用户名: 密码: 验证码:
基于遥感数据挖掘定量反演城市化区域地表温度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化的快速发展最为直观的表现就是土地覆盖景观的转变。土地利用/土地覆盖的变化不仅会改变地球表面物理特征,而且又能影响到地表与大气之间的能量和水分的交换过程、改变地表生物地球化学的循环过程,对区域甚至全球生态系统的结构和功能等产生极其深刻的影响。尤其对于我国重要的经济中心城市—上海,在社会经济的高速发展中,城市景观布局和土地利用方式变化对城市生态环境演变产生了深远影响。在各种城市化的生态环境效应中,城市热岛效应的产生及演变与城市地表覆被变化、人类社会经济活动密切相关,是城市生态环境状况的综合概括与体现。
     本文以上海市中心城区为研究区域,通过综合应用定量遥感方法、地理信息系统空间分析技术与空间数据挖掘技术,开展城市化过程中的土地利用时空演变格局及城市热岛效应形成机制研究。通过Landsat TM/ETM+遥感影像混合像元分解和亚像元空间定位,获得了较高精度的地表覆盖分类结果,揭示城市化过程中上海中心城区土地利用时空演变格局及城市用地空间扩展模式。在此基础上,运用改进后的Landsat TM/ETM+热波段单窗反演算法,对地表温度和地表发射率进行定量反演,并应用决策树方法和探索性空间数据分析技术来揭示上海中心城区地表温度场的时空演变特征,挖掘城市热岛效应的形成机制。研究成果不仅对于提高遥感影像解译及定量化反演精度、深入城市生态环境系统的研究具有重要的理论意义,而且对于制定合理的城市用地布局与规划以及治理和改善城市生态环境具有较高的实践价值。论文共分为五个章节。
     第一章首先论述了研究背景与立题意义,其次对遥感影像数据挖掘、遥感影像混合像元分类、亚像元信息的空间定位、地表温度的遥感反演这四个相关领域的国内外研究进展进行概述。在此基础上,提出了论文的研究内容、研究方法、技术路线及创新之处。
     第二章基于可能性理论和中心点聚类方法的基本原理,建立了可能性C中心点(PCRMDD)方法。根据减法聚类法所提供的初始聚类中心,运用该算法对研究区域的Landsat TM/ETM+遥感影像进行混合像元分解,并自动获取各类地物端元盖度分布图和影像端元光谱,解混精度的检验结果表明该方法能在噪声环境下获得精度较高的分类结果和端元光谱信息。根据获得的不同时期研究区域的地表覆盖分类结果,应用GIS空间分析功能,进一步探讨在城市化过程中上海中心城区土地利用时空演变格局,揭示城市用地空间扩展模式。
     第三章利用小波变换的时频局域化特性和多尺度分析能力及神经网络的自学习、预测功能,通过小波分析与神经网络的松散型结合方式,建立小波分析和径向基函数神经网络(Wavelet-RBFNN)预测模型。根据混合像元分解获得的像元组分比率信息,基于小波系数的近邻依赖性假设,通过亚像元组分比率值的预测和硬分类两个步骤,实现了遥感影像亚像元的空间定位。对复杂程度不同的人工图像、QuickBird影像和Landsat TM/ETM+遥感影像的实验结果表明,本文提出的亚像元定位方法能成功实现影像空间分辨率的增强,并且与三次样条插值法、克立格插值法相比,具有更好的视觉效果和更高的预测精度。采用该模型对研究区Landsat TM/ETM+遥感影像在较高空间分辨率水平上的亚像元定位结果证实,在高分辨遥感影像不易获得或成本过高时,运用本文提出的Wavelet-RBFNN模型能有效地模拟较高空间分辨率影像,实现高分辨率上地表覆盖类型的自动识别与定位。
     第四章在详细介绍大气校正法、普适性单通道算法和单窗算法这三种基于Landsat TM/ETM+热波段数据反演地温方法的基础上,对单窗算法中地表发射率的计算方法进行了改进。运用改进后的单窗算法对上海中心城区1989、1997、2000和2002年四个特征年份的地表温度和地表发射率进行定量反演,并运用RBF神经网络建立多时相遥感影像的相对辐射校正模型,对不同时相影像进行标准化处理。在此基础上,采用决策树方法来构造城市热环境系统的分类和预测模型,建立中心城区地表温度场空间分布及其驱动因素之间的定量关系,挖掘城市热岛效应的形成机制;并采用热环境成因分类图的形式对分类规则进行可视化表示,以显示多种影响因素综合作用下上海中心城区的热环境空间格局差异。进而,利用探索性空间数据分析(ESDA)技术,通过全局和局部空间自相关分析,采用Global Moran's I、Local Moran'I,和G~*统计量等空间统计指标及半变异函数来定量描述不同尺度和时期上海市中心城区热力景观的空间变异和时间演变特征。
     第五章对论文的研究成果进行了概括和总结,并提出未来需进一步开展的工作和研究重点。
Land use / land cover transformations due to the accelerated development of urbanization not only result in a change of the Earth surface physical properties,but also influence the exchange processes of energe and water between land surface and atmosphere,and biological and geochemical circulation of the Earth,and generally have profound effect on structure and function of regional and even global ecosystem. Especially in Shanghai,the important economic central city in China,the change of urban landscape and land use pattern with high-speed social and economic development has brought far-reaching influence to the evolvement of urban ecological environment.Among varoius urbanized ecological environment effect,the formation and evolution of urban heat island(UHI)effect is closely related with urban land cover change and human social and economic activity,and can be used to generalize and embody the condition of urban ecological environment.
     The research presented in this paper focuses on the study of spatio-temporal evolvement pattern of land use in course of urbanization and mechanism of UHI effect in the selected study area,Shanghai central city,by the intergration of quantitative remote sensing(RS)method,Geographic Information System(GIS) spatial analytical technique,and spatial data mining technique.Land cover classification with high accuracy,by means of mixed-pixel classification and sub-pixel mapping for Landsat TM/ETM+ images,is used to represent the pattern of land use spatio-temporal evolvement and urban land spatial spraw with urbanization in Shanghai central city.Based on these,land surface temperature(LST)and land surface emissivity(LSE)are retrieved by means of modified mono-window algorithm for Landsat TM6 or ETM+6 data.Furthermore,Decision Tree method and Exploratory Spatial Data Analysis(ESDA)are applied to reveal the spatio-temporal evolution characteristics of LST field in Shanghai central city and mine the mechanism of UHI effect.The results are of important theoretical value in improving the accuracy of remote sensing imagery interpretation and quantitative retrieval and deep study of urban ecological environmental system,and are helpful to establish reasonable urban land use arrangement and planning,and manage and improve urban ecological environment in practice.Five chapters are included in this paper.
     Chapter one firstly discusses study background and significance,then summarizes recent study results of related field including remote sensing image data mining,mixed-pixel classification and sub-pixel mapping for remote sensing imagery, and remote sensing retrieval of LST.Based on these,the research content, methodology,technical route and innovation features of the dissertation are put forward.
     Chapter two sets up a Possibilistic C Repulsive Medoids(PCRMDD)clustering algorithm,based on possibility theory and basic principle of c-medoids clustering method.By utilizing initial cluster centers obtained through Subtractive Clustering, mixed-pixel classification is implemented on Landsat TM/ETM+ images of the study area by means of the algorithm,and class proportions of each endmember and spectral reflectance of endmember on images are automatically acquired.Accuracy analysis demonstrates that PCRMDD represents a robust and efficient tool to obtain reliable soft classification results and endmember spectral information in noisy environment. Furthermore,according to the obtained multi-temporal land cover classification of the study area,the pattern of spatio-temporal land use evolvement and urban land spatial sprawl with urbanization in Shanghai central city are explored with the application of spatial analytical function of GIS.
     By making up of time-frequency local property and multi-scale analytical capability of wavelet transformation and self-learning and prediction function of artificial neural network,chapter three develops a prediction model loose combining wavelet analysis and Radial Basis Functions(RBF)neural network,abbreviated as Wavelet-RBFNN.According to the proportion of each land cover class within each pixel from mixed-pixel classification,based on the assumption of neighbourhood dependence of wavelet coefficients,sub-pixel mapping on remote sensing image is accomplished through two steps,i.e.,prediction of proportion of each land cover class within sub-pixel and soft classification hardening.The experimental results obtained on artificial images,QuickBird image,and Landsat TM/ETM+ images indicate that the sub-pixel mapping method proposed in this paper,can successfully achieve remote sensing image super-resolution enhancement,outperforming cubic spline and Kriging interpolation method in visual effect and prediction accuracy.The sub-pixel mapping results of Wavelet-RBFNN model applied to Landsat TM/ETM+ image of study area at higher spatial resolution demonstrate that the model can be used to simulate higher spatial resolution imagery,and automatically identify and map land cover targets at the subpixel scale,when the cost and availability of fine spatial resolution imagery prohibit its use in many areas of work.
     Three methods to retrieve the land surface temperature(LST)from the Landsat thermal channel,including Radiative Transfer Equation(RTE),a generalized single-channel method developed by Jimenez-Munoz and Sobrino,and Qin et al.'s mono-window algorithm,are presented in chapter four.In this paper,the method to estimate land surface emissivity(LSE)is modified when the mono-window algorithm is applied to retrieve LST and LSE from Landsat TM6 and ETM+6 data of the study area in 1989,1997,2000 and 2002.Besides,the resultant multi-temporal LST images are normalized radiometrically through relative radiometric correction based on RBF neural network.Based on these,the quantitative relationship between the spatial distribution of LST field and its driving factors in Shanghai central city is set up and the mechanism of UHI effect is mined,by applying decision tree to developing a classification and prediction model of urban thermal environment system.The obtained classification rules are visually represented in the form of classification image of causes of thermal environment formation to reveal the spatial pattern difference of the thermal environment in Shanghai central city under compositive effect of various influencing factors.Furthermore,by utilizing Exploratory Spatial Data Analysis technique and global and local spatial autocorrelation analysis,several spatial statistical indices,such as Global Moran's I,Local Moran's I and Getis-Ord local G,and semivariogram are adopted to qualitatively describe the characteristics of spatial heterogeneity and temporal evolution of thermal landscape at different scales and periods in Shanghai central city.
     In chapter five,the research results are concluded.Furthermore,future research keys are discussed,too.
引文
[1] Abuelgasim A A, Gopal S, Strahler A H. Forward and inverse modelling of canopy directional reflectance using a neural network. International Journal of Remote Sensing, 1998, 19(3): 453-471.
    
    [2] Adams J B, Smith M 0, and Johnson P E. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research, 1985,91: 8098-8112.
    
    [3] Agrawal R, Imielinski T, Swami A. Database mining: A performance perspective. IEEE transactions on knowledge and data engineering, 1993,5(6), 914-925.
    
    [4] Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proceedings of the Twentieth VLDB Conference, Santiago: Cile. 1994.
    
    [5] Akbarit H, Pomerantz M, Taha H. Cool surface and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 2001,70:295 - 310.
    
    [6] Anderson E. The Irises of the gaspe peninsula. Bull. Am. IRIS Soc. 1935,59: 2-5.
    
    [7] Anselin L Local indicators of spatial association-LISA. Geographical Analysis, 1995,27(2): 93-115.
    
    [8] Anselin L. Interactive techniques and exploratory spatial data analysis. In: Longley P A, Goodchild M F, Maguire D J, et al(eds.). Geographical Information Systems: Principles, Technical Issues, Management Issues and Applications. New York: John Wiley&Sons, Inc, 1999,253-266.
    
    [9] Anselin L. Spatial econometrics. A Companion to Theoretical Econometrics, Baltagi B (ed.), Oxford: Basil Blackwell, 2001: 310-330.
    
    [10] Atkinson P M. Mapping subpixel boundaries from remotely sensed images. In: Kemp Z (Ed.), Innovations in GIS IV, London, U.K.: Taylor and Francis, 1997:166-180.
    
    [11] Atkinson P M, Cutler M E J, Lewis H. Mapping sub-pixel proportional land cover with AVHRR imagery. International Journal of Remote Sensing, 1997,18: 917-935.
    
    [12] Atkinson P M, Tatnall ARL Introduction: neural networks in remote sensing. International Journal of Remote Sensing, 1997,18 (4): 699-709.
    
    [13] Baskshi B R, Stephanopolous. Wavelet-net: A multiresolution, hierarchical neural network with localization learning. American Institute Chemical, Engineering Journal, 1993,39(1): 57-81.
    
    [14] Ben-Dor E, Saaron H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island. Int J Remote Sensing, 1997,18(4): 3039-3053.
    
    [15] Benz U C, Pottier E. Object based analysis of polarimetric SAR Data in Alpha-entropy-anisotropy decomposition using fuzzy classification by eCognition. Proceedings of IGARSS 2001, Sydney, Session: Radar Polarimetry.
    
    [16] Bezdek J C. Cluster validity with fuzzy sets. J. Cybern. 3,1974: 58-73.
    
    [17] Bezdek J C. Mathematical models for systematics and taxonomy. In Proc. 8~(th) Int. Conf, in Numerical Taxonomy (Estarook G, ed.), Freeman, San Francisco, 1975:143-166.
    
    [18] Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, 1981.
    
    [19] Bezdek J C, Ehrlich R, and Full W. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences, 1984,10:191-203.
    
    [20] Bezdek J C, Keller J M, Krishnapuram R, Kuncheva LI, Pal N R. Will the Iris data please stand up? IEEE Trans. Fuzzy Syst., 1999,7:368-369.
    [21] Borel C C, Gerstl S A W. Nonlinear spectral mixing models for vegetative and soil surfaces. Remote Sensing of Environment, 1994,47:403-416.
    
    [22] Bouzerdoum A, Cole R J, Deer P. Classification of satellite imagery based on texture features using neural networks. Proceeding of 4~(th) international conference on control, automation, Robotics and Vision, Singapore, 1996,2257-2261.
    
    [23] Breiman L, Friedman J H, Olshen R A, et al. Classification and Regression Trees. Monterey, CA: Wadsworth, 1984.
    
    [24] Brown M, Gunn S R, Lewis H G. Support vector machines for optimal classification and spectral unmixing. Ecological Modelling, 1999,120:167-179.
    
    [25] Burrough P A. Spatial aspects of ecological data. In: R. H. Jongman et al. eds. Data Analysis in Ecommunity and Landscape Ecology. Pudoc Wageningen, The Netherlands. 1987, 89-125.
    
    [26] Burrough P A. GIS and geostatistics: essential partners for spatial analysis. Environmental and Ecological Statistics, 2001,8(4): 361-377.
    
    [27] Burt P J, Adelson E H. The Laplacian Pyramid as a compact image code. IEEE Trans. On Communications, 1983,4: 532-540.
    
    [28] Castleman K R. Digital image processing. Englewood Cliffs, NJ: Prentice Hall, 1996.
    
    [29] Olander G, Markham B. Revised Landsat 5 TM radiometric calibration procedures and post-calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2674-2677.
    
    [30] Cheung D W. Efficient mining of association rules in distributed databases. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6): 910-921.
    
    [31] Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 1994,2: 267-278.
    
    [32] Cliff AD, Ord J. Spatial processes, models and applications. London: Pion, 1981.
    
    [33] Coppin P R, Bauer M E. Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 1996,13:207-234.
    
    [34] Cressie N A C. Staistics for Spatial Data. John Wiley & Sons, N. Y. New York, USA, 1991.
    
    [35] Curran, P. J., Atkinson, P. M. Geostatistics and remote sensing. Progress in Physical Geography, 1998,22, 61-78.
    
    [36] Dai X, Khorram S. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36 (9): 1566-1577.
    
    [37] Dubois D, Prade H. Possibility theory: An approach to computerized processing of uncertainty. New York: Plenum Press, 1988.
    
    [38] Ekaterini E, Dimitris A. The contribution of a planted roof to the thermal protection of buildings in Greece. Energy and Buildings, 1998,27 (3): 29-36.
    
    [39] Eklund P, You J, Deer P. Mining remote sensing image data: An integration of fuzzy set theory and image understanding techniques for environmental change detection. Proceedings of SPIE-The International Society for Optical Engineering, 2000: 265-272.
    
    [40] Elvidge C D, Yuan D, Weerackoon R D, et al. Relative radiometric normalization of Landsat Multispectral Scanner (MSS) data using an automatic scattergram-controlled regression. Photogrammetric Engineering & Remote Sensing, 1995,61 (10): 1255-1260.
    
    [41] Fisher P. The pixel: a snare and a delusion. International Journal of Remote Sensing, 1997,18, 679-685.
    [42] Flack J, Gahegan M, West G. The use of subpixel measures to improvethe classification of remotely sensed imagery of agricultural land. In Proc. 7th Australasian Remote Sensing Conf., Melbourne, Australia, 1994,531-541.
    
    [43] Foody G M. Hard and soft classifications by a neural network with a nonexhaustively defined set of classes. International Journal of Remote Sensing, 2002,23: 3853-3864.
    
    [44] Franklin S E, Giles P T. Radiometric processing of aerial and satellite remote2sensing imagery. Computers and Geosciences, 1995,21 (3): 413-423.
    
    [45] Frey L, Fisher D, Tsamardinos I, et al. Identifying Markov blankets with decision tree induction. Proceedings of the Third IEEE International Conference on Data Mining (ICDM03), Nov, 2003:59-66.
    
    [46] Friedl M A, Strahler C E. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on geoscience Remote Sensing, 1997,37(2): 969-977.
    
    [47] Fu K S. Syntactic pattern recognition and applications. Academic Press, San Diego,CA, 1982.
    
    [48] Fujibe F. An increasing trend of extremely hot days in the inland of the Kanto Plain and its relation to urban effects. Weather, 1998,8: 35-45.
    
    [49] Fukuoka Y. Physical climatological discussion on causal factors of urban temperature. Memoirs of the Faculty of Integrated Arts and Science. Japan: Hiroshima University, 1983, 8: 157-178.
    
    [50] Fukuyama Y, Sugeno M. A new method of choosing the number of clusters for the fuzzy c-means method. Proceedings of the 5~(th) Fuzzy Syst. Symposium, 1989,247-250.
    
    [51] Gallo K P, Owen T W. Satellite-based adjustments for the urban heat island temperature bias. Journal of Applied Meteorology, 1998,38, 806-813.
    
    [52] Gallo K P, Tarpley J D, McNab A L, Karl T R. Assessment of urban heat islands: Asatellite perspective. Atmospheric Research, 1995,37,37-43.
    
    [53] Garcia-Haro F J, Gilabert M A, Melia J. Linear spectral mixture modelling to estimate vegetation amount from optical spectral data. International Journal of Remote Sensing, 1996,17: 3373-3400.
    
    [54] Gavin, J., Jennison, C. A subpixel image restoration algorithm. Journal of Computational and Graphical Statistics, 1997,6,182-201.
    
    [55] Gedzelman S D, Austin S, Cermak R, et al. Mesoscale aspects of the Urban Heat Island around New York City. Theoretical and Applied Climatology, 2003, 75,1-2: 29-42.
    
    [56] Getis A, Ord J K. The analysis of spatial association by use of distance statistics. Geographical Analysis, 1992,24(2): 189-206.
    
    [57] Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., Humes, K.S. A verification of the "triangle method" for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface radiant temperature. Int. J. Remote Sens., 1997,18(15), 3145-3165.
    
    [58] Gonzalez R C, Woods R E. Digital Image Processing. Boston, MA: Addison-Wesley, 1992.
    
    [59] Goodchild. Spatial Autocorrelation (CATMOG47). Norwich, UK: Geobooks, 1986.
    
    [60] Goovaerts P. Geostatistics for Natural Resources Evaluation. Oxford University Press: New York, 1997.
    
    [61] Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physics - chemical soil properties. Biology and Fertility of Soils, 1998,27(4): 315-334.
    [62] Hall F G, Strebel D E, Nickeson J E, Goetz S J. Radiometric rectification: toward a common radiometric response among multidate, multisensor images. Remote Sensing Environ, 1991, 35: 11-27.
    
    [63] Han J, Kamber M. Data Mining: Concepts and Techniques. San Francisco: Academic Press, 2001.
    
    [64] He Y, Tan Y, Sun Y. Wavelet neural network approach for fault diagnosis of analog circuits. IEEE proc-circuits Devices Syst.2004:379-384.
    
    [65] Henebry G M, Su H. Using landscape trajectories to assess t he effects of radiometric rectification. International Journal of Remote Sensing, 1993,12 (7): 1471-1491.
    
    [66] Hoppner F, Klawonn F, Kruse R, Runkler T. Fuzzy cluster analysis: methods for classification data analysis and image recognition. Wiley, New York, 1999.
    
    [67] Hulst R Van. On the dynamics of vegetation: Markov chains as model of succession. Vegetation, 1979,40: 3-14.
    
    [68] Hurtado E, Vidal A, Caselles V. Comparison of two atmospheric correction methods for Landsat TM thermal band. International Journal of Remote Sensing, 1996,17: 237-247.
    
    [69] Ichoku C, Karnieli A. A review of mixture modeling techniques for sub-pixel land cover estimation. Remote Sensing Reviews, 1996,13:161-186.
    
    [70] Ifarraguerri A, Chang C I. Multispectral and hyperspectral Image Analysis with Convex Cones. IEEE Trans. Geoscience and remote sensing, 1999,37(5): 756-770.
    
    [71] Ifarraguerri A, Chang C I. Unsupervised Hyperspectral Image Analysis with Projection Pursuit. IEEE Trans. Geoscience and Remote Sensing, 2000,38(6): 2529-2538.
    
    [72] Janssen M. Modeling global change—The art of integrated assessment modeling. Edward: Elgar Publishing Limited, 1998.
    
    [73] Jimenez-Munoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 2003,108 (D22): 4688-4695.
    
    [74] Jun Zhang, Gilbert G Walter, Yubo Miao, Wan Ngai wayne Lee. Wavelet neural networks for function learning. IEEE Trans. Signal Processing, 1995, 43(6):1485 - 1496.
    
    [75] Kentala E, Pyykko I, Viikki K, Juhola M. Production of diagnostic rules from a neurotologic database with decision trees. The Annals of Otology, Rhinology & Laryngology, 2000, 109(2): 170-176.
    
    [76] Kerenyi J, Putsay M. Investigation of land surface temperature algorithms using NOAA ANVHRR images. Adv. Space Res, 2000,26(17): 1077-1080.
    
    [77] Ketting R L, Landgrebe D A. Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics, 2003,1:19-26.
    
    [78] Kornfield J, Susskind J. On the effect of surface emissivity on temperature retrievals. Monthly weather Review, 1977,105:1605-1608.
    
    [79] Krishnapuram R, Keller J M. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1993,1 (2): 98-110.
    
    [80] Krishnapuram R, Keller J M. The possibilistic c-means algorithm: Insights and recommendations. IEEE Transactions on Fuzzy Systems, 1996,4 (3): 385-393.
    
    [81] Krishnapuram R, Joshi A, Yi L. A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In Proceedings of IEEE International Conference on Fuzzy Systems-FUZZ IEEE(99), Seoul, Korea, 1999:1281-1286.
    
    [82] Lawrence R L, Andrea W. Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering & Remote Sensing, 2001,67(10): 1137-1142.
    
    [83] Leone A P, Sommer S. Multivariate Analysis of Laboratory Spectra for the Assessment of Soil Development and Soil Degradation in the Southern Apennines (Italy). Remote Sens. Environ. 2000,72: 346-359.
    
    [84] Levin S A. The problem of pattern and scale in ecology. Ecology, 1992,73:1943-1967.
    
    [85] Li B B. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol Mod, 2000,132:33-50.
    
    [86] Li H, Reynolds J F. On definition and quantification of heterogeneity. Oikos, 1995, 73(2): 280-284.
    
    [87] Liang S. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transaction on Geosciences and Remote Sensing, 2001,39(2): 264-274.
    
    [88] Lillesand T M, Kiefer R W, Chipman J W. Remote Sensing and Image Interpretation, 6~(th) Edition. New York: Wiley, John & Sons, November, 2007.
    
    [89] Lin C F, Wang S D. Fuzzy support vector machines. IEEE Transactions on Neural Networks. 2002,13(2): 464-471.
    
    [90] Journel A G, Huijbregts C J. Mining geostatistics. New York: Academic Press, 1978.
    
    [91] Luenberger D G.Linear and nonlinear programming, Addison Wesley, 1984.
    
    [92] MacQueen J. Some methods for classification and analysis of multivariate observations. Proc. 5~(th) Berkeley Symp. Mat. Statist, Prob., 1967,1: 281-297.
    
    [93] Magidson J. SPSS for Windows CHAID Release 6.0, SPSS Inc., Chicago, 1993.
    
    [94] Magidson J. The CHAID approach to segmentation modeling: Chi-squared automatic interaction detection. Advanced Methods of Marketing Research, Bagozzi R P (ed.), Cambridge M A: Blackwell Business, 1994:118-159.
    
    [95] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7): 674-693.
    
    [96] Mallat S G, Hwang W L Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 1992,38:1617-1643.
    
    [97] Mallat S G.A Wavelet tour of signal processing. Academic Press, 2nd edition, 1999.
    
    [98] Markham B L, Townshend J R G. Land cover classification accuracy as a function of sensor spatial resolution. In Proceedings of 15th International Symposium on Remote Sensing. Ann Arbor, Michigan, 1981,1075-1090.
    
    [99] Matheron G. Principles of geostatistics. Economic Geology, 1963,58:1246-1266.
    
    [100] Mertens K C, Verbeke L P C, Westra T, Wulf R R D. Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients. Remote Sensing of Environment, 2004,91(2): 225-236.
    
    [101] Muchoney D, Borak J, Borak H C, et al. Application of the MODIS Global Supervised Classification to Vegetation and Land Cover Mapping of Central America. NT. J. Remote Sensing, 2000,21:1115-1138.
    
    [102] Nounou M N, Bakshi B R. On-line multiscale filtering of random and gross errors without process models. ALCHE Journal, 1999(45):1041-1055.
    [103] Oke T R. City size and the urban heat island. Atmospheric Environment, 1973, 7: 769-779.
    
    [104] Ord J K, Getis A. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 1995,27(4): 286-306.
    
    [105] Owen T W, Carlson T N, Gillies R R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 1998,19,1663-1681.
    
    [106] Owen T W, Carlson T N, Gillies R R. Remotely sensed surface parameters governing urban climate change. International Journal of Remote Sensing, 1998,19:1663-1681.
    
    [107] Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, 3(3), 1995: 370-379.
    
    [108] Paola J D, Schowengerdt R A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. INT. J. REMOTE SENSING, 1995, 16:3033-3058.
    
    [109] Park I. Universal approximation using radial basis function networks. Neural Computation, 1991, 3: 257-257.
    
    [110] Park J S, Chen M, Yu P S. Efficient parallel data mining for association rules. Proceedings of the fourth international conference on Information and knowledge management, Baltimore, Nov. 1995: 31-36.
    
    [111] Pati Y C, Krishnaprasad P S. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE Trans, on Neural Networks, 1993,4(1):73-85.
    
    [112] Penn B S. Using Simulated Annealing to Obtain Optimal Linear Endmember Mixtures of Hyperspectral Data. Computers & Geosciences, 2002,28: 809-817.
    
    [113] Prata A J, Caselles V, et al. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sensing Review, 1995,12,175-224.
    
    [114] Qin Z, A. Karnieli, P. Berliner. Remote sensing analysis of the land surface temperature anomaly in the sand dune region across the Israel-Egypt border. International Journal of Remote Sensing, 2000,22 (18): 3719-3746.
    
    [115] Qin Z, Kanieli A. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 2001,22 (18): 3719-3746.
    
    [116] Quinlan J R. Induction of Decision Trees. Machine Learning, 1986,1: 81-106.
    
    [117] Quinlan J R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993.
    
    [118] Quinlan J R. Bagging, Boosting, and C4.5. Proceedings of the 13th National Conference on Artificial Intelligence(AAAI-96), 1996,725-730.
    
    [119] Reid R S, Kruska R L, Muthui N, Taye A, Wotton S, Wilson C J, Mulatu W. Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: The case of southwestern Ethiopia. Landscape Ecology, 2000,15: 339-355.
    
    [120] Richard O. Duda, Peter E. Hart, David G.Stork. Pattern classification(Second Edition), John Wiley&Sons, Inc, 2001.
    
    [121] Rossi R E, Mulla D J, Journel A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 1992, 62:277-314.
    
    [122] Ruggieri S. Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(2): 438-444.
    [123] Salvaggio C. Radiometric Scene Normalization Utilizing Statistically Invariant Features. Proc. Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, CA, 1993:155-159.
    
    [124] Sarah Bretz, Hashem Akbari, Arthur Rosenfeld. Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmospheric Environment, 1998, 32 (1): 95-101.
    
    [125] Sanchez J M, Scavone G, Caselles V, Valor E, Copertino V A, Telesca V. Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 2008,351,58-70.
    
    [126] Savasere A, Omiecinski E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases. In: Proc, of the 21st Int'l Conf, on Very Large Data Bases (VLDB'95), Zurith, Switzerland, Sep. 1995,432444.
    
    [127] Schneider W. Land use mapping with subpixel accuracy from landsat TM image data. In Proc. 25th Int. Symp. Remote Sensing and Global Environmental Change, Ann Arbor, MI, 1993, 155-161.
    
    [128] Schneider K, Mauser W. Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement. International Journal of Remote Sensing, 1996,17,2027-2041.
    
    [129] Schneider W. Land cover mapping from optical satellite images employing subpixel segmentation and radiometric calibration, in Machine Vision and Advanced Image Processing in Remote Sensing, I Kanel-lopoulos, G Wilkinson, and T Moons, Eds. Heidelberg, Germany: Springer-Verlag, 1999,229-237.
    
    [130] Schott J R, Salvaggio C, Volchok W J. Radiometric scene normalization using pseudo-invariant features. Remote Sensing of Environment, 1988,26:1-16.
    
    [131] Schowengerdt R A. Remote sensing models and methods for image processing. 2~(nd) ed., Academic, New York, 1997.
    
    [132] Schott J R, Volchok W J. Thematic Mapper thermal infrared calibration. Photogrammetric Engineering and Remote Sensing, 1985,51,1351-1357.
    
    [133] Sells P J, Hall E G, Asrar G, et al. The first ISLSCP Field Experiment (FIFE). J. Bull. Amer. Meteor, Soc., 1998,69 (1): 22-27.
    
    [134] Settle J J, Drake N A. Linear mixing and the estimation of ground cover proportions. International Journal of Remote Sensing, 1993,14:1159-1177.
    
    [135] Shafer G.A mathematical theory of evidence. Princeton, NJ: Princeton University Press, 1976.
    
    [136] Sobrino J A, Caselles V. A methodology for obtaining the crop temperature from NOAA-9 AVHRR data. International Journal of Remote Sensing, 1991,12,461-475.
    
    [137] Sobrino J A, J C Jimenez-Munoz, L Paolini. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 2004, 90: 434-440.
    
    [138] Song C, Woodcock C E, Seto K C, et al. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment, 2001, 75: 230-244.
    
    [139] Spronken-smith R A, Oke T R. The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing, 1998,19(11): 2085-2104.
    
    [140] Steinwendner J. Schneider W. A neural net approach to spatial subpixel analysis in remote sensing. In Proc.21st Workshop of the Austrian Association for Pattern Recognition, Halstatt, Austria, 1997.
    [141] Steinwendner J, Schneider W, Suppan F. Vector segmentation using spatial subpixel analysis for object extraction. Int. Arch. Photogramm. Remote Sensing, 1998,32,265-271.
    
    [142] Stephon 1 Gallant. Neural network learning and expert systems. Cambridge, Massachusetts: The MIT Press, 1992.
    
    [143] Streutker D R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens., 2002, 23,2595-2608.
    
    [144] Streutker D R. Satellite - measured growth of the Urban Heat Island of Houston, Texas. Remote Sensing of Environment, 2003,85: 282-289.
    
    [145] Szu H H, Telfer B, Anandkumar J, et al. Wavelet transforms and neural networks for compression and recognition. Neural Networks, 1995,9(4): 695-708.
    
    [146] Szu H, Telfer B, Kadambe S. Neural network adaptive wavelets for signal representation and classification. Optical Engineering, 1992,36(9): 1907-1916.
    
    [147] Tatem A J, Lewis H G, Atkinson P M, et al. Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(4): 781-796.
    
    [148] Thornton M W, Atkinson P M, Holland D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. International Journal of Remote Sensing, 2006,27(3): 473-491.
    
    [149] Timm H, Kruse R. A modification to improve possibilistic fuzzy cluster analysis. The 2002 IEEE International Conference on Fuzzy Systems, 2:12-17, May 2002,1460-1465.
    
    [150] Toivonen H. Sampling Large Databases for Association Rules. In: Proc, of the 22nd Int. Conf, on Very Large Data Bases (VLDB'96), Morgan Kanfmann, Bombay, India, 1996,134-145.
    
    [151] Tran H, Daisuke U, Shiro O, Yoshifumi Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 2006,8: 34-48.
    
    [152] Trangmar B B, Yost R S, Uehara G. Application of geostatistics to spatial studies of soil properties. Advanced Agronomy, 1985, 38:44-94.
    
    [153] Turner B L, Skole D, Moss R. Relating land use and global land cover change. IGBP Report No. 24 and HDP Report No. 5, Stockholm: IGBP, 1993.
    
    [154] Turner M G. Land use changes and net primary production in the Georgia landscape: 1935-1982. Environ Management, 1987,11(2): 237-247.
    
    [155] Turner M G. A spatial simulation model of land use changes in a piedmont country in georgia. Applied Mathematics and Computation, 1988,27: 39-51.
    
    [156] Turner M G. Spatial and temporal analysis of landscape patterns. Landscape Ecology, 1990, 4(1): 21-30.
    
    [157] Verhoeye J, De Wulf R. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002,79: 96-104.
    
    [158] Voogt, J.A., Oke, TR. Thermal remote sensing of urban climates. Remote Sens. Environ., 2003, 86, 370-384.
    
    [159] Wan Z, Dozier J. A Generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(4): 892-905.
    
    [160] Wan Z, Li Z L A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens., 1997, 35 (4), 980-996.
    [161] Wang Yaonan. An adaptive control using fuzzy logic neural network and its application. Control Theory and Applications, 1995,12(4): 437-444.
    
    [162] Wang J, et al. Discussion on the technology route for land degradation monitoring and assessment based on 3S technique. International Symposium on Remote Sensing 2002, The Korean Society of Remote Sensing, 2002:312-320.
    
    [163] Webster R. Quantitative special analysis of soil in the field.Advanced Soil Science, 1985, 3: 1-7.
    
    [164] Weng Q. A Remote Sensing-GIS evaluation of urban expansion and its impact on surface temperature in Zhujiang Delta, China. International Journal of Remote Sensing, 2001, 22(10): 1999-2014.
    
    [165] Winter M E. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyper Spectral Data. Proc. SPIE Imaging Spectrometry, 1999,266-275.
    
    [166] Woodcock C E, Strahler A H. The factor of scale in remote sensing. Remote Sensing of Environment, 1987,21:311-322.
    
    [167] Wulder M P, Boots B. Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. International Journal of Remote Sensing, 1998, 19(11): 2223-2231.
    
    [168] Wukelic G E, Gibbons D E, Martucci L M, et al. Radiometric calibration of Landsat Thermatic Mapper Thermal Band. Remote Sensing of Environment, 1989,28,339-347.
    
    [169] Xiao R, Ouyang Z, Zheng H, et al.. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. Journal of Environmental Sciences, 2007, 19: 250-256.
    
    [170] Xie X L, Beni G.A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13,1991: 841-847.
    
    [171] Yager R R, Filev D P. Approximate clustering via the mountain method. IEEE Transactions on Systems, Man, and Cybernetics, 1994,24:1279-1284.
    
    [172] Yang C J, Lo C P. Relative radiometric normalization performance for change detection from multi-date satellite images. Photogrammetric Engineering & Remote Sensing, 2000, 66 (8): 967-980.
    
    [173] Yang L. Integration of a numericalmodel and remotely sensed data to study urban/rural land surface climate process. Computers & Geosciences, 2000,26: 451-468.
    
    [174] Yang M, Wu K. Unsupervised possibilistic clustering. Pattern Recognition, 2006,39,5-21.
    
    [175] Yang M S. A survey of fuzzy clustering. Math. Comput. Modell. 1993,18,1-16.
    
    [176] Yong D, Philippe M T, Josef C. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens Environ, 2002, 82:123-134.
    
    [177] Yuan F, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 2007i 106: 375-386.
    
    [178] Yuan D, Elvidge C D. Comparison of radiometric normalization techniques. Photogrammetry & Remote Sensing, 1996,51:117-126.
    
    [179] Zadeh LA. Fuzzy sets. Inf. Control 8,1965: 338-353.
    
    [180] Zhang J, Walter G G, Miao Y B, et al. Wavelet neural networks for function learning. IEEE Trans on Signal Processing, 1995,43(6): 1485-1497.
    [181]Zhan Q,Molenaar M,Lucieer A.Pixel unmixing at the sub-pixel scale based on land cover class probabilities:application to urban areas.In Uncertainty in Remote Sensingand GIS,G.M.Foody and P.M.Atkinson(Eds),Chichester:Wiley& Sons,2002,59-76.
    [182]Zhang Q,Benveniste A.Wavelet networks.IEEE Trans.On Neural Networks,1992,3(6):889-898.
    [183]柏延臣,李新,冯学智.空间数据分析与空间模型.地理研究,1999,18(2):185-190.
    [184]陈宝林.最优化理论与算法.北京:清华大学出版社,1995.
    [185]陈浮,葛小平,陈刚等.城市边缘区景观变化与人为影响的空间分异研究.地理科学,2001,21(3):210-216.
    [186]陈晋,何春阳,史培军等.基于变化向量分析的土地利用/覆盖变化动态监测.遥感学报,2001,5(4):259-266.
    [187]陈良富,庄家礼,徐希孺等.Monte Carlo方法模拟连续植被热辐射方向性.遥感学报,2000,4(4):261-265.
    [188]陈志,俞炳丰,胡汪洋,罗昔联,秦临香.城市热岛效应的灰色评价与预测.西安交通大学学报,2004,38(9):985-988.
    [189]成礼智,王红霞,罗永.小波的理论与应用,北京:科学出版社,2004,9月.
    [190]丁凤,徐涵秋.TM热波段图像的地表温度反演算法与实验分析[J].地球信息科学,2006,8(3):125-130.
    [191]丁金才,张志凯,奚红,周红妹.上海地区盛夏高温分布和热岛效应的初步研究.大气科学,2002,26(3):412-420.
    [192]丁宁,周新志.基于提升方案的冗余Haar小波变换与时间序列预测.计算机应用,2007,27(1):58-64.
    [193]杜培军,高松沽.高光谱遥感数据挖掘若干基本问题的研究.遥感信息,2005,3:53-57.
    [194]方勇.数字信号处理—原理与实践.北京:清华大学出版社,2006,3月.
    [195]甘甫平,陈伟涛,张绪教,闫柏琨,刘圣伟,杨苏明.热红外遥感反演陆地表面温度研究进展.国土资源遥感,2006,1:6-11.
    [196]葛伟强,周红妹,杨引明,丁金才.基于遥感和GIS的城市绿地缓解热岛效应作用研究.遥感技术与应用,2006,21(5):432-435.
    [197]葛全胜,赵名茶,郑景云等.20世纪中国土地利用变化研究.地理学报,2000,55(6):698-706.
    [198]宫辉力,赵文吉,李京.多源遥感数据挖掘系统技术框架.中国图象图形学报,2005,10(5):620-623.
    [199]郭旭东,陈利顶,傅伯杰.土地利用,土地覆被变化对区域生态环境的影响.环境科学进展,1999,7(6):66-75.
    [200]谷荻隆嗣,荻原将文,山口亨.人工神经网络与模糊信号处理.北京:科学工业出版社,2003:39-40.
    [201]黄妙芬,邢旭峰,刘素红等.反演地表温度三要素获取途径研究及其研究价值.干旱区地理,2005,28(4):541-547.
    [202]黄妙芬,邢旭峰,王培娟,王昌佐.利用I.ANDSAT/TM热红外通道反演地表温度的三种方法比较.干旱区地理,2006,29(1):132-137.
    [203]焦李成.神经网络的应用与实现.西安:西安电子科技大学,1995,237-238.
    [204]金亚秋,刘长龙.人工神经网络模型反演植被生物量参数.遥感学报,1997,1(2):83-87.
    [205]李海涛,张继贤,王静.成像光谱技术及其在土地动态监测中的应用.中国土地科学, 2002,16(3):36-40.
    [206]黎夏,叶嘉安.知识发现及地理元胞自动机.中国科学D辑地球科学,2004,34(9):865-872.
    [207]李小英,彭望碌,曹彤.在遥感时间序列数据分析中马尔柯夫链方法与空间信息最佳结合的探讨.北京师范大学学报(自然科学版),2002,38(5):700-705.
    [208]李小玉,宋冬梅,肖笃宁.石羊河下游民勤绿洲地下水矿化度的时空变异.地理学报,2005,60(2):319-327.
    [209]李小文.定量遥感的发展与创新.河南大学学报(自然科学版),2005,35(4):49-56.
    [210]李晓文,方精云,朴世龙.上海城市用地扩展强度、模式及其空间分异特征.自然资源学报,2003,18(4):412-422.
    [211]李延明,张济,古润泽.北京城市绿化与热岛效应的关系研究.中国园林,2004,1:72-75.
    [212]李延明,郭佳,冯久莹.城市绿色空间及对城市热岛效应的影响.城市环境与城市生态,2004,17(1):1-4.
    [213]刘志刚,王晓茹,钱清泉.小波网络的研究进展与应用.电力系统自动化,2003,27(6):73-85.
    [214]刘志刚,刘代志.基于小波变换的图象放大方法再探讨.中国图象图形学报,2003,8(4):403-408.
    [215]吕伯权,李天铎,吕崇德等.一种用于函数学习的小波神经网络.自动化学报,1998,24(4):548-551.
    [216]吕国楷,洪启旺,郝允充等.遥感概论.北京:高等教育出版社,2005.
    [217]骆剑承,周成虎,杨艳.具有部分监督的遥感影像模糊聚类方法研究及应用.遥感技术与应用,1999,14(4):37-43.
    [218]骆剑承,周成虎,杨艳.基于径向基函数(RBF)映射理论的遥感影像分类模型研究.中国图象图形学报,2000,5A(2):94-99.
    [219]马超飞.基于关联规则的遥感数据挖掘与应用.博士学位论文,中国科学院遥感应用研究所,2002,6.
    [220]马荣华,黄杏元,朱传耿.用ESDA技术从GIS数据库中发现知识.遥感学报,2002,6(2):102-106.
    [221]马勇刚,塔西甫拉提·特依拜,黄粤,杨金龙.城市景观格局变化对城市热岛效应的影响—以乌鲁木齐市为例.干旱区研究,2006,23(1):172-176.
    [222]孟斌,王劲峰,张文忠,刘旭华.基于空间分析方法的中国区域差异研究.地理科学,2005,25(4):393-400.
    [223]孟雅俊,黄士涛,胡全义.基于小波包变换的径向基神经网络在故障诊断中的应用.噪声与振动控制,2006,6:36-39.
    [224]彭启民,贾云得.基于小波变换的全向图像分辨率增强方法.电子学报,2004,32(11):1875-1879.
    [225]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2001.
    [226]钱乐祥,丁圣彦.珠江三角洲土地覆盖变化对地表温度的影响.地理学报,2005,60(5):761-770.
    [227]覃志豪,Zhang Minghua,ArllOll Kamieli,Pedro Berliner.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报,2001,56(4):456-466.
    [228]覃志豪,李文娟,徐斌,张万昌.利用Landsat TM6反演地表温度所需地表辐射率参数的估计方法.海洋科学进展,2004,第22卷增刊:129-137.
    [229]沈建法,王桂新.90年代上海中心城人口分布及其变动趋势的模型研究.中国人口科学,2000,5:45-62.
    [230]孙延奎.小波分析及其应用.北京:机械工业出版社,2005,3月.
    [231]苏理宏.地表热辐射方向性和尺度效应研究.中国科学院遥感技术应用研究所博士学位论文,2000.
    [232]唐世浩,朱启疆,闫广建.遥感地表参量反演的理论与方法.北京师范大学学报(自然科学版),2001,37(2):266-273.
    [233]唐世浩,朱启疆,闫广建,周晓东.遗传算法及其在遥感线性、非线性模型反演中的应用效果分析.北京师范大学学报(自然科学版),2002,38(2):266-272.
    [234]肖平.土地利用/覆盖变化探测技术研究.武汉:武汉大学,2001.
    [235]肖荣波,欧阳志云,李伟峰等.城市热岛的生态环境效应.生态学报,2005,25(8):2055-2060.
    [236]谢志霄,肖笃宁.城郊景观动态模型研究一以沈阳市东陵区为例.应用生态学报,1996,7(1):77-82.
    [237]许东,吴铮.基于MATLAB 6.X的系统分析与设计——神经网络.西安:西安电子科技大学出版社,2002,9月.
    [238]徐涛,王祁.基于小波包神经网络的传感器故障诊断方法.传感技术学报,2006,19(4):1060-1064.
    [239]徐希孺,柳钦火,陈家宜.遥感陆面温度.北京大学学报(自然科学版),1998,34(2-3):248-253.
    [240]王国杰,廖善刚.土地利用强度变化的空间异质性研究.应用生态学报,2006,17(4):611-614.
    [241]王晋年,张兵,刘建贵等.以地物识别和分类为目标的高光谱数据挖掘.中国图象图形学报,1999,4A(11):957-964.
    [242]王静,何挺,李玉环.基于高光谱遥感技术的土地质量信息挖掘研究.遥感学报,2005,9(4):438-445.
    [243]王旭红.遥感影像数据挖掘技术研究.博士学位论文,西北大学,2005.
    [244]王文杰,申文明,刘晓曼,张峰,潘英姿,罗海江.基于遥感的北京市城市化发展与城市热岛效应变化关系研究.环境科学研究,2006,19(2):44-48.
    [245]王艳姣,张鹰.基于BP人工神经网络的水体遥感测深方法研究.海洋工程,2005,23(4):33-38.
    [246]王耀南.小波神经网络的遥感图象分类.中国图象图形学报,1999,4(5):368-371.
    [247]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999.
    [248]魏凤英,曹鸿兴,徐祥德.变异函数在降水场空间特征分析中的应用.南京气象学院学报,2002,25(6):795-799.
    [249]吴波,张良培,李平湘.高光谱端元自动提取的迭代分解方法.遥感学报,2005,9(3):286-293.
    [250]颜锋华,金亚秋.尺度分布的Getis统计对遥感图像特征参量空间自相关性的研究.中国图象图形学报,2006,11(2):191-196.
    [251]阎广建,朱重光,王锦地,李小文.遥感反演中约束最优化方法的拓展.遥感学报,2002,6(2):81-87.
    [252]杨虎,杨忠东.中国陆地区域陆表温度业务化遥感反演算法及产品运行系统.遥感学报,2006,10(4):600-607.
    [253]虞和济,陈长征,张省,周建男.基于神经网络的智能诊断.北京:冶金工业出版社, 2000,5月.
    [254]张鹏强,余旭初,刘智,李建胜,万刚.多时相遥感图像相对辐射校正.遥感学报,2006,10(3):339-344.
    [255]赵淑清,方精云,唐志尧等.洪湖湖区土地利用/土地覆盖时空格局研究.应用生态学报,2001,12(5):721-725.
    [256]张善余.近年上海市人口分布态势的巨大变化.人口研究,1999,23(5):16-24.
    [257]张彤,潘和平.决策树的形式算法及其在地理信息学中的应用.测绘通报,2002,7:51-53.
    [258]张小飞,王仰麟,吴健生,李卫锋,李正国.城市地域地表温度—植被覆盖定量关系分析—以深圳市为例.地理研究,2006,25(3):369-377.
    [259]张友水,冯学智,周成虎.多时相TM影像相对辐射校正研究.测绘学报,2006,35(2):122-127.
    [260]张兆明,何国金,肖荣波,王威,欧阳志云.利用TM6数据反演陆地表面温度新算法研究.遥感技术与应用,2005,20(6):547-550.
    [261]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究—空间自相关与分形方法.地理学报,1998,53(1):87-96.
    [262]张海龙,蒋建军,解修平等.基于GIS与马尔可夫模型的渭河盆地景观动态变化研究.干旱区资源与环境,2005,19(7):119-124.
    [263]赵萍,傅云飞,郑刘根,冯学智,Satyanarayana B.基于分类回归树分析的遥感影像土地利用/覆被分类研究.遥感学报,2005,9(6):708-716.
    [264]钟家强,王润生.一种稳健的多时相遥感图像相对辐射校正方法.遥感技术与应用,2005,20(6):611-615.
    [265]周红妹,周成虎,葛伟强,丁金才.基于遥感和GIS的城市热场分布规律研究.地理学报,2001,56(2):189-197.
    [266]周红妹,丁金才,徐一鸣,黄家鑫,杨文悦,方岩.城市热岛效应与绿地分布的关系监测和评估.上海农业学报,2002,18(2):83-88.
    [267]周小成,汪小钦.遥感影像数据挖掘研究进展.遥感信息,2005,3:58-62.
    [268]庄大方,刘纪远.中国土地利用程度的区域分异模型研究.自然资源学报,1997,12(2):105-111.
    [269]庄家礼,陈良富,徐希孺.地表组分温度反演.北京大学学报(自然科学版),2000,36(6):850-857.
    [270]朱述龙,张占睦.遥感图像获取与分析.北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700