用户名: 密码: 验证码:
微晶玻璃结合剂的研制及其金刚石界面结合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石是自然界最硬的材料,同时具有很高的强度和耐磨性,因而经常被制成工具或与结合剂混合制成磨具,用于加工其它难于加工的材料,如硬质合金、金刚石复合片、陶瓷材料等。由于天然金刚石稀少而且价格昂贵,很难满足工业生产的需求。
     目前在机械加工工业中广泛应用的金刚石磨料大多数是高温高压(大约1773K和5-6GPa)下人工合成的材料,存在颗粒较小、不易固定等缺点,为了利用金刚石进行高效、高精度加工,人们把金刚石与结合剂混合制成不同形状和尺寸的金刚石制品,在专用磨床上进行加工。常用的结合剂材料有树脂、金属和陶瓷等。陶瓷结合剂金刚石制品因具有加工效率高、形状保持性好、刚性好、加工成本低等优点而具有非常好的应用前景。然而由于金刚石高温下化学稳定性差,容易被氧化(在空气中超过1023K就会被氧化),使金刚石晶体受到破坏,而陶瓷结合剂一般在1473K以上烧成,结合剂与磨粒才有较强的结合强度,因此,满足金刚石化学稳定性要求且与磨粒有较高结合强度的陶瓷结合剂很难得到,这在一定程度上限制了陶瓷结合剂金刚石制品在工业生产中的推广应用。
     本论文从研究金刚石在高温下的化学稳定性入手,根据金刚石对陶瓷结合剂的性能要求,以Li_2O-ZnO-Al_2O_3-SiO_2微晶玻璃金刚石砂轮结合剂为研究对象,利用示差扫描分析、X-ray衍射分析、SEM分析、红外光谱分析等手段系统地研究了微晶玻璃组成-结构-性能的关系,研究B_2O_3、Na_2O加入量对微晶玻璃结构和性能的影响,金刚石表面镀钛对其性能影响,微晶玻璃对金刚石的高温浸润性的影响,金刚石与微晶玻璃的结合机理,并通过对微晶玻璃金刚石砂轮在磨削金刚石复合片外圆及硅片背磨中的应用研究,验证和优化结合剂性能。主要研究结果如下:
     (1)提出并实践了金刚石与微晶玻璃混合制成试样埋入石英砂中烧成的新工艺技术路线,使金刚石晶体受到的破坏比金刚石在空气或氩气中以同样烧成曲线裸烧时受到的破坏小很多。当金刚石在空气中裸烧时,1023K开始被氧化,随温度升高,氧化程度迅速加剧,抗冲击强度明显降低;而金刚石与微晶玻璃混合制成试样埋入石英砂中烧成时,当烧成温度为1123K时,金刚石的晶体受到破坏不大,抗冲击强度无明显降低,这一工艺使陶瓷结合剂金刚石砂轮在高于973K的温度烧成得以实现,为陶瓷结合剂性能和配方提供了更宽的选择范围。
     (2)成功地将微晶玻璃引入到金刚石复合制品的研制中。长期以来,人们认为陶瓷结合剂金刚石制品要求结合剂软化温度低(973K左右)、粘度不能太大(以便能包裹金刚石磨粒),而微晶玻璃软化温度高(1373K以上)、粘度大,很难用作金刚石制品的结合剂。试验中,通过在Li_2O-ZnO-Al_2O_3-SiO_2微晶玻璃中加入Na_2O和B_2O_3等组份,发现:当单独加入Na_2O时,能显著降低玻璃熔体的粘度,但对玻璃的软化温度的降低作用不明显,而且使结合剂的热膨胀系数迅速增加;单独加入B_2O_3时,熔体的软化温度随B_2O_3加入量的增加而明显降低,热膨胀系数随B_2O_3加入量的增加而增加,当B_2O_3加入量为18mol%时,结合剂与与金刚石的热膨胀系数匹配性能最好;当以TiO_2或TiO_2+ZrO_2为成核剂,通过合理的核化晶化处理,结合剂中出现热膨胀系数小的Li_2Al_2Si_3O_(10)微晶体,从而使结合剂的热膨胀系数与金刚石相近,结合剂与金刚石的结合强度很高。结合剂的主要性能参数为:软化温度1103K,热膨胀系数:8.5~9.3×10~(-6)/K,由此结合剂结合的金刚石试块的抗拉强度:30.68MPa,抗弯强度:95.11 MPa。
     (3)金刚石晶体表面镀钛后,当温度高于993K时,表面的钛被氧化,在晶体表面形成非常致密的、惰性的Ti_3O_5膜,阻止金刚石的氧化,当温度高于1213K时,Ti_3O_5迅速氧化变为TiO_2,对金刚石晶体的保护作用消失,金刚石晶体开始被氧化,抗冲击强度降低;Ti_3O_5为四方晶系(JCPDF:09-0309,a=3.754(?),b=9.474(?),c=9.734(?),Z=4,密度ρ=4.19)晶体,具有与微晶玻璃结合剂中的Al_2TiO_5(四方晶系,JCPDF:26-0040,a=3.593(?),b=9.439(?),c=9.647(?),Z=4,密度ρ=3.69)相似的结构,因而能进入结合剂中,降低了微晶玻璃结合剂与金刚石的表面能,减小玻璃结合剂与金刚石的浸润角;对B_2O_3-PbO-ZnO-SiO_2低熔玻璃结合剂,金刚石表面镀钛对提高结合剂与金刚石磨料的结合强度无明显作用。
     (4)玻璃结合剂熔体对金刚石晶体的浸润角随温度升高而减小;当玻璃结合剂中的B_2O_3以[BO_3]三角体存在时,能减小玻璃熔体的表面张力,从而减小玻璃结合剂与金刚石的浸润角;Na_2O的加入虽然能够降低玻璃熔体的粘度,但由于Na_2O提供的自由氧,使玻璃网络结构中的O/Si增加,阴离子团解聚,活性氧含量增加,从而增加了玻璃熔体的表面张力,使玻璃结合剂与金刚石的浸润角增大。
     (5)利用研制的新型微晶玻璃制备的金刚石砂轮磨削金刚石复合片外圆时具有如下的优点:寿命是目前所用树脂结合剂金刚石砂轮的2.5-3.0倍,是B_2O_3-PbO-ZnO-SiO_2低熔玻璃结合剂金刚石砂轮的3倍以上;与树脂结合剂金刚石砂轮相比,磨削复合片效率提高,单件用时减少40%左右;尺寸精度由树脂金刚石砂轮的±0.03mm提高到±0.01mm,达到较高的磨削精度,而且无磨削噪音,对磨床的损害小;另外利用研制的新型微晶玻璃制造的金刚石砂轮能用于进口磨床上进行硅片背磨,替代进口砂轮,因此研制的新型微晶玻璃具有十分优异的性能。
Diamond is the hardest substance in the nature;it has very high strength and excellent resistance to wear,so it is ideal material for manufacturing cutting tools or grinding products mixed with certain bond in order to process other hard materials such as tungsten carbide, Polycrystalline diamond compacts or engineering ceramics,magnetic materials.Because natural diamond is very rare and very expensive,it is difficult to meet the production demand in industry.
     At present,most diamond grinding compound used in the machine-finishing industry is man-made materials,which is synthesized at high temperature about 1773K and high pressure of 5-6GPa.However the diamond is difficult to be fixed because of its smaller grains.In order to use the diamond to carry on high precision process efficiently,the diamond grains are often prepared into grinding products mixed with certain kinds of bond such as the resin,the metal and the ceramic. Compared to other grinding products,ceramic bond diamond products have better application prospect because of their high longevity,high efficiency,good rigidity and lowest process cost.However diamond is easily oxidized in the air at higher temperature than 1023K,this will damage the structure of diamond.While ceramic bond products usually must be sintered at above 1473K for obtaining high union strength between diamond abrasive and bond.As a result,the ceramic bond which can meet the sintering demand of diamond in lower temperature and stronger strength with abrasives is difficult to obtain.This limits the application of ceramic bond diamond products in industry.
     Based on the chemical stability of diamond in high temperature and the property requirement of diamond to ceramic bond, Li_2O-ZnO-Al_2O_3-SiO_2 glass ceramics have been chosen as the bond in ceramic bond diamond grinding wheel.The relationship among composition,structure and property of glass ceramics has been investigated using DSC,X-ray diffraction,SEM,Infrared absorption spectra in this paper,including the effects of addition of Na_2O,B_2O_3 on the structure and property of glass ceramics,the effect of plating titanium on diamond crystal surface on the property of diamond,the soakage between diamond and vitrified bond in hugher temperature,the bonding status and bonding mechanism at interface between diamond and ceramic bond.The prescription of vitrified bond and diamond grinding wheel have been optimized by the experiment of grinding the cylinder of Polycrystalline Diamond Compact and back grinding of silicon ship.The main result as the following:
     (1)A new technology route that the ceramic bond diamond samples was buried in quartz sand and subsequently sintered has been presented, compared to the sintering technology of diamond crystals in the air or in the argon,which causes smaller structure destruction under same temperature-time curve.Generally,when diamond is sintered in the air, the oxidizing reaction starts to take place at 1023K.With the increasing of temperature,the oxidized degree rapidly increases and the anti-impacting strength of diamond decreases greatly.However when the diamond was buried in quartz and sintered,its oxidized degree lowered greatly and the anti-impacting strength did not obviously reduce.This discovery changed the idea of people that ceramic bond diamond products must be sintered below 973K to protect diamond from oxidization and offered more choice for the ceramic bonds with different property and prescription.
     (2)Glass ceramics was used as the bond of diamond products for the first time.According to conventional conception,the bond must have lower melting temperature than 973K and less viscousness so as to wrap diamond grains at sintering temperature.While glass ceramic is very difficult to be used in diamond products because of its higher melting temperature than 1373K and larger viscousness.In this paper,the Li_2O-ZnO-Al_2O_3-SiO_2 system glass and system glass ceramic have been prepared,the effect of addition of B_2O_3 and Na_2O on the properties of the glass and the glass ceramics has been investigation.The result shows that when Na_2O is added into Li_2O-ZnO-Al_2O_3-SiO_2 system,the viscousness of the glass decreased rapidly,but the softening temperature does not decrease obviously,and the coefficient of thermal expansion of the glass ceramic increases rapidly;when B_2O_3 is added into Li_2O-ZnO-Al_2O_3-SiO_2 system,the softening temperature of the glass decreases and the coefficient of thermal expansion of the glass ceramic increases with the increasing of B_2O_3 additions.To meet the property demand of diamond,18mol%is the best additions of B_2O_3.When TiO_2 or TiO_2+ZrO_2 is used as nucleating agent and a reasonable heat treatment is adopted,Li_2Al_2Si_3O_(10)micro-crystals with lower thermal expamsion coefficient is found in the Li_2O-ZnO-Al_2O_3-SiO_2 system bond.the glass ceramic has a coefficient of thermal expansion of 8.5×10~(-6)l/k,which is close to that of diamond,the drawing strength of 30.68 MPa,bending strength of 95.11MPa.This means that the bonding strength between diamond grains and this bond is very high.
     (3)when diamond is plated with titanium on the surface,titanium will be oxidized into Ti_3O_5 at higher temperature than 993K,the oxidization of diamond can be prevented because Ti_3O_5 is inert and compact;when the temperature increases to 1213K,Ti_3O_5 is transformed into TiO_2,which results in the disappearing of the protecting role and the decreasing of anti-impacting strength of diamond;Ti_3O_5 crystal is quartet crystal system(JCPDF:09-0309,a=3.754(?), b=9.474(?),c=9.734(?),Z=4,ρ=4.19)which has a similar structure to Al_2TiO_5(JCPDF:26-0040,a=3.593(?),b=9.439(?),c=9.647(?),Z=4,ρ=3.69) in the bond and can enter into the structure of vitrified bond,which causes decreasing of the surface energy between glass ceramic bond and diamond crystal.For B_2O_3-PbO-ZnO-SiO_2 glass bond,plating titanium has no obvious effect on improving the bonding strength between the bond and diamond grains.
     (4)The contact angle between vitrified bond and diamond crystal reduces with the increasing of temperature;when B_2O_3 exists in form of [BO_3],the surface tension of glass melting reduces,and the contact angle between vitrified bond and diamond crystal reduces;The additions of Na_2O offers more free oxygenions,increases the radio of O/Si and transforms complicated Si-O-Si network structure into smaller Si-O-Si group,which causes the increasing of the surface tension and the contact angle.
     (5)The diamond grinding wheel with the new vitrified bond has many advantages such as longer longevity(is as about 2.5—3 times as that of resin bond one or as 3 times as that of B_2O_3-PbO-ZnO-SiO_2 glass bond one),higher precision of PDC size(±0.01mm),higher efficiency (saving grinding time about 40%),hardly noise and little harm to grinder in grinding the cylinder of Polycrystalline Diamond Compact.Also this wheel can be used in import grinder for using in back grinding of wafer to substitute an import one.So the new vitrified bond has excellent property.
引文
[1]杨树人,王宗昌,王兢.半导体材料.北京:科学出版社,2004:75-135
    [2]王艳辉.金刚石磨料表面镀钛层的制备、结构、性能及应用:[博士学位论文].秦皇岛:燕山大学,2002
    [3]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001:25-30
    [4]Clark I E,Bex,P A.The use of PCD for petroleum and mining drilling.Industrial Diamond Review,1999,(1):43-49
    [5]Bundy F P,Hall H T,Strong H M.Man-made diamond.Nature,1995,176:51-55
    [6]Bailey M W,Juchem H O.The advantage of CBN grinding:low cutting forces and improved worKpiece intergrity.IDR,1998(3):83-89
    [7]王光祖,李刚,张相法.立方氮化硼的合成与应用.郑州:河南科学技术出版社.1995:18-24
    [8]Luo S Y,Liao Y S,Chou C C,et al.Analysis of the wear of resin-bonded diamond wheel in the grinding of tungsten carbide.Journal of Materials Processing Technology,1997,69(1-3):289-296
    [9]李志宏主编.陶瓷磨具制造.北京:中国标准出版社,2000:300-305
    [10]Tanaka T,Esaki S,Nishida K,et al.Development and Application of porous vitrified-bonded wheel with ultra-fine diamond Abrasives.Key Engineer Material,2004,257-258:251-256
    [11]Harris T K,Brookes E T,Daniel R.Comparison of the creep properties of single crystal and polycrystalline diamond cutting tool materials.Diamond and Related Materials,2001,10(3-7):755-759
    [12]Cook M W.Wear-resisting properties and application examples of PDC.Industrial Diamond Review,1996,4:107-111
    [13]Gittel H J.Cutting tool materials for high performance machining.Industrial Diamond Review,2001,1:17-21
    [14]Erdel B P.PCD-tipped cutting tool system for best -in-class manufacturing.Applications of Diamond Films and Related Materials:Third International Conference[C],1995:217-221
    [15]Liu Yen-kang,Tso Pei-lum.The optimal diamond wheels for grinding diamond tools.International Journal of Advanced Manufacturing Technology,2003,22(5-6):396-400
    [16]张勤俭,曹凤国,刘媛,等.聚晶金刚石的加工技术进展.金刚石与磨料磨具工程,2006(4):76-80
    [17]GrabchenKo A.Role of wheel diamond concentration in grinding Polycrystalline of super hard materials.Soveit Journal of super hard materials,1984,6(1):58-62
    [18]Qi,Dong-xin.Low temperature bond for abrasive tools.The United States,WO99122910.1998
    [19]曾俊,瓦崇龙.陶瓷结合剂金刚石砂轮在加工PCD刀具中的优越性.超硬材料工程,2005,8:18-20
    [20]Mills B.Recent developments in cutting tool materials.Journal of Materials Processing Technology,1996,56(1-4):16-23
    [21]Sweeney,George.New bonds prolong active life.Machinery and Production Engineering,1984,142(10):18-19,21-22
    [22]Kang R K,Zhang Y X,Guo D M.Study on the surface and subface integrity of ground monocrystalline silicon wafers.Key Engineering Materials,2005,291-292:425-438
    [23]Mchedlidze T R,Yonenaga I,Sumino K.Surface damage in single diamond tool machined Si wafer.Materials Science Forum,1995:1841-184
    [24]Hahn Peter.The 300mmsilicon wafer-a cost and technology challenge.Microelectronic Engineering,2001,56:3-13
    [25]Zhou Li-bo,Kawai Shinji,Masayuki.Research on chemo-mechanical-grinding (CMG)of Si wafer- 1~(st)report:Development of CMG wheel.Journal of the Japan Society for Precision Engineering,2002,68(12):1559-1563
    [26]Eda H,Zhou L,Nakano H,et al.Development of single step grinding system for large scale of 300 si wafer:A total integrated fixed-abrasive solution[J].CIRP Annals-Manufacturing Technologu,2001,50(1):225-228
    [27]Gauhofer Emst,Oyrer Heinz.Wafer thinning and strength enhancement to meet emerging packaging requirements.IEMT Europe 2000 Symposium.April 06-07,Mynich,Germany.
    [28]Zhou Li-bo,Yamaguchi makoto,Shimizu Ju et al.Study on structure transformation of Si wafer in grinding process.Key Engineering Materials,2007,(329):373-378
    [29]Hoshika M,Fukanishi T,Okanishi Y.Ultra precision grinding with fine diamond abrasive wheels[J].Industrial Diamond Review,2006,66(2):53- 54
    [30]Huang Sheng-fang,Tsai Hsian-lung,Lin Shun-tian.Effects of brazing nute and brazing alloy on the interfacial structure between diamond and bonding matrix[J].Materials Chemistry and Physics,2004,84:251-258
    [31]井仓智之.陶瓷结合剂超级磨料砂轮及其制造方法.Japan,2002018726.2002
    [32]ShimamaoKa,H.New machine and wheel system for grinding sintered diamond tools.Industrial Diamond Review,1982,42(490):155-160
    [33]Kuroshima,Hans Kart.In-process dressing of vitrified diamond grinding wheel for engineer ceramic.Journal of the ceramic society of Japan,1985,93(9):587-589
    [34]李亚萍,华勇,王燕荣等.碳化硅陶瓷磨具配方设计方法的研究.金刚石与磨料磨具工程,2006,5:42-44
    [33]刘明耀.我国超硬材料制品的新进展及发展趋势.世界制造技术与装备市场,2003,4:10-13
    [36]徐湘涛.提高国产树脂结合剂金刚石磨具质量浅仪.超硬材料与宝石(特辑),2004,16(2):28-31
    [37]高涛,彭伟,姚春燕.金刚石表面处理的应用与发展.金刚石与磨料磨具工程,2004,141(3):6-9
    [38]苏宏华,徐鸿均.金属结合剂金刚石制造技术新进展.金刚石与磨料磨具工程,2003,136(4):19-22
    [39]Matsumaru K,Takata A.Fabrication of porous metal bonded diamond grinding wheels for flat surface nanomaching.MRS Bulletin,2001,26(7):544-546
    [40]Truong Son Hoanh,Isono Yoshitada,Tanaka Takeshi.Study on the toughening of bond bridge of Ni-Cu-Sn alloy development of porous metal bonded diamond wheel.Journal of the Japan Society for Precision Engineering,1998,64(6):923-928
    [41]Wu Z B,Xu H J.Microanalysis of interface between Ni-Cr alloy and diamond.Key Engineering Materials,2001,202-203:143-146
    [42]Williams Carley T,Demetry Chrysanthe,Li Rou-nan.Structure and strength of interface in titanium—coated diamond-glass composites.Ceramic Engineering and Science Proceedings,2000,21(3):697-704
    [43]秦效慈,余尚银.表面镀覆技术-化学镀的进展.化学通报,1996,8:30-36
    [44]王明智,王艳辉,赵玉成等.超硬磨料表面镀覆(涂覆)的种类、方法及用途(Ⅰ).金刚石与磨料磨具工程,2004,143(5):68-72
    [45]D Zhong,T T Moore.Composition and oxidation resistance of Ti-B-C and Ti-B-C-N coatings deposited by magnetron sputtering.Electronics Letters,2003,163(30):50-56
    [46]Breval E,Cheng J P,Agrawal D K.Development of titanium coatings on particulate diamond.Journal of the American Ceramic Society,2000,83(8):2106-2108
    [47]Sun Y C.Research on Thermodynamic Mechanism of Diamond Surface Metallifa.Chinese Journal of High Pressure Physics,1992,6(1):37-42
    [48]Element six Ltd.SDBTC- coated saw grits from Element Six.Industrial Diamond Review,2004,1:38-47
    [49]姜荣超,陈欣宏,魏红涛.技术创新在金刚石制品业中的重大作用(上).超硬材料工程,2005,17(1):51-55
    [50]卢安贤编.无机非金属材料导论.长沙:中南大学出版社.2004:80-89
    [51]姜中宏,胡丽丽.玻璃的相图结构模型,中国科学(E辑),1996,26(5):395-404
    [52]扎济斯基主编.玻璃非晶态材料,干福熹,侯立松译.北京:科学出版社,2002:570-578
    [53]干福熹主编.现代玻璃科学技术(上).上海,上海科学技术出版社.1988:34
    [54]StooKy S D.Journey to the Center of the Crystal Ball.Westerville,Columbus.American Ceramic Society,1982
    [55]P W Mcmilan,微晶玻璃,王仞千译.中国建筑工业出版社,1988:97-108
    [56]Tulyaganov D U.Development of glass-ceramic by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass.International Ceramics,2002,28:515-520
    [57]Jing Shi-lin.Fabrication of CaO-ZrO2-TiO2-Al2O3-B2O3-SiO2 glasses and glass-ceramics.Jounal of Non-crystalline Solids,1996,204:135-140
    [58]Y S Cho,D T Hoeizer W A Schulze,et al.Crysrallization and microstructualevolution of cordierite based thick film dielectrics.Acta Materialia,1998,v46(nS):6421-6430
    [59]Jerzy ZarxyKi.Past and Present of sol-gel Science and Technology.Journal of sol-gel Science and Technology,1997,(8):17-22
    [60]DebsiKdar.Sol-Gel Route to celsion.Academic Press,1985
    [61]张显友,陈伟,周宏.光纤及其制造技术的最新进展.光纤及电缆及其应用技术,2001,3:4-8
    [62]I W Donald,B I Metcalfe,D J Wood,et al.The preparation and properties of some lithium zinc silicate glass-ceramics.J Mater Sci.,1989,24,3892-3903
    [63]O Yong-Taeg,Shigeru Fujino,Kenji Morinaga.Fabrication of transparent silica glass by powder sintering.Science and Technology of Advanced Materials,2002,3(4):297-301
    [64]Andree N S.Scattering of visible light by glasses undergoing phase separation and homogenization.Non-Cryst Solids,1978,30:99-126
    [65]Michael J Reece,Clive A Worrell,Graham J Hill,et al.Microstructures and dielectric properties of ferroeletric glass-ceramics.American Ceramic Society,1996,79(1):17-26.
    [66]Chen Lih-shan,Fu shen-li.Densification and dielectric properities of cordierite-lead borosilicate glasses.JPn J Apply Phys.1992,31(12A):3917-3921
    [67]刘建安.铁电性微晶玻璃介电性能的研究.电子元件与材料,2001,6:1-4
    [68]Wen S H,Yang S,Chen J M,et al.Preparation of single phase of β-spodumene powers by sol-gel process.Journal of the Ceramic Society of Japan,1999,107(12):1128-1132
    [69]Vecoglu M L.Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1000℃.Journal of the Europan Ceramic Society,1998,18:161-168
    [70]Micro Aloisi,Alexander Karamanov,Giuliana Taglieri,et al.Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes.Journal of Hazardous Materials,2006,137(1):138-143
    [71]Balas F,Arcos Peter,Pariente D J.Textural properties of SiO_2-CaO-P_2O_5 glass prepared by the sol-gel method.J Mater Res,2001,16(5):1345-1347
    [72]Hench L L.Bonding mechanism at the interface of ceramic prosthetic material.J Biomed Mater Research Symposium,1972,(2):117
    [73]Hench L L,PolaK J M.Third-generation biomedical materials.Science,2002,295(8):1014-1017
    [74]Balas F.Textural properties of SiO_2-CaO-P_2O_5 glasses prepared by the sol-gel method.Journal of Mater Research,2001,16(5):1345-1347
    [75]八尾健,小久保正.治疗癌症用的玻璃陶瓷.佛山陶瓷,1997,3:8-10
    [76]Hench L L,Wilson.An Introduction to Bioceramics.London.World Scientific,1993:305-318
    [77]Ranch,Gary C.Glass- ceramic substrate for 1Gb/in2 and beyond.IEEE Trands on magn,1996,32(3):3642-3647
    [78]Yue Zheng-xing,Zhang Li,Wang Xiao-hui.Low temperature sintered hexaferrites for high frequency multilayer chip indutors.Journal of Alloys and Compounds,2003,361(1-2):265-269
    [79]E S Lee,D L Dibartolomeo,S E Selkowitz.Daylight control performance of a thin film ceramic electrochromic mindow:Field study results.Energy and Building,2006,38(1):30-44
    [80]I W Donald.Preparation,properties and chemistry of glass and glass-ceramics to metal seals and coatings.J Mater Sci.,1993,28:2841-2886
    [81]A.E.西洛,E.K.邦达列夫[乌].发生在铅硼玻璃熔液与石墨和氧化铝接触面上的过程的研究.98郑州国际超硬材料及制品研讨会论文集,1998,郑州:115-119
    [82]E.K.邦达列夫[乌].硼铅玻璃结合剂金刚石砂轮的制造工艺与应用.郑州,内部交流,1993
    [83]桥本充生.陶瓷超硬磨料砂轮.日本,JP1991213272.
    [84]佐藤隆男.陶瓷结合剂超硬磨料砂轮及制造方法.日本,JP199392370.1993
    [85]星加昌则.超硬磨料金刚石砂轮.日本,JP2003136410.2003
    [86]星野和友.高强度陶瓷砂轮制造方法.日本,JP2004188568.2004
    [87]宫崎久光.金刚石砂轮用结合剂、加工铁氧体用金刚石砂轮的制造方法.日本,JP1015832.1998
    [88]Lin Kuan-hong,Peng Shih-feng,Lin Shun-tian.Sintering parameters and wear performance of vitrified bond diamond grinding wheels.International Journal of Refractory Metals and Hard Materials,2007,25(1):25-31
    [89]Zhou Yi-yang,Atword MarK,Golini Donald etc.Wear and self- sharpening of vitrified bond diamond wheels during sapphire grinding.Wear,1998,219(1): 42-45
    [90]TanaKa T,EsaKi S,Nishida K.Development and application of porous vitrified -bonded wheel with ultra fine diamond abrasives.Key Engineer Materials,2004,257-258:251-256
    [91]刘一来.我国立方氮化硼磨具制造和应用技术现状及发展趋势.中国机床工具协会超硬材料分会.98郑州国际超硬材料及制品研讨会论文集,郑州,1998:40-45
    [92]关万桐.陶瓷结合剂金刚石磨硅片砂轮的研制.郑州磨料磨具磨削研究所,香港华瑛公司.93郑州国际超硬材料研讨会论文集,郑州,1993:197-201
    [93]中国标准化技术委员会.JB/T 6571-1993.人造金刚石或立方氮化硼冲击韧性测定方法.北京:中国标准出版社.2001
    [94]P W Mcmilan.微晶玻璃,王仞千译.中国建筑工业出版社,1988:97-108
    [95]Erden Demir Kesen,E Maytalman.Effect of Al_2O_3 additions on the crystallization behavior and bending strength of a Li_2O-ZnO-SiO_2glass-ceramic.Ceramics International,2001,27:99-104
    [96]Erden DemirKesen.Effect of Al_2O_3 additions on the thermal expansion behavior of a Li_2O-ZnO-SiO_2 glass-ceramic.Journal of American Ceramic Society,1999,82(12):3619-3621
    [97]E Demir Kesen.Effect of Al_2O_3 additions on the acid durability of a Li_2O-ZnO-SiO_2 glass and its glass-ceramic.International Ceramics,2003,29:463-469
    [98]邱关明,黄良钊.玻璃形成学.北京:兵器工业出版社,1987:312-357
    [99]West A R,Glasser F P.Crystallization of lithium zinc silicates.I.Phase equilibrium in the System Li_4SiO_4-Zn_2SiO_4.J.Mater.Sci.,1970,5:557-565
    [100]王培铭,许乾慰.材料研究方法.北京:科学出版社,2005:160-178
    [101]陈允魁.红外吸收光谱法及其应用.上海:上海交通大学出版社,1993:41-60
    [102]黄秉麟.陶瓷磨具制造(上).北京:机械工业委员会机床工业局,1987:176-184
    [103]李志宏.陶瓷磨具制造.北京:中国标准出版社,2000:135-142
    [104]中国标准化技术委员会.GB2490-84.喷砂法测定固结磨具硬度.郑州:中国标准化技术委员会,1984
    [105]武汉钢铁学院编.硅酸盐物理化学.北京.:冶金工业出版社.1990
    [106]Funayama,Norihiro.Development of high performance CBN and diamond grinding wheels for high speed grinding.New Diamond and Frontier Carbon Technology,2005,15(4):173-180
    [107]王秦生主编.超硬材料及制品.郑州:郑州大学出版社,2004:720-739
    [108]Suzuki K,Iwai M,Ninomiya S.A new diamond wheel coating biron doped abrasives enabling conductive edge and highthermal stability.Key Engineering Materials,2005,291-292:57-62
    [109]吉木文平.非金属矿物工学.北京:科学出版社,1962:538-546
    [110]印永嘉,奚正楷,李大珍编.物理化学简明教程.北京:高等教育出版社.1992:203-206
    [111]叶大伦编.实用无机物热力学数据手册.北京:冶金工业出版社,198:45~1110
    [112]Omar A A,Shennawi A,Ghannam A R.Thermal expansion of Li_2O-ZnO-Al_2O_3-SiO_2 glasses and corresponding glass-ceramics.J.Mater.Sci.,1991,26:6049-6056
    [113]杨舟.电子封装用高膨胀系数微晶玻璃的研究:[硕士学位论文].长沙:中南大学,2005
    [114]West A R,Glasser F P.Crystallisation of lithium zinc silicates.I.Phase equilibria in the System Li_4SiO_4-Zn_2SiO_4.J.Mater.Sci.,1970,5:557-565
    [115]EL-Shennawi A W A,Harnzawy E M A,Khater G A,et al.Crystallization of some aluminosilieate glasses.Ceram.Int.,2001,27(7):725-730
    [116]王承遇,陶瑛.玻璃成分设计与调整.北京.化学工业出版社.2006:459-465
    [117]陈国平.玻璃的配料与熔制.北京:化学工业出版社.2006:150-183
    [118]Omar A A,El-Shennawi A W A,El-Ghannam A R.Crystallization of some spodumene-lithium zinc orthosilicate glasses.J.Mater.Sci.,1991,26:3366-3373
    [119]Riga Alan T,Collines Edward A.Material characterization by the thermalmechanical analysis.Industrial appllication.ASTM Special Technical Publication,1991,1136:71-83
    [120]Speyer R F,Risbud S H.Method for the determination of the activation energy of glass crystallization from thermal analysis.Physics and Chemistry of Glasses,1983,24(1):26-30
    [121]Madhumita Goswami,P Sengupa,Kuldeep Sharma,et al.Crystalization behaviour of Li_2O-ZnO-SiO_2 glass-ceramics system.Ceramics International,2007,33(5):863-867
    [122]B Tischedorf,J U Otaigbe,J W Wiench,et al.A study of short and ittermediate range order in zinc phosphate glass.Journal of Non-Crystalline Solids,2001,282:147-158
    [123]Guo X Z,Yang H,Cao M.Nucleation and crystallization behavior of Li_2O-Al_2O_3-SiO_2 system glass ceramic containing little fluorine and no-florine.J Non-cryst Solids,2005,351:2133-2137
    [124]浙江大学,上海化工学院,武汉工业大学,等编.硅酸盐物理化学.中国建筑工业出版社,1988:78-83
    [125]Evstropyev K S,The crystallite theory of glass structure.The structure of glass Consultants Bureau,New YorK,1958,1:9-15.
    [126]饶东生.硅酸盐物理化学.北京:冶金工业出版社.1991:83-92
    [127]陆佩文编.无机材料科学基础.武汉:武汉理工大学出版社.2005:77-89
    [128]R Morell,K H G Ashbee.High temperature creep of lithium zinc silicate glass-ceramics.Part Ⅰ:General behaviour and mechanism.J Mater Sci.,1973,8:1253-1270
    [129]Batiashvili B I,Butskhrikidze D S,Mamulashvili G A,et al.Technological possibilities of low-temperature precision grinding process when machining hard and brittle materials.Key Engineering Materials,2002,223:149-156
    [130]A X Lu,Z B Ke,Z H Xiao,et al.Effect of heat-treatment condition on crystallization behaviour and thermal expansion coefficient of Li_2O-ZnO-Al_2O_3-SiO_2-P_2O_5 glass ceramics.Journal of non- crystalline solids(in press),2007,3
    [131]Ki-Dong Kim,Seung-heun Lee,Hyo-Kwon Ahn.Observation of nucleation effect on crystallization in lithium aluminosilicate glass by viscosity measurement.Journal of Non-crystalline solids,2004,336(3):195-201
    [132]Barry T I,Lay L A,Miller R P.Nucleation efficiency in lithia-alumina-silica glasses.Faraday Soc.,1970,50:214-221
    [133]P Amistra,M Cesari,A Montenero,et al.Crystallization behaviour in the system MgO-Al_2O_3-SiO_2.Journal of Non-crystalline solids,1995,192-193:365-369
    [134]Madhumita Goswami,P Sengupta,Kuldeep Sharma,et al.Crystallization behavour Of Li_2O-Al_2O_3-SiO_2 glass-ceramic system.Ceramics International,2007,33,863-867
    [135]Stewart D R.In:Advances in Nucleation and Crystallization in glass.Edited by Hench L L and Freeman S W.American Ceramic Society,Columbus,OH,1971:83-90
    [136]Riello P,Canto P,Comelato N.Nucleation and crystallization behavior of glass-ceramic materials in the Li_2O-Al_2O_3-SiO_2 system of interest for their transparency properties.J.Non-Crystalline Solids,2001,288:127-139
    [137]Arnault L,Gedand M,Riviere A.Microstructural study of two LAS-type glass-ceramics and their parent glass.J.Mater.Sci.,2000,35:2331-2345
    [138]Ray C S,Day D E Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis.J.Ameri.Ceram.Soc.,1990,73:439-442
    [139]Ray C S,Huang W H,Day D E.Crystallization kinetics ofa lithia-silica glass:effect of sample characteristics and thermal analysis measurement techniques.J.of Amer.Ceram.Soc.,1991,74:60-66
    [140]Xu X J,Ray C S,Day D E.Nucleation and crystallization of Na_2O·2CaO·3SiO_2 glass by differential thermal analysis.J.Amer.Ceram.Soc.,1991,74:909-914
    [141]B I Sharma,Sharma,Moswami,P Scngupta,et al.Study on some thremol physical properties in Li2O-ZnO-SiO2 glass-ceramics.Mater Letters,2004,58:2423-2428
    [142]West A R,Glasher E P.Crystallization of lithium zinc silicates.Part Ⅰ:Phase equilibria in the system LiSiO_4-ZnSiO_4.J Matter Sci.,1970,5:557-565
    [143]Buch A,M Ish-shalom,R Resfield,et al.Transparent glass- ceramics:preparation,characterization and properties.Material,Science and Engineering,1985,v71(5):383-389
    [144]傅献彩,沈文霞,姚天扬.物理化学(下).北京:高等教育出版社,1993:913-916
    [145]Procyk B,Staniewicz Brudnik B,Majeewska Albin K,et al.Aluminoborosilicate glasses as vitrified binders for superhard grinding tools- selected physico-ehemieal properties.International Ceramic Review,2000,49(5):308-314
    [146]中南大学编.玻璃工艺原理.长沙:中南大学出版社,1998:88-93
    [147]土桥正二.玻璃表面物理化学,黄占杰译.北京:科学出版社.1986:205-220
    [148]蒋先明,何伟平.简明红外光谱识谱法.桂林:广西师范大学,1992
    [149]中南大学编.玻璃工艺原理.长沙:中南大学出版社,1998:129-133
    [150]西北轻工业学院.玻璃工艺学.北京:中国轻工业出版社.1982:79-83
    [151]Wang Y H,Zang J B,Wang M Z,et al.Properties and application of Ticoated diamond grits.Journal of Materials Processing Technology.2002,129:369-372
    [152]吴春丽.金刚石砂轮的损耗及其合理选择.机械工程师,2001,9:9-11
    [153]Frinkel V A,Berenshtein P I.Causes of gas-phase development in glaze.Glass and ceramic,1982,39(11-12):565-567
    [154]张为民.熔制气氛与玻璃微气泡的关系浅谈.玻璃与搪瓷,2005,33(1):19-22
    [158]Zhu Yong-fa,Wang Li,Yao Wen-ming,et al.The interface diffusion and reaction between Cr layer and diamond particle during metallization.Applied Surface Science,2001,171:143-152
    [156]Greene K,Egan D,Kelly S,et al.Metal coating on synthetic diamond and their application areas.Industrial Diamond Review,2006,66(1):57-65
    [157]陈石林,陈启武,陈梨.聚晶金刚石复合片界面组织及界面反应研究.矿冶工程,2003,23(6):82-85
    [158]张红霞,王改民,华勇.陶瓷金刚石砂轮结合剂的探讨与研制.中国陶瓷,2003,1:38-40
    [159]刘宏毅.金刚石砂轮内圆磨削高强度陶瓷材料.磨床与磨削,1994,4:46-48
    [160]荒井信彦[日].陶瓷加工和金刚石砂轮.和彦译.机械与技术[日],1987,35(n12):198-206
    [161]Chen Y,Zhang L C,Arsecularathe.Polishing of Polycrystalline Diamond by the technique of dynamic friction.Part 2:Material removal mechanism.International Journal of Machine Tools and Manufacture,2007,47(10):1615-1624
    [162]Luo Hong-yun,Liu Jian-ying,Wang Li-jiang,et al.Study of the mechanism of the bumishing process with the cylindrical Polycrystalline diamond tools.Journal of Materials Processing Technology,2006,180(1-3):9-16
    [163]Batako A D,Rowe W B,Morgan M N.Temperature measurement in high efficiency creep grinding.International Journal of Machine Tools and Manufacture,2005,45(11):1231-1245
    [164]Tsunemoto Kuriyagawa,Katsuo Syori,Hideo Ohshita.Grinding temperature within contact arc between wheel and workpiece in high efficiency grinding of ultrahad cutting tool materials.Journal of Materials Processing Technology,2003,136(1):39-47
    [165]张小福,张红霞,陈燕.磨削钛合金用陶瓷CBN砂轮的研制.新技术新工艺.2006,9:37-39
    [166]Huang Han,Yin Ling,Zhou Li-bo.High speed grinding of silicon nitride with resin bond diamond wheels.Journal of Materials Processing Technology,2003,141(3):329-336
    [167]GrabchenKo A.Role of wheel diamond concentration in grinding Polycrystalline of super hard materials.Soveit Journal of super hard materials,1984,6(1):58-62
    [168]Maksoud T M A.Heat transfer model for creep-feed grinding.Journal of Materials Processing Technology,2005,168(3):448-463
    [169]傅杰才.磨削工艺与原理.长沙:湖南大学出版社.1986,26-35
    [170]温秉权,黄勇编.非金属材料手册.北京:电子工业出版社.2006
    [171]Zhang G J,Yang J F,Ohji.Fabrication of porous ceramics with unidirectionally aligned continuous pores.J Am Ceram Soc,2001,84(60):1395-1397
    [172]Tang F Q,Fudouzi H,Uchikoshi T,et al.Preparation of porous materials with controlled pore size and porosity.J Am Ceram Soc,2004,24:341-344
    [173]Schwartzwalder K,Somers A V.Method of making porous ceramic articles.US.3090094.1963
    [174]Fukasawa T,Ando M.Synthesis of porousceramics with complex pore structure by freeze-dry processing.J Am Ceram Soc,2001,84(1):320-232
    [175]Venkatesh V C,Izman S.Development of a novel binderless diamond grinding wheel for failure analysis.Journal of Materials Processing Technology,2007,185(1-3):31-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700