用户名: 密码: 验证码:
人乳过氧化物酶(Lactoperoxidase)转基因小鼠模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺生物反应器是一种利用动物转基因技术在乳腺细胞中表达多肽药物、工业酶、疫苗和抗体等蛋白的技术。该技术具有低投入高产出的特点,其效率是利用以大肠杆菌和动物细胞培养技术的一百倍,是一种非常有潜力的高新技术。1987年,Simons等人在转基因小鼠乳腺中首次成功地表达羊乳球蛋白基因,并且小鼠奶样中的蛋白含量高达23克/升,大约是动物细胞表达蛋白的400倍以上。该技术一经出现就得到迅猛的发展。许许多多的著名科学家都认为这将是畜牧业前所未有的革命,可能会给社会带来巨大的经济效益。尤其,随着动物克隆技术成熟,转基因技术得到了更充分的发展。这将使乳腺生物反应器的大规模生产更加现实,因此一场围绕该技术的国际性竞争将是必然。
     本项研究主要是建立在乳腺细胞中高效表达人乳过氧化物酶(LPO)基因的转基因小鼠模型。人乳过氧化物酶属于哺乳动物亚铁血红素超家族,广泛存在于各种哺乳动物乳汁及其它分泌物中,在过氧化氢存在的情况下可以氧化硫氰酸和其它一些物质,通过这种反应乳过氧化物酶就可以杀死或抑制细菌,同时清除氧自由基。因此它除了可以抑杀细菌、预防疾病外又是一种延缓衰老的天然保健品,是哺乳动物防卫系统中重要的组成部分。它的价值已经越来越为人们所重视,现今已经在乳制品的保藏、饲料添加、临床医学上得到广泛应用。
     人乳中乳过氧化物酶占人乳中所有蛋白总量的0.004%,活性约为牛乳的1/20。随着对奶制品需求的增加,奶制品的品质也越来越受到人们的关注。利用乳腺生物反应器的方法改造奶牛、奶山羊,使生产出的奶成分近似于人奶,既有营养的功能,又有药用的功能。这种奶可以使孩子长得高大,促进大脑和神经发育,增强免疫功能,这种新型保健品一定会有广阔的前途。我们的研究就是以小鼠为动物模型进行乳腺特异表达外源人乳过氧化物酶酶的研究。
     为了获得乳腺高效表达人乳过氧化物酶的小鼠模型,我们构建了pBC1-hLPO人乳过氧化物酶基因表达载体,核期小鼠胚胎制备转基因小鼠.
     载体pBC1-hLPO由山羊beta-casein启动子指导,还包含鸡bata-globin隔离子、及外显子1、2和内含子1。利用显微注射方法注射原共出生28只,用PCR和Southern杂交的方法检测在出生5只为转基因小鼠,转基因阳性率约为18%。
     为检测转基因小鼠的乳样中人乳过氧化物酶的表达情况,根据人乳过氧化物酶的三级预测结构,设计合成多肽CSAID KLDLSPWASV KN,与KLH偶联后免疫大白兔,取抗血清用ELISA法检测,效价达500万倍,完全可以用于转基因小鼠乳样的Western检测。
The mammary gland bioreactor is the technique that a kind of using animal transgenic technology to express proteins, in mammalian cells, such as pharmaceutical polypeptide, industry enzyme , vaccine, antibody and etc. This potential technique is characterized by producing high output in low cost, its efficiency is as 100 times as that of cultivating echerichia coli and animal cells. In 1987, the Simons first successfully expressed sheep milk globulin gene in mammary glands of transgenic mice. What' s more, the concentation of this recombinant protein is up to 23 g/1, which is about 400 times higher than that expressed by animal cells. The technique advanced with remarkable speed since its appear. Many famous scientists all consider it is an unprecedented revolution in animal husbandry which may bring the society enormous economic results. Especially, with the development of clone, the transgenic technology also has got well developed. This will make the large-scale production of the mammary glands bioreactor
     more realistic, therefore an international competition around this technique will be inevitable.
    This research is to establish a model of transgenic mice which can express human lactoperoxidase (LPO)efficiently in mammary gland cells mainly. Lactoperoxidase belongs to mammalian heme peroxidase superfamily , it can widely be found in milk and other secretory fluid . It can oxidate thiocyanate and othe substrates under the circumstances of H202, by this reaction, human lactoperoxidase can kill or inhibit the germs , and eliminate H-A at the same time. In consequence.it is also a natural health care goods which can delay slow death in addition to preventing disease by repressing and killing bacterium and is an essential component of the defence system in mammalian.Its value is more and more valueed by people , Nowadays, it has been widely used in keeping in store of dairy products fodder increasing , and on the clinical medicine
    actoperoxidase whose activity is correspond to 1/20 of cows represents about 0. 004% of the total protein in crude human milk. With increase in milk consumptions, the quality of milk is more concerned. It is through mammary gland bioreactor that milk of bovine and sheep may become similar to human milk, which has nutritional and medical function. The reconstructive milk is a promising product, which promotes children growth and development of nerve system and brain and immunity ability. Our research is to establish transgenic mouse model which highly expresses recombinant human lactoperoxidase in mammary gland.
    In order to establish the mouse model, pBCl-hLPO was constructed.
    
    
    Transgenic mice were generated by fertilized oocyte microinjection with the constructs.
    pBCl-hLPO expression vector is composed of Chicken beta-globin insulator, Goat beta-casein promoter, beta-casein exon K 2, beta-casein intron 1, the human lactoperoxidase encoding region and 3' termination region. As for pBOhLPO expression vector, 28 mice were born, and Spositive transgenic mice were identified by PCR and confirmed by Southern Blotting analysis of tail DNA. The integration rate is 17.86%. In order to examinate repression of human lactoperoxidase in the milk of transgenic mice ,based on the third class predict construction of human lactoperoxidase, Polypeptide CSAID KLDLSPWASV KN is synthetised in the design .united with KLH and then immunited white rabbits , examinated antibody got from the rabbits in the way of ELISA' s law , The effect price is up to 5 million times , that is to say , it may be used in Western blotting examinition the milk of transgenic mice completely
引文
1. Kouichirou Shin, Hirotoshi Hayasawa and Bo Lnnerdal. Purification and quantification of lactoperoxidase in human milk with use of immunoadsorbents with antibodies against recombinant human lactoperoxidase. American Journal of Clinical Nutrition, Vol. 73, No. 5,9 84-989, May 2001.
    2. De PK. Tissue distribution of constitutive and induced soluble peroxidase in rat. Purification and characterization from lacrimal gland. Eur J Biochem. 1992 May 15; 206(1):59-67
    3. Tadashi UEDA, Kazuhiro SAKAMAKI, Tetsuo KUROKI, Ikuya YANO and Shigekazu NAGATA. Molecular cloning and characterization of the chromosomal gene for human lactoperoxidase. European Journal of Biochemistry, Vol 243, 32-41 (1997)
    4. Delic. J.,Onclercq, R.& Moisan-Coppey, M. (1991)Inhibition and enhancement of eukaryotic gene expression by potential non-βDNA sequences, Biochem. Biophys. Res. Commun. 181,818-826.
    5. Hamada, H,,Seidman, M.,Howard, B.H.& Gorman, C.M. (1985).Enhanced gene expression by the poly(dT-dG).poly(dC-dA)sequence, Mol. Cell. Biol. 4,2622-2630.
    6. Shibahara, S.,Kubo, T.,Perski, H.J.,Takahashi, H.,Noda, M.&Numa. S. (1985)C loning and sequence analysis of human genomic DNA encoding γ suhunit precursor of muscle acetylcholine receptor, Eur. J. Biochem. 146,15-22.
    7. Morohashi, K.,Sogawa, K.,Omura, T.& Fujii-Kuriyama, Y. (1987) Gene structure of human cytochrome P-450(SCC), cholesterol desmolase, J. Biochem. (Tokyo)101.879-887.
    8. Levanon, D.,Lieman-Hurwitz, J.,Dafni, N.,Wogderson, M.,Sherman, L.,Berns tein, Y.,Laver-Rudich, Z.,Danciger, E.,Stein. O.&Groner, Y., (1985)Architect ure and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase, EMBO J.4,77-84.
    9. Dodgson, J.B.& Engel, J.D. (1983)The nucleotide sequence of the adult chicken α-globin genes, J. Biol. Chem. 258,4623-4629.
    10. Erbil, C.& Niessing, J. (1983) The primary structure of the duck α~D-globin gene:an unusual 5′ splice junction sequence. EMBO J. 2,1339-1343.
    11. Wieringa, B.,Meyer, F.,Reiser, J.& Weissmann, C. (1983)Unusual splice sites revealed by mutagenic inactivation of an authentic splice site fo the rabbit β-globin gene, Nature 301, 38-43.
    12. King, C.R.& Piatigorsky. J. (1983)Alternative RNA splicing of the murine α~A-crystallin gene:protein-coding information within an intron, Cell32,707-712.
    13. Gothefors, L. & Marklund, S. (1975) Lactoperoxidase activity in human milk and in saliva of newborn infants, Infect. Immun. 11,1210-1215.
    14. Rinfret, A.,Horne, C.,Dorrington, K.J.&
    
    Klein, M. (1989)Cloning, Sequencing and expression of the rearranged MOPC 315V_(11)gene segment, Mol. Immun. 26,431-434.
    15. Wolf, 7. B.,David, V.A.& Deutch, A.H. (1990) Identification of a distal regulatory element in the 5′ flanking region of the bovine prolactin gene. Nucleic Acids Res. 18,4905-4912.
    16. Sausville, E.,Carney, D.& Battey, J. (1985)The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line, J. Biol. Chem. 260,10236-10241.
    17. Kawamura, K.,Satow, H.,IK, L.D.,Sakai, S.,Takada, S.& Obinata, M. (1987)Modulation of the transferred mouse 26K casein gene in mouse L cells by glucocorticoid hormone, J. Biochem. (Tokyo) 101,103-110.
    18. Klocck, G.,Strhle, U.& Schutz, G. (1987)Oestrogen and glucocorticoid responsive elements are closely related but distinct, Nature 329,734-736.
    19. Anderson, W.A.,Kang, Y.H.& Desombre E.R. (1975)Endogenous peroxidase:specific marker enzyme for tissues displaying growth dependency on estrogen, J. Cell. Biol. 64,668-681.
    20. DeSombre, E.R.,Anderson, W.A.& Kang, Y.H. (1975)Identification, subcellular lacalization, and estrogen regulation peroxidase in 7, 12-Dimethylbenz(a) anthoracene-induced rat mammary tumors, Cancer Res. 35. 172-179.
    21. L Michael, Ott. Lactoperoxidase. Free Radicals in Biology and Medicine 77: 222 Spring 2001
    22. Morishita, K.,Tsuchiya, M.,Asano, S.,Kajiro,,Y.7 Nagata, S. (1987)Chromosomal gene structure of human myeloperoxidase and reglulation of its expression by granulocyte colony-stimulating factor, J. Biol. Chem. 262,15208-15213.
    23. Johnson, K.R.,Nauseef, W.M.,Care, A.,Wheelock, M. J.,Shane, S.,Hudson, S.. Koeffler, H.P.,Selsted, M.,Miller, C.& Rovera, G. (1987)Characterization of cDNA clones for human myeloperoxidase:predicted amino acid sequence and evidence for multiple mRNA species, Nucleic Acids Res. 15,2013-2028.
    24. Kimura, S. Hong, Y.S.,Kotani, t.,Ohtaki, S.& Kikkawa, F. (1989)Structure of the human thyroid peroxidase gene:Comparison and relationship to the human myeloperoxidase gene, Biochemistry. 28,4481-4489.
    25. Morishita, K.,Kubota, N.,Asano, S.,Kajiro, Y.& Nagata, S. (1987) Molecular cloning and characterization of cDNA for human myeloperoxidase, J. Biol. Chem. 262,3844-3851.
    26. Sakamaki, K.,Tomonaga, M.,Tsukui, K.& Nagata, S. (1989) Molecular cloning and characterization of a Chromosomal gene for human eosiniphil peroxidase, J. Biol. Chem. 264,16828-16836.
    27. Heijine G. (1985)Signal sequences. The limits of variation, J. Mol. Biol. 184,99-105.
    28. G Regelsberger, PG Furtmüller, W Jantschko, J Arnhold, N Moguilevsky, C Obinger. The superfamily of animal and human heme peroxidases: Structure-function relationships of myeloperoxidase, eosinophil
    
    peroxidase and lactoperoxidase. Presentations at Meetings 2000.
    29. Poulos, T.L.& Kraut, J. (1980)The stereochemistory of peroxidase catalysis, J. Biol. Chem. 255,8199-8205.
    30. Kimura, S. &Ikeda-Saito, M. (1988)Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family. Proteins 3,113-120.
    31. M Olivier, Lardinois, F Katalin, Medzihradszky, and R Paul, Ortiz de Montellano. Spin Trapping and Protein Cross-linking of the Lactoperoxidase Protein Radical. The Journal of Biological Chemistry, Vol. 274, No. 50.35441-35448, December 1999.
    32. Lisa M Wolfson, Antibacterial activity of the lactoperoxidase system, Journal of Food Protection, 1993,887-892.
    33.. Harper. Lactoperoxidase. Review of Biological Properties through 1997
    34.张和平。乳过氧化物酶的作用及应用。中国奶牛,1994:(4)
    35.刘建忠,李宁,丁翔(1998)转基因动物研究进展,农业生物技术学报。6:269-276。
    36. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH(1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA. 1980, 77: 7380-4.
    37. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 300:611-5.
    38. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315,680-3.
    39. Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD(1988) Introns increase transcriptional efficiency in transgenic mice Proc. Natl. Acad. Sci. USA 85(3), 836-840
    40. Salter DW. (1987) Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology, 157, 236-40.
    41. Haskell RE. (1995)Efficient production of transgenic cattle by retroviral infection of early embryos. Mol. Reprod. Dev. 40:386-90
    42.刘红林,陈宜峰(1997)精子介导外源DNA转移的研究进展。生物工程进展,17:27-30。
    43. Lavitrano M, Camaioni A, Fazio V. M (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell. 57, 717-23.
    44. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. (1997) Humen factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblast. Science, 278:2130-2133
    45. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM(1998) Cloned tranegenic calves produced from nonquiescent fetal fibrofasts, Science, 280: 1256-1258
    46.黄淑帧,张克忠,黄英等.乳汁中分泌有活性的人凝血因子Ⅸ的转基因羊的研制
    
    (J)(1998).科学通报,,783~784
    47. Suraokar M. and Bradley A., (2000) Targeting sheep. Nature 405, 1004-1005
    48. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells, Nature. 405,1066-1069
    49. Damak S, Su H, Jay NP, Bullock DW. (1988)Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology, 14:185-8.
    50. Damak S, Nigel J, Graham B (1992) Targetting gene expression to the wool follicle in transgenic sheep. Biotechnology, 14:181-4.
    51. Powell BC, Walker SK, Bawden CS (1994) Transgenic sheep and wool growth: possibilities and current status. Reprod. Fertil. Dev. 6, 615-23.
    52. Clements JE, Wall RJ, Narayan O, et al. (1994) Development of transgenic sheep that express the visna virus envelope gene. Virology 200, 370-80.
    53. Garber E. A, Hilary T. C, Jon H. C (1991) Avian cells e.xpressing the murine Mx1 protein are resistant to influenza virus infection. Virology, 180, 754-62
    54.臧莹安,霍军,王喜军,赵传壁,闫家麒(2002)新型的动物生物制药厂——转基因动物乳腺反应器 中兽医医药杂志 5,43-45
    55. Ziomek CA (1998) Commercialization of proteins produced in the mammary gland. Theriogenolgy 49,139-144
    56. Wall RJ. (1999) Biotechnolgy for the Production of modified and innovative animal products:transgenic livestock bioreactions. Livestock Production Science 59, 243-255
    57. Yu SF, Lazar J, and Hauser P(1997) P63 mutation in thyroid hormone receptor β causes heart and eye defects in transgenic mice. Lab. Ani. Sci. 47, 450.
    58.Snyder BW, Vitale J, Milos P, Gosselin J, Gillespie F, Ebert K, Hague BF, Kindt TJ, Wadsworth S, Leibowitz P Developmental and tissue-specific expression of human CD4 in transgenic rabbits. Molecular Reproduction and Development, 1995, 40; 419-28
    59.杜晓惠,吴登俊(2002)通过转基因改善家畜奶的品质 黑龙江畜牧兽医11,11-13
    60. Reichenstein M, Gottlieb H, Damari GM, Iavnilovitch E, Barash I (2001) A new beta-lactoglobulin-based vector targets luciferase cDNA expression to the mammary gland of transgenic mice Transgenic Res 10(5), 445-56
    61. Niemann H and Kues W A(2000) transgenic livestock: primises and promises. Animal Reproduction Science. 60, 27-293
    62. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A. (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology. 9, 830-4.
    63. Vilotte JL, Soulier S and Mercier JC 1992, Sequence of the murine alpha-lactalbumin -encoding cDNA: interspecies comparison of the coding frame and deduced pre-protein. Gene 112, 251-255.
    64. Gordon, K., Lee E, Vitale JA, Smith AE, Westphal H, Hennighausen L (1987) Production of human tissue plasminogen activator in transgenic mouse milk. Bio/technology 5, 1183-1187
    65. Archibald AL, McClenaghan M, Hornsey V, Simons JP, Clark AJ(1990) High-level expression of biologically active human α_1-antitrypsin in the milk of transgenic mice.
    
    Proc. Nalt. Acad. Sci. USA.87, 5178-82.
    66. Chen H, Kim J, Kendall DA. (1996) Competition between functional signal peptides demonstrates variation in affinity for the secretion pathway. J Bacteriol, 178(23), 6658-6664
    67. Thepot D, Devinoy E, Fontaine ML, Stinnakre MG, Massoud M, Kann G, Houdebine LM (1995) Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Molecular Reproduction and Development.42, 261-7
    68. Bleck GT, White BR, Miller DJ(1998) Production of bovine alphalactalbumin in the milk of transgenic pigs. Journal of Animal Science. 76(12), 3072-3078
    69. William HV., Lubon H., William ND. Transgenic livestock as drug factories. Scientific American, 1997, 276(1):70~74
    70. Van CK., Butler SP., Russell CG. Transgenic pigs as bioreactors: a comparison of gamma-carboxylation of glutamic acid in recombinant human protein C and factor Ⅸ by the mammary gland. Genet Anal, 1999, 15(3-5): 155~60
    71. Halter R. Strategies to express factor Ⅷ gene constructs in the ovine mammary gland. Theriogenology, 1993, 39:137~149
    72..McEcoy TG., Sreenan JM. The efficiency of production, centrifugation, microinjection and transfer of one- and two-cell bovine ova in a gene transfer program. Theriogenology, 1990, 33:819~828
    73. Chen YF. Transgenic Animals. Beijing: Science Press, 2002
    74.熊爱生、彭日荷、李贤、范惠琴、姚泉洪、郭美锦和张嗣良(2003)信号肽序列对毕赤酵母表达外源蛋白质的影响。生物化学与生物物理学报35(2),154-160
    75. Whitelaw CB, Archibald AL, Harris S, McClenaghan M, Simons JP, Clark AJ(1991) Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice 1(1), 3-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700