用户名: 密码: 验证码:
像素级多聚焦图像融合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在变换域方面,提出了两种基于Q-Shif双树复数小波变换(Q-Shif DT-CWT)的融合算法。针对低频系数和高频系数的不同特点,算法一分别采用邻域梯度取大(NGMS)和模值取大(MVMS)融合准则进行系数融合。在算法一的基础上,算法二采用合成图像模值取大(SI-MVMS)准则对高频系数进行融合。两种融合算法提高了系数选取的准确性,其中算法二融合图
     像质量更高。在空间域方面,提出了基于非下采样Contourlet变换(NSCT)的空间域融合算法。该算法采用NSCT提取源图像细节信息,通过合成图像绝对值取大(SI-AVMS)准则得到融合决策图来“指导”源图像中像素点的选取。算法利用NSCT良好的细节表现力,克服了传统空间域融合算法在细节表现力上的不足。由于不存在反变换,避免了对源图像信息的破坏。
     在彩色多聚焦图像融合方面,提出了基于NSCT的空间域彩色多聚焦图像融合算法。该算法根据亮度分量的融合情况“指导”源彩色图像的三个分量中像素点的选取,其中亮度分量采用基于NSCT的空间域融合算法进行融合。该算法避免了传统融合算法容易出现的颜色失真和模糊现象。
Multi-focus image fusion provides the means to integrate the corresponding clear regions acquired from the registered images into a composite image. Therefore, the goal of Multi-focus image fusion algorithm is to extract the clear regions correctly. Multi-focus image fusion is usually performed at one of the three different processing levels: pixel-level, feature-level and decision-level. Pixel-level multi-focus image fusion is the subject matter of this thesis. Some solutions to the problems caused by existing image fusion algorithms are introduced in space domain and transform domain.
     In transform domain, the Discrete Wavelet Transform (DWT) suffers from two main disadvantages, i.e. lack of shift invariance and poor directional selectivity. The Q-Shift Dual-Tree Complex Wavelet Transform (Q-Shift DT-CWT), being of approximate shift invariance and good directional selectivity, can better represent detail features of images. Therefore, the registered images are firstly processed with Q-Shift DT-CWT. Then the low frequency coefficients and the high frequency coefficients are fused with fusion rule based on neighborhood and rules based on pixel separately because of their different characteristics. The low frequency coefficients, which reflect the contour features of images, vary slowly, so the neighborhood gradient maximum selectivity (NGMS) scheme is used. The experiment results show that the accuracy of NGMS scheme, which reflects the ratio of selected pixels from the clear regions to the all selected pixels, is 81.89%-90.93%. The high frequency coefficients, which reflect edge and detail features, vary fast, so the module value maximum selectivity (MVMS) scheme is used in Algorithm One. Nevertheless the MVMS scheme sometimes damages the consistency of the high frequency coefficients. Therefore the“synthesis image”is introduced in Algorithm Two, in which the high coefficients are fused with synthesis image module value maximum selectivity (SI-MVMS) scheme and are processed by consistency verification. The experiment results show that the Algorithm One avoids the artifacts and ringing artifacts caused by incorrect pixel selectivity in wavelet based fusion algorithms. Compared with reference [8],[11],[35],[38], the RMSE of the fused image Clock with Algorithm One is reduced by 39.85%-87.81%, the WFQI and EFQI of the fused image Disk with Algorithm One are increased by 0.74%-8.48% and 1%-17.27% separately. Compared with Algorithm One, the RMSE of the fused image with Algorithm Two is reduced by 10.15%, which reflects that Algorithm Two preserves the contour and detail features of images more effectively.
     In space domain, the conventional fusion algorithms are scant of detail feature representation. Therefore the registered images are processed with nonsubsampled contourlet transform (NSCT), and the acquired high frequency coefficients are used to decide the pixel selectivity from the registered images. In order to overcome the one-sidedness of the single high frequency sub-band image, the decision map is attained by fusing the all high frequency sub-band images through synthesis image absolute value maximum selectivity (SI-AVMS) scheme. Then the decision map is verified by consistency verification. Finally, the fused image is completed according to the verified decision map. The inverse transform does not exit in the proposed fusion algorithm, which avoids the loss of information in the registered images caused during the process of transform and inverse transform that exits in the conventional fusion algorithms in transform domain. The proposed fusion algorithm selects the pixels from the registered images directly, which preserves the information of the registered images well. The introduction of NSCT solves the incapability in presentation of detail features exits in the conventional fusion algorithms in space domain. The experimental results show that the multi-focus image fusion algorithm with NSCT in space domain improves the qualities of fused images. Compared with reference [8],[11],[35],[38],[72], the RMSE of the fused image Clock and Barbara are reduced by 53.06%-90.08% and 26.05%-67.6% separately. Moreover, the effects of the number of transform levels and sub-band images on the quality of the fused images are studied.
     For the problems caused by color multi-focus image fusion algorithm, solutions are put forward in three aspects. Firstly, for the color space model, because R, G, B components, being of high correlation, are incapable of representing the gray information. The registered images are fused in IHS or YUV space. Secondly, for the components to be fused, considering that the fusion schemes, which fuse the three components separately, destruct the original proportion of the three components and result in color distortion, only the luminance component in IHS or YUV space is processed. The proposed fusion scheme, which selects the three components of one pixel simultaneously from the registered images, keeps the proportion of the three components in one pixel, avoids the color distortion and reduces the complexity of the fusion algorithm. Thirdly, for the fusion scheme, the multi-focus image fusion algorithm with NSCT in space domain is used to fuse the luminance components, which improves the accuracy of pixel selectivity. The experimental results show that the proposed algorithm, which is called color multi-focus image fusion algorithm with NSCT in space domain, is capable of extracting the pixels in the clear regions correctly and avoids the color distortion.
引文
[1] Wang G F, Zhao L, Chen Z. Adaptive image fusion algorithm of SAR/CCD images based on wavelet transform. Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006: 9694-9697.
    [2] Li M, Wu Y, Wu S J. Multi-focus image fusion based on wavelet decomposition and evolutionary strategy. Proceedings of IEEE Interenational Conference on Neural Networks and Signal Processing. Nanjing, China, December, 2003: 951-955.
    [3] Petrovic V S. Multisensor Pixel-level Image Fusion. A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy, 2001: 16, 52-58.
    [4] Piella G. A general framework for multiresolution image fusion: from pixels to regions. Elsevier Science, Information fusion, 2003, 4(4): 259-280.
    [5] 李伟. 像素级图像融合算法及应用研究. 华南理工大学博士学位论文, 2006, 4-5.
    [6] Wang W W, Shui P L, Song G X. Multifocus image fusion in wavelet domain. Proceedings of the Second International Conference on Machine Learning and Cyberenetics, Xi’an, 2003: 2887-2890.
    [7] Huang J W, Shi Y Q, Dai X H. A segmentation-based image coding algorithm using the features of human vision system. Image Graphics, 1999, 4(5): 400-404.
    [8] Li Z H, Jing Z L, Liu G, Sun S Y, Leung H. Pixel visibility based multifocus image fusion. Processings of IEEE International Conference on Neural Networks and Signal Processing, 2003 2: 1050-1053.
    [9] Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3):235-245.
    [10] Li S T, Kwok J T, Wang Y N, Combination of images with diverse focuses using the spatial frequency. Information Fusion, 2001(2), 169-176.
    [11] 李树涛, 王耀南, 张昌凡. 基于视觉特性的多聚焦图像融合. 电子学报, 2001, 29(12): 1699-1701.
    [12] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Recognition and Machine Analysis, 1986, 8(6): 679-698.
    [13] Li S T, Kwok J T, Wang Y N. Multifocus image fusion using artificial neural networks. Pattern Recogntion Letters, 2002, 23(8): 985-997.
    [14] Goshtasby A. Fusion of multifocus images to maximize image information. Defense and Security Symposium, Orlando, Florida, 2006, 17-21.
    [15] Hariharan H, Koschan A, Abidi M A. Multi-focus image fusion by establishing focal connectivity. Proceedings of.IEEE International Conference on Image Processing, San Antonio TX, 2007(3): 321-324.
    [16] Fedorov D, Sumengen B, Manjunath B S. Multi-focus imaging using local focus estimation and mosaicking. Processings of IEEE International Conference on Image Processing, Atlanta, G A USA., Oct., 2006: 2093-2096.
    [17] Hill P R, Canagarajah N, Bull D. Image fusion using complex wavelets. Proceedings of British Machine Vision Conference 2002: 487-496.
    [18] Zhang Z, Blum R S. A categorization and study of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proceeding. of the IEEE, 1999, 87(8): 1315-1328.
    [19] Piella G. A general framework for multiresolution image fusion: from pixels to regions. Elsevier Science, Information Fusion, 2003, 4(4): 259-280.
    [20] Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532-540.
    [21] Burt P J, Adelson E H. Merging images through pattern decomposition.Proceedings of SPIE on Application of Digital Image Processing Ⅷ, 1985, 575(3): 173-181.
    [22] Toet A. Image fusion by a ratio of low-pass pyramid. Patten Recognition Letters, 1989, 9(4): 245-253.
    [23] Toet A, Ruyven V, Valeton J M. Merging thermal and visual images by a contrast pyramid. Optical Engineering, 1989, 28(7): 789-792.
    [24] Toet A. Multiscale contrast enhancement with application to image fusion. Optical Engineering, 1992, 31(5): 1026-1031.
    [25] Toet A. A morphological pyramidal image decomposition. Pattern Recognition Letters, 1989, 9(4): 255-261.
    [26] Burt P J. A gradient pyramid basis for pattern selective image fusion. Processings of the Society for Information Display Conference. San Jose: SID Press, 1992: 467-470.
    [27] Barron D R, Thomas O D J. Image fusion though consideration of texture components. IEEE Transactions on Electronics Letters, 2001, 37(12): 746-748.
    [28] Burt P J. The pyramid as a structure for efficient computation. A Rosenfeld (Ed) Multiresolution Image Processing and Analysis, Berlin, Germany, 1984: 6-35.
    [29] Burt P J, Kolczynski R J. Enhanced image capture through fusion. Proceedings of IEEE 4th International Conference on Computer Vision, Berlin, Germany, 1993: 173-182.
    [30] Mallat S.G. A theory for multi-resolution signal decomposition the wavelet representation. IEEE Transactions on pattern analysis and machine intelligence, 1989, 11(7): 647-693.
    [31] Ingrid Daubechies 著, 李建平, 杨万年译. 小波十讲. 北京: 国防工业出版社, 2004: 127-153.
    [32] Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 27(3): 235-244.
    [33] Chipman L J, Orr T M. Wavelets and images fusion. Proceedings of IEEE International Conference on Image Processing, Washington D. C., 1995: 248-251.
    [34] 王宏, 敬忠良, 李建勋. 多分辨率图像融合的研究与发展. 控制理论与应用, 2004, 21(1): 145-151.
    [35] 楚恒, 李杰, 朱维乐. 一种基于小波变换的多聚焦图像融合方法. 光电工程, 2005, 32(8): 59-63.
    [36] 李光鑫, 王珂, 张立保. 加权多分辨率图像融合的快速算法. 中国图象图形学报, 2005, 10(12): 1529-1536.
    [37] Piella G. New quality measures for image fusion. Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 542-546.
    [38] 晁锐, 张科, 李言俊. 一种基于小波变换的图像融合算法. 电子学报, 2004, 32(5): 750-753.
    [39] 蒋晓瑜, 高稚允, 周立伟. 小波变换在多光谱图像融合中的应用. 电子学报, 1997, 25(8): 105-108.
    [40] 蒋晓瑜, 高稚允, 周立伟. 基于小波变换的多分辨图像融合. 北京理工大学学报, 1997, 17(4): 458-463.
    [41] 刘贵喜, 杨万海. 一种像素级多算子红外与可见光图像融合方法. 红外与毫米学报, 2001, 20(3): 207-210.
    [42] 王文杰, 唐娉, 朱重光. 一种基于小波变换的图象融合算法,中国图象图形学报, 2001, 6A(11): 1130-1135.
    [43] Huang X S, Chen Z. A wavelet-based scene image fusion algorithm. Proceedings of IEEE Region 10 Annual International Conference, 2002: 602-605.
    [44] 李树涛, 王耀南. 基于树状小波分解的多传感器图像融合. 红外与毫米波学报, 2001, 20(3): 219-222.
    [45] Petrovic V S, Xydeas C S. Cross band pixel selection in multiresolution image fusion. Proceedings of SPIE, Washington, 1999, 3719: 319-326.
    [46] 连静, 王珂, 李光鑫. 基于边缘的小波图像融合算法. 通信学报, 2007,28(4): 18-23.
    [47] Unser M. Texture classification and segmentation using wavelet frame. Processings of IEEE Transactions on Image Processing, 1995, 11(4): 1549-1560.
    [48] Oliver R. Image sequence fusion using a shift invariant wavelet transform. Processings of International Conference on Image Processing, Los Alamitos: IEEE Computer Society, 1997: 288-291.
    [49] Nùňez J, Otazu X, Fors O, Prades A, Palà V, Arbiol R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions of Geosciences and Remote Sensing, 1999, 37(3): 1204-1211.
    [50] 后斌, 乔伟峰, 孙在宏. 基于 HIS v 变换与 à trous 小波分解的遥感影像融合. 南京师大学报(自然科学版), 2006, 29(1): 116-120.
    [51] 吴艳, 杨万海, 李明. 多光谱与高分辨率图像融合算法研究. 光子学报, 2003, 32(2): 174-178.
    [52] 朱长清, 王倩, 杨晓梅. 基于多进制小波的 SPOT 全色影像和多光谱遥感影像融合. 测绘学报, 2000, 29(2): 132-136.
    [53] 王海晖, 彭嘉雄. 基于多小波变换的图像融合研究. 中国图象图形学报, 2004, 9(8): 1002-1007.
    [54] Kingsbury N. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. Proceedings of 8th IEEE Digital Signal Processing, Workshop, Bryce, Canyon, Utah, USA, 1998: 86-89.
    [55] Do, M N, Vetterli M. The finite ridgelet transform for image representation. IEEE Transactions on Image Processing, 2003, 12(1): 16-28.
    [56] Candès E J. Ridgelets and the representation of mutilated Sobolev functions. SIAM J. Math. Anal. 2002, 33 (2): 347–368.
    [57] Candès E J, Donoho D L. Curvelets-A surprisingly effective nonadaptive representation for objects with edges. L L Schumaker, et al. Curves and Surfaces. Nashville: Vanderbilt University Press,1999.
    [58] Candès E J, Demanet L, Donoho D L, et al. Fast discrete curvelettransforms. Appied and Computational Mathe ematics, Califormia Institute of Technology, 2005:1-43.
    [59] Pennec E L, Mallat S. Image compression with geometrical wavelets. Proceeding of 8th IEEE Internationgal Conference on Image Processing, Vancouver, Canada, September, 2000: 661-664.
    [60] Do M N, Vetterli M. Contourlet: A directional multiresolution image representation. Processings of IEEE International Conference on image Processing, Rochester, 2002: 357-360.
    [61] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
    [62] Cunha A L, Zhou J P, Do M N, The Nonsubsampled Contourlet Transform: Theory, design, and applications. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.
    [63] 李晖晖, 郭雷, 李国新. 基于脊波变换的 SAR 与可见光图像融合研究. 西北工业大学学报, 2006, 24(4): 418-422.
    [64] Choi M, Rae Kim Y, Nam M-R, Kim H O. Fusion of Multispectral and Panchromatic Satellite Images Using the Curvelet Transform. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 136-140.
    [65] Gu Y F, Liu Y, Wang C Y, Zhang Y. Curvelet-Based Image Fusion Algorithm for Effective Anomaly Detection in Hyperspectral Imagery. Journal of Physics, 2006, 48: 324-328.
    [66] Alparone L, Baronti S, Garzelli A, Nencini F. Remote sensing image fusion using the curvelet transform. International Journal on Information Fusion, Elsevier, 2007, 8(2):143-156.
    [67] 杨俊, 赵忠明. 基于 Curvelet 变换的多聚焦图像融合方法. 光电工程, 2007, 34(6): 67-71.
    [68] 李晖晖, 郭雷, 刘航. 基于二代 curvelet 变换的图像融合研究. 光学学报, 2006, 26(5): 657-662.
    [69] 李光鑫, 王珂. 基于 Contourlet 变换的彩色图像融合算法. 电子学报,2007, 35(1): 112-117.
    [70] 陈蜜, 李德仁, 秦前清, 贾永红. 基于 Contourlet 变换的遥感影像融合算法. 小型微型计算机系统, 2006, 27(11):2052-2555.
    [71] 郑永安, 宋建社, 周文明, 张杰. 基于 Contourlet 变换的多波段 SAR 图像融合. 计算机工程, 2007, 33(18): 34-36, 58.
    [72] 贾建, 焦李成, 孙强. 基于非下采样 Contourlet 变换的多传感器图像融合. 电子学报, 2007, 35(10): 1934-1938.
    [73] 叶传奇, 苗启广, 王宝树. 基于非子采样 Contourlet 变换的图像融合方法. 计算机辅助设计与图形学学报, 2007, 19(10): 1274-1278.
    [74] 张新曼, 韩九强, 王勇, 易峥嵘. 用视觉特性和自适应优化搜索实现多聚焦彩色图像重构. 微电子学与计算机, 2003, 11: 30-33.
    [75] 陆欢, 吴庆宪, 姜长生. 基于 PCA 与小波变换的彩色图像融合算法. 计算机仿真, 2007, 24(9): 202-205, 296.
    [76] 徐国荣, 王礼平. 基于方向对比度的彩色多聚焦图像融合. 中南民族大学学报(自然科学版), 2006, 25(1): 62-64.
    [77] 王亚杰, 李殿起, 徐心和. 基于双树复小波变换彩色多聚焦图像融合方法. 计算机工程与应用, 2007, 43(28): 12-14, 40.
    [78] Huang W, Jing Z L. Evaluation of focus measures in multi-focus image fusion. Pattern Recognition Letters 2007, 28: 493–500.
    [79] 徐胜男, 陈桂友, 池海. 基于离散小波框架变换的彩色多聚焦图像融合算法. 计算机应用, 2005, 25(3): 580-582.
    [80] Bogoni L, Hansen M. Pattern-selective color image fusion, Pattern Recognition, 2001, 34: 1515-1526.
    [81] 付朝霞, 韩焱, 刘晓利. 一种新的多聚焦彩色图像融合方法. 中国体视学与图像分析, 2006, 11(3): 222-225,229.
    [82] Wang Z, Bovik A C. A universal image quality index. IEEE Signal Processing Letters, 2002, 9(3): 81-84.
    [83] Wang Z, Ziou D, Armenakis C. A comparative analysis of image fusion methods.IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1391-1402.
    [84] Toet A, Hogervorst M A. Performance comparison of different graylevel image fusion schemes through a universal image quality index. Proceedings of SPIE, 2003, 5096: 552-561.
    [85] Gao J B, Harris C J. Some remarks on Kalman filters for the multisensory fusion. Information fusion, 2002, 3(3): 191-201.
    [86] Piella G., Heijmans H. A new quality metric for image fusion. Proceeding of IEEE International Conference on Image Processing, Barcelona, Spain, 2003. 173-176.
    [87] Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform. IEEE Signal Processing Magazien, 2005, 22(6): 123-151.
    [88] Simoncelli E P, Freeman W T, Adelson E H, and et al. Shiftable multiscale transform. IEEE Transactions of Information Theory, 1992, 38: 587-607.
    [89] 李晖晖, 郭雷, 刘航. 基于梯度选取规则的小波变换在图像融合中的研究. 计算机工程与应用, 2005, 12 :76-78.
    [90] Kingsbury N G. Image processing with complex wavelets. Philosophical Transactions: Mathematical, Physical and Engineering Sociences, 1999, 357: 3543-2560.
    [91] Kingsbury N G. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement. Proceedings of Europen Signal Processing Conference, 1998: 319-322.
    [92] Kingsbury N G. Shift invariant properties of the Dual-tree Complex Wavelet Tansform. Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Phoenix, 1999: 16-19.
    [93] 徐云翔, 吴秀清, 李滔. 基于二元树复数小波变换的特征融合算法. 中国科学技术大学学报, 2005, 35(2): 264-269.
    [94] 李玲玲, 王洪群, 娄联堂, 丁明跃. 平移不变性图像融合及在打击效果评估中的应用. 华中科技大学学报(自然科学版), 2006, 34(7): 67-70.
    [95] Kingsbury N G. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. International Conference on ImageProcessing, 2000, 2: 375-378.
    [96] Kingsbury N G. Design of Q-Shift complex wavelets for image processing using frequency domain energy minimization. Processings of IEEE International Conference on Image Processing, Barcelona, 2003 (1): 1013-1016.
    [97] Kingsbury N g. Complex Wavelet for translation invariant analysis and filtering of signals. Journal of Applied and computational Harmonic Analysis, 2001, 10(3): 234-253.
    [98] 那彦, 杨万海, 方凯. 一种新的可见光图像融合方法. 电路与系统学报, 2004, 9(2): 146-148.
    [99] Pajares G, Cruz J M. A wavelet-based image fusion tutorial. Pattern Recognition, 2004, 37(9): 1855-1872.
    [100] 焦李成, 谭山. 图像的多尺度几何分析:回顾和展望. 电子学报, 2003, 31(12A): 1975-1981.
    [101] 倪伟, 郭宝龙, 杨镠. 图像多尺度几何分析新进展:Contourlet. 计算机科学, 2006, 33 (2): 234-236, 262.
    [102] Eslami R, Radha H. Wavelet based contourlet transform and it’s application to image coding. IEEE International Conference on Image Processing, Singpore, 2004, 3189-3192.
    [103] Eslami R, Radha H.The contourelet transform for image denoising using cycle spinning.Asilomar Conference on Signals, Systems, and Computers, Pacific Crove, USA, 2003, 1982-1986.
    [104] 易文娟, 郁梅, 蒋刚毅. Contourlet:一种有效的方向多尺度变换分析算法. 计算机应用研究, 2006, 9: 18-22.
    [105] 董鸿燕, 扬卫平, 沈振康. 基于 Contourlet 变换的自适应图像去噪方法. 红外技术, 2006, 28(9): 552-556.
    [106] 王发牛, 梁栋, 陈军宁, 唐俊, 屈磊. 基于 Contourlet 变换的指纹图像增强. 计算机工程与应用, 2006, 31: 11-13.
    [107] 李海峰, 宋巍巍, 王树勋. 基于 Contourlet 变换的稳健性图像水印算法. 通信学报, 2006, 27(4): 87-94.
    [108] Mallat S G. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustic Speech Signal Processing, 1989, 37(12): 2091-2110.
    [109] Jiang Z G, Han D B, Chen J, Zhou X K. A Wavelet Based Algorithm for Multi-Focus Micro-Image fusion. Processings of IEEE on the third International Conference on Image and Graphic, Hong Kong, 2004, 176-179.
    [110] Garzell A. Possibilities and limitation of the using on wavelet in image fusion. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 66-68.
    [111] Hassaina F, et al.Image fusion by an orthogonal wavelet transform and comparison with other methods.Engineering in Medicine and Biology Society, 1992, 14: 1246-1247.
    [112] 王亚杰, 王晓岩, 刘学平. 基于小波变换的多聚焦图像融合评述. 沈阳航空工业学院学报, 2005, 22(4): 65-67.
    [113] 蒲恬, 方庆喆, 倪国强.基于对比度的多分辨图像融合. 电子学报, 2000, 28(12): 116-118.
    [114] Yang X, Yang W, Pei J. Different focus point images fusion based on wavelet decomposition. Proceedings of Third International Conference on Information Fusion, 2000, 1: 3-8.
    [115] Ranchin T, Wald L. The wavelet transform for the analysis of remotely sensed images. International Journal of Remote Sensing, 1992, 14: 615-619.
    [116] Petrovic V S, Xydeas C S. Gradient-based multiresolution image fusion, IEEE Transactions of Image Processing, 2004, 13(2): 228-237.
    [117] Nikolov S G ,Hill P, Bull D R,Canagarajah N. Wavelets for image fusion. Computational Imaging and Vision Series, Netherlands, 2001, 19: 213-244.
    [118] De I, Chanda B. A simple and efficient algorithm for multi-focus image fusion using morphologica wavelets. Signal Processing, 2006, 86: 924-936.
    [119] Hill P R, Bull D R, Canagarajah C N. Image fusion using a new frameworkfor complex wavelet transforms. Processings of IEEE International Conference on Image Processing, 2005, 2: 11-14.
    [120] Lewis J J, O'Callaghan R J, Nikolov S G, Bull D R, Canagarajah C N. Region-based image fusion using complex wavelets. Proceedings of the Seventh International Conference on Information Fusion, 2004, 1: 555-562.
    [121] Lewis J J, O’Callaghan R J, Nikolov S G, Bull D R, Canagarajah N. Pixel-and region-based image fusion with complex wavelets. Proceedings of 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 555-562.
    [122] Adelson E H, Anderson C H, Bergen J R, et al. Pyramid methods in image processing. RCA Engineer, 1984, 29(6):33-41.
    [123] 李玲玲. 像素级图像融合方法研究与应用. 华中科技大学博士学位论文, 2005: 111-119.
    [124] Eskicioglu A M, Fisher P S. Image quantity measures and their performance. IEEE Transactions on Communications, 1995, 43(12): 2959-2965.
    [125] Maria G A, Jose L S,Raquel G C,et al. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1291-1299.
    [126] Fedorov D, Sumengen B, Manjunath B S. Multi-focus imaging using local focus estimation and mosaicking. Processings of IEEE International Conference on Image Processing, Atlanta, Georgia, 2006, 227-231.
    [127] Candès E J, Demanet L, Donoho D L. Fast discrete curvelet transforms. Multiscale Model,Simul. 2006, 5(3): 861-899.
    [128] Mukhopadhyay S, Chanda B. Fusion of 2D gray scale images using multi-scale morphology. Pattern Recognition, 2001 34: 1939–1949.
    [129] Liu J G. Smoothing filter-based modulation: aspectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 2000, 21(18): 3461-3472.
    [130] Zhang Z, Blum R C. A categorization of multiscale decomposition based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE.1999, 87(9): 1315-1326.
    [131] 章毓晋. 图像处理和分析. 北京: 清华大学出版社 ,2003: 17-22.
    [132] Gonzales R C 等著, 阮秋琦等译. 数字图像处理(第二版). 北京: 电子工业出版社, 2003: 229-238.
    [133] Frechette S, Ingle V K. Gradient based multi-focus video image fusion. Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, 2005, 486-492.
    [134] Li J, Zhou Y Q, Li D R. PCA and wavelet transform for fusing panchromatic and multispectral images. Processdings of SPIE. Herdelberg, Germany: Orlando, 1999, 369-377.
    [135] Liao Z W, Hu S X, Tang Y Y. Region-based multifocus image fusion based on hough transform and wavelet domain hidden markov models. Proceedings of International Conference on Machine Learning and Cybernetics, 2005, 9: .5490-5495.
    [136] Rockinger O, Pixel-level fusion of image sequence using wavelet frames. Proceedings in image fusion and shape variability techniques, Leeds, 1996: 149-154.
    [137] Koren I, Laine A, Taylor F. Image fusion using steerable dyadic wavelet transform. Processings of. IEEE Interenational Conference on Image Processing, 1995, 13: 232-235.
    [138] George P L. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges. Proceedings of SPIE, Visual Information Processing XI, Zia-ur Rahman, 2002, 4736: 189-200.
    [139] Daubenchies I. The wavelet transform: time-frequency localization and signal analysis. IEEE Transaction On Information Theory, 1990, 36(5): 961-1005.
    [140] Hall D L, Llinas J. An intourduction to multisensor fusion. Proceedings of
    [130] Zhang Z, Blum R C. A categorization of multiscale decomposition based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE.1999, 87(9): 1315-1326.
    [131] 章毓晋. 图像处理和分析. 北京: 清华大学出版社 ,2003: 17-22.
    [132] Gonzales R C 等著, 阮秋琦等译. 数字图像处理(第二版). 北京: 电子工业出版社, 2003: 229-238.
    [133] Frechette S, Ingle V K. Gradient based multi-focus video image fusion. Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, 2005, 486-492.
    [134] Li J, Zhou Y Q, Li D R. PCA and wavelet transform for fusing panchromatic and multispectral images. Processdings of SPIE. Herdelberg, Germany: Orlando, 1999, 369-377.
    [135] Liao Z W, Hu S X, Tang Y Y. Region-based multifocus image fusion based on hough transform and wavelet domain hidden markov models. Proceedings of International Conference on Machine Learning and Cybernetics, 2005, 9: .5490-5495.
    [136] Rockinger O, Pixel-level fusion of image sequence using wavelet frames. Proceedings in image fusion and shape variability techniques, Leeds, 1996: 149-154.
    [137] Koren I, Laine A, Taylor F. Image fusion using steerable dyadic wavelet transform. Processings of. IEEE Interenational Conference on Image Processing, 1995, 13: 232-235.
    [138] George P L. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges. Proceedings of SPIE, Visual Information Processing XI, Zia-ur Rahman, 2002, 4736: 189-200.
    [139] Daubenchies I. The wavelet transform: time-frequency localization and signal analysis. IEEE Transaction On Information Theory, 1990, 36(5): 961-1005.
    [140] Hall D L, Llinas J. An intourduction to multisensor fusion. Proceedings of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700