGF fusion protein to promote proliferation and induce to secrete IFN-γin vitro:The proliferation of PBMNCs induced by IL18-EGF,rhIL18 and medium in the presence of 0.5ug/ml ConA were 1.14±0.07,1.02±0.42 and 0.84±0.01,respectively,indicating significant pro-proliferation activity of IL18-EGF(P<0.01)and of rhIL18(P<0.05) as compared to control.However,there was not significant difference between IL18-EGF and rhIL18 on proliferation of PBMNCs.IFN-γ
引文
[1]Okamura H,Tsutsui H,Komatsu T et al.Cloning of a new cytokine that induces IFN-γproduction by T cells.Nature 1995;378:88-91.
    [2]Kato Z,Jee J,Shikano H et al.The structure and binding mode of interleukin-18.Nature Structural Biology 2003;10:966-971.
    [3]Nakamura K,Okamura H,Wada M et al.Endotoxin-induced serum factor that stimulates gamma interferon production.Infection and Immunity 1989;57:590-595.
    [4]Tsutsui H,Nakanishi K,Matsui K et al.IFN-γ-Inducing Factor Up-Regulates Fas Ligand-Mediated Cytotoxic Activity of Murine Natural Killer Cell Clones.Journal of Immunology 1996;157:3967-3973.
    [5]Dao T,Mehal WZ,Crispe IN.IL18 aulmentsugments perforin-dependent cytotoxicity of liver NK-T cells.Journal of Immunology 1998;161:2217-2222.
    [6]Dao T,Ohashi K,Kayano T et al.Interferon-y-inducing factor,a novel cytokine,enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells.Cellular Immunology 1996;173:230-235.
    [7]Nakanishi K,Yoshimoto T,Tsutsui H et al.Interleukin-18 regulates both Th1and Th2 responses.Annual Review of Immunology 2001;19:423-474.
    [8]Osaki T,ron JM,Cai Q et al.IFN-?-inducing factor/IL18 administration mediates IFN-γand IL-12-independent antitumor effects.Journal of Immunology 1998;160:1742-1749.
    [9]Hashimoto W,Tanaka F,Robbins PD et al.Natural killer,but not natural killer T,cells play a necessary role in the promotion of an innate antitumor response induced by IL18.International Journal of Cancer 2003;103:508-513.
    [10]Kikuchi T,Akasaki Y,Joki T et al.Antitumor activity of interleukin-18 on mouse glioma cells.Journal of Immunotherapy 2000;23:184-189.
    [ll]Yamashita K,Iwasaki T,Tsujimura T et al.Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow.Oncology reports 2002;9:1237-1244.
    [12]Schlessinger J.Ligand-induced,receptor-mediated dimerization and activation of EGF receptor.Cell 2002;110:669-672.
    [13]Baselga J. The EGFR as a target for anticancer therapy Focus on cetuximab. European Journal of Cancer 2001; 37.16-22
    [14]Grunwald V, Hidalgo M. Developing inhibitors of the epidermal growth factor receptor for cancer treatment. Journal of the National Cancer Institute 2003; 95:851-867.
    [15] Chen WQ, Ding YP, Zhang LL et al. Enhanced anti-tumor effect of an IFN-γ-EGF fusion protein. Biomedical and Environmental Sciences 1997; 10:387-395.
    [16] Lutsenko SV, Feldman NB, Severin SE. Cytotoxic and antitumor activities of doxorubicin conjulatesugates with the epidermal growth factor and its receptor-binding fragment. Journal of Drulug Targeting 2002; 10: 567-571.
    [17] Chen JJ, Sun M, Lu F et al. Construction and expression of hTNF?-hTGF3 fused gene. Acta Biochimica et Biophysica Sinica 1999; 31: 517-518.
    [18] Lewis VA, Basso L, Blake N et al. Human nerve growth factor receptor and cytosine deaminase fusion genes. Human Gene Therapy 2003; 14: 1009-1016.
    [19] Curtis BM, Williams DE, Broxmeyer HE et al. Enhanced hematopoietic activity of a human granulocyte/macrophage colony-stimulating factor-interleukin 3 fusion protein. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 5809-5813.
    [20] Lee YL, Ye YL, Yu CI et al. Construction of single-chain interleukin-12 DNA plasmid to treat airway hyperresponsiveness in an animal model of asthma.Human Gene Therapy 2001; 12: 2065-2079.
    [21] George RA, Heringa J. An analysis of protein domain linkers: Their classification and role in protein folding. Protein Engineering 2002; 15: 871-879.
    [22]Arai R, Ueda H, Kitayama A et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering 2001; 14:529-532.
    [23]Crasto CJ, Feng JA. LINKER: A program to generate linker sequences for fusion proteins. Protein Engineering 2000; 13: 309-312.
    [24] Jean LFL, Murphy JR. Diphtheria toxin receptor-binding domain substitution with interleukin 6: Genetic construction and interleukin 6 receptor-specific action of a diphtheria toxin-related interleukin 6 fusion protein. Protein Engineering1991; 4: 989-994.
    [25] Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology 2004; 64:625-635.
    [26]Konishi K, Tanabe F, Taniguchi M et al. A simple and sensitive bioassay for the detection of human interleukin-18/interferon-?-inducing factor using human myelomonocytic KG-1 cells. Journal of Immunological Methods 1997; 209:187-191.
    [27]Kirkpatrick RB, McDevitt PJ, Matico RE et al. A bicistronic expression system for bacterial production of authentic human interleukin-18. Protein Expression and Purification 2003; 27: 279-292.
    [28] Wong CK, Li EK, Ho CY et al. Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus.Rheumatology 2000; 39: 1078-1081.
    [29] De Bernardez Clark E. Refolding of recombinant proteins. Current Opinion in Biotechnology 1998; 9: 157-163.
    [30] De DA, Dickinson H. Affinity chromatographic purification of antibodies to a biotinylated fusion protein expressed in Escherichia coli. Protein Expression and Purification 1998; 12: 138-143.
    [31]Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: Single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analytical Biochemistry 1992; 205:263-270.
    [32] Clark EDB. Protein refolding for industrial processes. Current Opinion in Biotechnology 2001; 12: 202-207.
    [33] Li M, Su ZG, Janson JC. In vitro protein refolding by chromatographic procedures. Protein Expression and Purification 2004; 33: 1-10.
    [34]Jungbauer A, Kaar W, Schlegl R. Folding and refolding of proteins in chromatographic beds. Current Opinion in Biotechnology 2004; 15: 487-494.
    [35]Downward J, Yarden Y, Mayes E, et al. Close similarity of pidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature1984;307:521-527
    [36] Lin CR, Chen WS, Kruiger W, et al. Expression cloning of human EGF receptor complementary DNA: gene amplification and three related messenger RNA products in A431 cells. Science 1984;224:843-848.
    [37]Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984;309:418-425.
    [38]Xu YH, Ishii S, Clark AJ, et al. Humanepidermal growth factor receptor cDNA is homologous to a variety of RNAs overproduced in A431 carcinoma cells. Nature ,1984; 309:806-10.
    [39] Mendelsohn J. The epidermal growth factor receptor as a target for cancer therapy. Endocrine-Related Cancer 2001, 8: 3-9.
    [40] Nicholson RI, Gee JM & Harper ME. EGFR and cancer prognosis. European Journal of Cancer 2001, 37: S9-S15.
    [41]Herbst RS. Targeted therapy in non-small-cell lung cancer. Oncology 2002,16:19-24.
    [42] Mendelsohn J & Baselga J Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. Journal of Clinical Oncology 2003, 21:2787-2799.
    [43]Micallef MJ, Yoshida K, Kawai S, et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother 1997;43:361-367.
    [44]Osaki T, Peron JM, Cai Q, et al. IFN-gamma-inducing factor/IL18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol1998;160:1742-1749
    [45]Kaser A, Kaser S, Kaneider NC, et al. Interleukin-18 attracts plasmacytoid dendritic cells (DC2s) and promotes Th1 induction by DC2s through IL18 receptor expression. Blood 2004;103(2):648-655.
    [46]Gutzmer R, Langer K, Mommert S, et al. Human dendritic cells express the IL18R and are chemoattracted to IL18. J Immunol 2003,171: 6363-6371.
    [47]Komai-Koma M, Gracie JA, Wei XQ, et al. Chemoattraction of human T cells by IL18. J Immunol 2003;170:1084-1090.
    [48]Cumberbatch M, Dearman RJ, Antonopoulos C, et al. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1 beta-dependent mechanism. Immunology 2001;102:323-330.
    [49] Rubin BY, Gupta SL. Differential efficacies of human type Ⅰ and type Ⅱ interferons as antiviral and antiproliferative agents. Proc Natl Acad Sci USA1980;77:5928-5932.
    [50] Jia SF, Kleinerman ES. Antitumor activity of TNF-alpha, IL-1, and IFN-gamma against three human osteosarcoma cell lines. Lymphokine Cytokine Res 1991;10:281-284.
    [51 ] Palumbo A, Battaglio S, Napoli P, et al. Recombinant interferon-gamma inhibits the in vitro proliferation of human myeloma cells. Br J Haematol1994;86:726-732.
    [52]Delvenne P, al Saleh W, Gilles C, et al. Inhibition of growth of normal and human papillomavirus-transformed keratinocytes in monolayer and organotypic cultures by interferon-gamma and tumor necrosis factor-alpha. Am J Pathol1995;146:589-98.
    [53] Watanabe Y, Kuribayashi K, Miyatake S, et al. Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by aulmentedugmented anti-tumor immunity. Proc Natl Acad Sci USA 1989;86:9456-9460.
    [54]Boehm U, Klamp T, Groot M, et al. Cellular responses to interferon-gamma. Annu Rev Immunol 1997; 15:749-795.
    [55] Arenberg DA, Kunkel SL, Polverini PJ, et al. Interferongamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSGLC) tumorigenesis and spontaneous metastases. J Exp Med1996;184:981-992.
    [56]Kominsky S, Johnson HM, Bryan G, et al. IFN-gamma inhibition of cell growth in glioblastomas correlates with increased levels of the cyclin dependent kinase inhibitor p21WAFl/CIPl. Oncogene 1998;17:2973-2979.
    [57]Harvat BL, Jetten AM. Gamma-interferon induces an irreversible growth arrest in mid-G1 in mammary epithelial cells which correlates with a block in hyperphosphorylation of retinoblastoma. Cell Growth Differ 1996;7:289-300.
    [58]Subramaniam PS, Johnson HM. A role for the cyclindependent kinase inhibitor p21 in the Gl cell cycle arrest mediated by the type I interferons (published erratum ppears in J Interferon Cytokine Res 1997; 17:318). J Interferon Cytokine Res 1997; 17:11-15.
    [59]Ruemmele FM, Gurbindo C, Mansour AM, et al. Effects of interferon gamma on growth, apoptosis, and MHC class Ⅱ expression of immature rat intestinal crypt (IEC-6) cells. J Cell Physiol 1998; 176:120-126.
    [60]Tamura T, Ueda S, Yoshida M, et al. Interferon-gamma induces Ice gene expression and enhances cellular susceptibility to apoptosis in the U937 leukemia cell line. Biochem Biophys Res Commun 1996;229:21-26.
    [61] Vadiveloo PK, Vairo G, Novak U, et al. Differential regulation of cell cycle machinery by various antiproliferative agents is linked to macrophage arrest at distinct Gl checkpoints. Oncogene 1996; 13:599-608.
    [62] Arany I, Brysk MM, Calhoun KH, et al. Differentiation and IFN gamma regulate WAF1/CIP1 transcription in p53-independent and p53-dependent pathways in epithelial cells. In Vivo 1996;10:119-123.
    [63]Xaus J, Cardo M, Valledor AF, et al. Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis.Immunity 1999; 11:103-113.
    [64] Harvat BL, Seth P, Jetten AM. The role of p27Kip1 in gamma interferon-mediated growth arrest of mammary epithelial cells and related defects in mammary carcinoma cells. Oncogene 1997;14:2111-122.
    [65]Matsuoka M, Nishimoto I, Asano S. Interferon-gamma impairs physiologic downregulation of cyclin-dependent kinase inhibitor, p27Kipl, during G1 phase progression in macrophages. Exp Hematol 1999;27:203-209.
    [66] Cohen GM. Caspases: the executioners of apoptosis.Biochem J 1997;326:1-16.
    [67] Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999;274:20049-20052.
    [68]Nagata S. Fas-induced apoptosis. Intern Med 1998;37:179-181.
    [69]Nagata S. Apoptosis by death factor. Cell 1997;88:355-365.
    [70]Dighe AS, Richards E, Old LJ, et al. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors.Immunity 1994; 1:447-456
    [1] Pulsleyugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews 1993; 57: 50-108.
    [2] Pratap J, Dikshit KL. Effect of signal peptide changes on the extracellular processing of streptokinase from Echerichia coli: Requirement for secondary structure at the cleavage junction. Molecular and General Genetics 1998; 258:326-333.
    [3] Jeong KJ, Lee PC, Park IY et al. Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enzyme and Microbial Technology 1998; 22: 599-605.
    [4] Jeong KJ, Lee SY. Secretory production of human leptin in Escherichia coli. Biotechnology and Bioengineering 2000; 67: 398-407.
    [5] Ki JJ, Sang YL. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Expression and Purification 2001; 23: 311-318.
    [6] Verma R, Boleti E, George AJ. Antibody engineering: Comparison of bacterial,yeast, insect and mammalian expression systems. Journal of Immunological Methods 1998; 216: 165-181.
    [7] Turner DJ, Ritter MA, George AJ. Importance of the linker in expression of single-chain Fv antibody fragments: Optimisation of peptide sequence using phage display technology. Journal of Immunological Methods 1997; 205: 43-54.
    [8] Jung S, Honegger A, Pluckthun A. Selection for improved protein stability by phage display. Journal of Molecular Biology 1999; 294:163-180.
    [9] Schmiedl A, Winter CH, Queitsch I et al. Effects of unpaired cysteines on yield,solubility and activity of different recombinant antibody constructs expressed in E.coli. Journal of Immunological Methods 2000; 242: 101-114.
    [10]Hayhurst A. Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expression and Purification 2000; 18: 1-10.
    [11]Kim JY, Fogarty EA, Lu FJ et al.Wheelock GD, Henderson LA. Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Applied and Environmental Microbiology 2005; 71: 8451-8459.
    [12]Qiu J, Georgiou G, Swartz JR. Expression of active human tissue-type plasminogen activator in Escherichia coli. Applied and Environmental Microbiology 1998; 64: 4891-4896.
    [13]Kurokawa Y, Yura T, Yanagi H. Overproduction of Bacterial Protein Disulfide Isomerase (DsbC) and Its Modulator (DsbD) Markedly Enhances Periplasmic Production of Human Nerve Growth Factor in Escherichia coli. Journal of Biological Chemistry 2001; 276: 14393-14399.
    [14]Wulfing Wulfing C, Rappuoli R. Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP-deficient Escherichia coli strain. Archives of Microbiology 1997; 167: 280-283.
    [15] Park SJ, Georgiou G, Lee SY. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain. Biotechnology Progress 1999; 15: 164-167.
    [16] Yang J, Xia Q, Xiang J et al. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-α) from Escherichia coli caused by the synergistic effects of glycine and Triton X-100.Applied and Environmental Microbiology 1998; 64: 2869-2874.
    [17]Kipriyanov SM, Little M, Moldenhauer G. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. Journal of Immunological Methods 1997; 200: 69-77.
    [18]Bothmann H, Pluckthun A. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA: I. Increased functional expression of antibody fragments with and without cis-prolines. Journal of Biological Chemistry 2000;275: 17100-17105.
    [19]Missiakas D, Raina S, Betton JM. New components of protein folding in extracytoplasmic compartments of escherichia coli SurA, FkpA and Skp/OmpH. Molecular Microbiology 1996; 21: 871-884.
    [20]Zavialov AV, Batchikova NV, Korpela T et al. Secretion of Recombinant Proteins via the Chaperone/Usher Pathway in Escherichia coli. Applied and Environmental Microbiology 2001; 67: 1805-1814.
    [21]Tong L, Lim D, Yang DSC et al. Extracellular expression, purification, and characterization of a winter flounder antifreeze polypeptide from Escherichia coil. Protein Expression and Purification 2000; 18: 175-181.
    [22]Rippmann JF, Mattes R, Klein M et al. Procaryotic expression of single-chain variable-fragment (scFv) antibodies: Secretion in L-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli. Applied and Environmental Microbiology 1998;64: 4862-4869.
    [23]Kujau MJ, Riesenberg D, Hoischen C et al. Expression and secretion of functional miniantibodies McPC603scFvDhlx in cell-wall-less L-form strains of Proteus mirabilis and Escherichia coli: A comparison of the synthesis capacities of L-form strains with an E. coli producer strain. Applied Microbiology and Biotechnology 1998; 49: 51-58.
    [24]Chames P, Fieschi J, Baty D. Production of a soluble and active MBP-scFv fusion: Favorable effect of the leaky tolR strain. FEBS Letters 1997; 405: 224-228.
    [25]Kleist S, Miksch G, Friehs K et al. Optimization of the extracellular production of a bacterial phytase with Escherichia coil by using different fed-batch fermentation strategies. Applied Microbiology and Biotechnology 2003; 61: 456-462.
    [26] Wan EWM, Baneyx F. TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli.Protein Expression and Purification 1998; 14: 13-22.
    [27] Fu Z, Rahman RNZA, Hamid SBtAb et al. Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease. Protein Expression and Purification 2003; 28: 63-68.
    [28] Lin WJ, Huang SW, Chou CP. High-level extracellular production of penicillin acylase by genetic engineering of Escherichia coli. Journal of Chemical Technology and Biotechnology 2001; 76:1030-1037.
    [29] Van Der Wal FJ, Ten Hagen-Jongman CM, Oudega B et al. Optimization of bacteriocin-release-protein-induced protein release by Escherichia coli:Extracellular production of the periplasmic molecular chaperone FaeE. Applied Microbiology and Biotechnology 1995; 44: 459-465.
    [30] Van Der Wal FJ, Koningstein G, Ten Hagen CM et al. Optimization of bacteriocin release protein (BRP)-mediated protein release by Escherichia coli: Random mutagenesis of the pCloDF13-derived BRP gene to uncouple lethality and quasi-lysis from protein release. Applied and Environmental Microbiology 1998;64:392-398.
    [31] Fernandez LA, Sola I, Enjuanes L et al. Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli culturesulures by use of the hemolysin system. Applied and Environmental Microbiology 2000; 66:5024-5029.
    [32] Jeong KJ, Lee SY. Excretion of human β-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Applied and Environmental Microbiology 2002; 68: 4979-4985.
    [33]Park SJ, Georgiou G, Lee SY. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain.Biotechnology Progress 1999; 15: 164-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700