用户名: 密码: 验证码:
石圪台煤矿浅埋较薄煤层开采覆岩运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以神东矿区石圪台煤矿71301较薄煤层综采工作面为依托,采用现场实测、理论分析、数值模拟、相似材料模拟方法对浅埋较薄煤层开采覆岩运动规律进行了研究。
     浅埋较薄煤层开采在神东矿区尚属首次,通过现场实测积累了采场、超前顺槽的相关矿压资料,得出工作面中部压力最大,周期来压具有分段性,工作面中下部首先来压,运输顺槽侧滞后回风顺槽侧3~5m的距离来压;综合超前顺槽变形、顶板离层、支柱载荷变化规律确定超前支承压力为单一弹性分布形态,其影响范围分区性明显,明显影响区域为煤壁前方20m左右的范围。
     通过理论分析获得了顶板断裂呈现的结构形态,确定出了控制老顶结构稳定性的合理支架工作阻力;结合71301工作面具体情况确定控制老顶“台阶岩梁”结构所需的支护阻力较“短砌体梁”结构大,与现场实测相吻合。
     通过数值模拟获得了浅埋较薄煤层开采覆岩应力、位移演化规律,得出工作面中部应力数值最大,超前支承压力峰值位于煤壁处,超前影响区域为煤壁前方20m左右的范围;获得了不同基岩厚度对较薄煤层开采覆岩运动规律的影响,得出浅埋较薄煤层开采过程中在上方覆岩中存在应力壳结构形态,随基岩厚度的增加应力壳逐渐向上、向前扩展,基岩厚度为80m时其在高度方向的扩展趋于稳定;确定出了合理区段保护煤柱的尺寸为10m,为缩小煤柱尺寸、提高煤炭资源回收率提供了依据。
     通过相似材料模拟直观再现了覆岩裂隙萌生、扩展及贯通全过程,得出上覆岩层不存在普通煤层开采的“三带”,只存在垮落带和裂隙带“两带”,垮落带高度为5~7.6倍采高,其上裂隙带扩展直至地表;获得了不同赋存条件下重复采动对覆岩结构稳定性的影响,由于垮落岩层结构性较差,在重复采动影响下弯曲下沉继续扩展,且其弯曲下沉较上层煤开采大得多。
Based on the fully mechanized thinner coal seam face of NO.71301 in Shi Getai coal mine, Shendong mining area, this paper resorted to methods of measurement on the spot, theoretical analysis, numerical simulation and similarity material simulation to research the overlying strata movement law during shallow thinner seam mining.
     It was the first time for Shendong mining area to mine shallow thinner seam, so there was no successful experience to refer. The related mine pressure data of face and advanced gate was accumulated firstly by measuring on the spot. It was obtained that the biggest pressure area located in the middle of face, periodical weighting had the characteristic of partition, the weighting came from the lower part of face firstly, and the weighting of haulage gate lagged behind air return way by 3-5m. It was confirmed that the distributional pattern of advanced support pressure was unitary elasticity by synthesizing advanced gate deformation, roof separation and the variation of prop load. Its range of influence was markedly divisional and the obvious region was about 20m in front of the coal wall.
     The configuration presented during the roof breaking was obtained and the reasonable support working resistance of controlling the structural stability of main roof was determined by theoretical analysis. According to the particular case of NO.71301 face, it was confirmed that the support resistance of controlling main roof "step rock beam", which was close to the measurement on the spot, was bigger than the support resistance of "short masonry beam".
     Through numerical simulation, the evolution law of stress and displacement of overlying strata during shallow thinner seam mining was obtained. The stress value was biggest in the middle of face, the peak value of advanced support pressure located at the coal wall, and the advanced influence area was the scope of about 20m in front of coal wall. The influence to overlying strata movement was obtained during thinner seam mining under different thicknesses of bedrock by numerical simulation. There was stress shell structure in the above strata during shallow thinner seam mining, which expanded gradually upward and forward along with the thickening of bedrock. It tended to be stable in height direction when the bedrock thickness was 80m. It was determined that the reasonable size of protecting coal pillar was 10m by numerical simulation, which provided basis for shrinking pillar size and raising the recovery rate of resources.
     The process of fissure initiation, expansion and perforation in overlying strata was visual reproduced by similarity material simulation. It was obtained that there weren't "three zones" in overlying strata, as the ordinary coal seam mining, but "two zones", caving zone and fissure zone. The height of caving zone was about 5-7.6 times of height mining, and the fissure zone above caving zone expanded to the surface. The influence to structure stability of overlying strata by repeating mining under different conditions of occurrence was obtained through similarity material test. Because of the worse structure of broken down rock strata, under the influence of repeating mining it continued to sink and the subsidence of the overlying strata above the upper seam was much bigger than the subsidence during upper seam mining.
引文
1.Bodrac B.B.Rock pressure features of Moscow suburb coal-field[J].Coal,1998(2)
    2.[澳]B.霍勃尔瓦依特等.浅部长壁法开采效果的地质技术评价.煤炭科研参考资料,1985(3)
    3.Holla L.,Buizen M..Strata movement due to shallow longwall mining and the effect on ground permeability[J],Aus IMM Proceedings,1990,295(1):11-18
    4.赵宏珠.中国综放长壁技术和装备出口印度应用效果分析[J],煤矿开采,2000(1):5-8
    5.赵宏珠.浅埋采动煤层工作面矿压规律研究[J],矿山压力与顶板管理,1996(2):23-27
    6.赵宏珠.印度综采长壁工作面浅部开采实践[J],中国煤炭,1998,24(12):49-51
    7.赵宏珠.印度浅埋深难跨顶板煤层地面爆破综采研究[J],矿山压力与顶板管理,1999(3):57-60
    8.Moebs N.N.,Barton T.M..Short-term effects of longwall mining on shallow water sources.Information Circular-United States[J],Bureau of Mines,1985:13-24
    9.Missavage R.J.,Chugh Y.P.,Roscetti T..Subsidence prediction in shallow room and pillar mines[J],International Journal of Mining and Geological Engineering,1986(4):39-46
    10.Singh R.,Singh T.N.,Dhar B.B..Coal pillar loading in shallow mining conditions[J],International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1996,33(8):757-768
    11.Kalendra B.S.,Bharat B.D..Sinkhole subsidence due to mining[J],Geotechnical and Geological Engineering,1997(15):327-341
    12.Ravindran M.,Schwarz W.,Jeyamani R.,etc.Shallow-water sand-mining operation[J],Proceedings of the Annual Offshore Technology Conference,1999(1):83-101
    13.Napier J.A.L.,Malan D.F..The computational analysis of shallow depth tabular mining problems[J],Journal of The South African Institute of Mining and Metallurgy,2007,107(11):725-742
    14.Swart A.H.,Handley M.F..The design of stable stope spans for shallow mining operations[J],Journal of The South African Institute of Mining and Metallurgy,2005,105(4):275-286
    15.Peterson R.D..Softwall mining extracts ore from shallow sandy deposits[J],Engineering and Mining Journal,2003,204(7):20-23
    16.Palchik V..Prediction of hollows in abandoned underground workings at shallow depth[J],Geotechnical and Geological Engineering,2000(18):39-51
    17.Soni A.K.,Singh K.K.,Prakash A.etc.Shallow Cover over coal mining:A case study of subsidence at Kamptee Colliery,Nagpur,India[J],Bull Eng Geol Environ,2007(66):311-318
    18.Mrinal K.G.,Majee S.R..Characteristics of hazardous airborne dust around an Indian surface coal mining Area[J],Environ Monit Assess,2007(130):17-25
    19.Singh R.,Mandal P.K.,Singh,A.K.,etc.Optimal underground extraction of coal at shallow cover beneath surface/subsurface objects:Indian practices[J],Rock Mechanics and Rock Engineering, 2008,41(3):421-444
    20.Chanda E.K.,Corbett C.J..Underground mining of shallow-dipping orebodies in Australia-Meehanised updip stoping versus transverse retreat panel stoping[J],Australasian Institute of Mining and Metallurgy Publication Series,2003(1):165-176
    21.石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J],西安矿业学院学报,1996,16(3):204-207
    22.侯忠杰,谢胜华,张杰.地表厚土层浅埋煤层开采模拟实验研究[J],西安科技学院学报,2003,23(4):365-368
    23.侯忠杰,黄庆享.松散层下浅埋煤层薄基岩煤层开采的模拟[J],陕西煤炭技术,1994:38-42
    24.侯忠杰,吴文湘,肖民.厚土层薄基岩浅埋煤层“支架-围岩”关系实验研究[J],湖南科技大学学报,2007,22(1):9-12
    25.侯忠杰,张杰.厚松散层浅埋煤层覆岩破断判据及跨距计算[J],辽宁工程技术大学学报,2004,23(5):577-580
    26.侯忠杰.断裂带老顶的判断准则及在浅埋煤层中的应用[J],煤炭学报,2003,28(1):8-12
    27.侯忠杰.地表厚松散层浅埋煤层组合关键层的稳定性分析[J],煤炭学报,2000,25(2):127-131
    28.黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J],岩石力学与工程学报,2002,21(8):1174-1177
    29.黄庆享.浅埋煤层采动厚砂土层破坏规律模拟[J],长安大学学报,2003,23(4):25-27
    30.黄庆享.浅埋煤层厚沙土层顶板关键块动态载荷分布规律[J],煤田地质与勘探,2003,31(6):22-25
    31.黄庆享.浅埋煤层长壁开采顶板结构及合理支护阻力研究[J],中国岩石力学与工程学会第七次学术大会论文集,2002.9:492-494
    32.黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J],煤炭学报,1999,24(6):581-585
    33.钱鸣高,石平五.矿山压力与岩层控制[M],徐州:中国矿业大学版社,2003:280-293
    34.钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J],岩石力学与工程学报,1995,14(6):97-106
    35.杨治林.浅埋煤层长壁开采顶板结构稳定性分析[J],矿山压力与顶板管理,2005(2):7-9
    36.杨治林,余学义,郭何明等.浅埋煤层长壁开采顶板岩层灾害机理研究[J],岩土工程学报,2007,29(12):1763-1765
    37.宋选民,窦江海.浅埋煤层回采巷道合理煤柱宽度的实测研究[J],矿山压力与顶板管理,2003(3):31-35
    38.宋选民,顾铁凤,闫志海.浅埋煤层大采高工作面长度增加对矿压显现的影响规律研究[J],岩石力学与工程学报,2007,26(2):4007-4012
    39.余学义,黄森林.浅埋煤层覆岩切落裂缝破坏及控制方法分析[J],煤田地质与勘探,2006,34(2):18-21
    40.李风仪.浅埋煤层长壁开采矿压特点及其安全开采界限研究[D],阜新:辽宁工程技术大学,2007.11
    41.李风仪,梁冰,董尹庚.浅埋煤层工作面项板活动及其控制[J],矿山压力与顶板管理,2005(4):78-81
    42.柴敬.浅埋煤层开采的大比例立体模拟研究[J],煤炭学报,1998,23(4):391-395
    43.刘巍,高召宁.浅埋煤层开采矿压显现规律的相似模拟[J],矿山压力与顶板管理,2005(2):17-18
    44.张杰,侯忠杰.厚土层浅埋煤层覆岩运动破坏规律研究[J],采矿与安全工程学报,2007,24(1):56-59
    45.张杰,侯忠杰,马砺.浅埋煤层老顶岩块回转过程中的溃沙分析[J],西安科技大学学报,2006,26(2):158-160
    46.谢胜华.地表厚土层浅埋煤层覆岩运动与破坏规律研究[D],西安:西安科技学院,2002.4
    47.谢胜华,侯忠杰.浅埋煤层组合关键层失稳临界突变分析[J],矿山压力与顶板管理,2002(1):67-72
    48.吕军,侯忠杰.影响浅埋煤层矿压显现的因素[J],矿山压力与顶板管理,2000(2):39-41
    49.董爱菊,张沛,黄庆享等.浅埋煤层周期来压动载机理研究[J],延安大学学报,2006,25(2):39-43
    50.宣以琼.薄基岩浅埋煤层覆岩破坏移动演化规律研究[J],岩土力学,2008,29(2):512-516
    51.卢鑫,张东升,范钢伟等.厚砂层薄基岩浅埋煤层矿压显现规律研究[J],煤矿安全,2008.9:10-12
    52.马立强,张东升,刘玉德等.薄基岩浅埋煤层保水开采技术研究[J],湖南科技大学学报,2008,23(1):1-5
    53.伊茂森,张日晨.薄基岩浅埋煤层工作面顶板来压过程研究[J],煤矿开采,2008,13(2):81-82
    54.张惠,田银素.薄基岩大采高综采面矿压显现规律[J],矿山压力与顶板管理,2004(3):69-71
    55.金广清,杨君.浅埋煤层回采巷道采用裸体支护的可行性分析[J],煤炭工程,2005,(8):23-24
    56.冯茂龙,王占银.浅埋煤层工作面覆岩运动规律相似模拟实验研究[J],西北煤炭,2008,6(2):41-44
    57.李刚,梁冰,李凤仪.大柳塔煤矿12305工作面覆岩活动规律的相似模拟[J],黑龙江科技学院学报,2005,15(5):295-298
    58.李刚,梁冰,李风仪.浅埋煤层厚积砂薄基岩顶板破断机理研究[J],中国矿业,2005,14(8):82-83
    59.张东升,范钢伟,刘玉德等.浅埋煤层工作面顶板裂隙扩展特征数值分析[J],煤矿安全, 2008.7:91-92
    60.黄森林.浅埋煤层覆岩结构稳定性数值模拟研究[J],煤田地质与勘探,2007,35(3):25-28
    61.王宗革,王莉莉,宋振骐等.浅埋煤层开采三维相似材料模拟实验研究[J],岩石力学与工程学报,2004,23(2):4926-4929
    62.刘向峰,王来贵,何峰.布尔洞矿浅埋煤层开采方案模拟实验研究[J],煤矿安全,2006(8):7-9
    63.范立民,杨宏科.神北矿区浅部煤层的赋存特征及影响因素[J],煤田地质与勘探,1999,27(3):22-24
    64.封金权,张东升,王旭锋等.土基型浅埋煤层矿压显现规律实测与分析[J],煤矿安全,2008(1):90-94
    65.彭文庆,吴文湘,彭刚.浅埋煤层工作面合理阻力支架选型相似模拟实验研究[J],煤炭科技,2008(1):10-13
    66.金桃,柏建彪,方新秋.薄基岩厚表土煤层开采的极限基岩厚度分析[J],煤,2007,16(3):4-6
    67.杨伟峰,隋旺华.薄基岩条带开采工程地质力学模型试验研究[J],中国矿业大学学报,2004,33(2):170-173
    68.方新秋,黄汉富,金桃.厚表土薄基岩煤层开采覆岩运动规律[J],岩石力学与工程学报,2008,27(1):2700-2706
    69.单晓云,王永申,赵毅鑫.近距离薄煤层综采覆岩移动及其与支架相互作用关系研究[J],煤炭工程,2008(1):67-69
    70.侯树宏,柴敬,吕兆海.近浅埋煤层软岩条件下综采工作面顶板破断规律[J],煤炭技术,2008.27(10):4648
    71.朱庆华,王继承,马占国.浅埋煤层厚硬顶板破断与冒落的数值模拟[J],矿山压力与顶板管理,2004(4):17-19
    72.张文军,沈海鸿,蔡桂宝.浅埋煤层开采覆岩移动规律数值分析[J],辽宁工程技术大学学报,2002,21(2):143-145
    73.吴文湘.厚土层浅埋煤层综采覆岩破坏规律与支架阻力研究[D],西安:西安科技大学,2006
    74.谢大平.浅埋煤层长壁开采顶板结构稳定性分析[D],西安:西安科技大学,2008
    75.郭文.浅埋煤层项板结构灾害机理研究[D],西安:西安科技大学,2008
    76.姜福兴.矿山压力与岩层控制[M],北京:煤炭工业出版社,2004:61-62
    77.彭文斌.FLAC3D实用教程[M],北京:机械工业出版社,2008:1-3
    78.Yasitli N.E.,Unver B..3Dnumerical modeling of longwall mining with top-coal caving[J],International Journal of Rock Mechanics & Mining Sciences 2005(42):219-235
    79.李鸿昌.矿山压力的相似模拟试验[M],徐州:中国矿业大学出版社,1988:54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700