用户名: 密码: 验证码:
果壳类生物质直接脱氧液化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源需求的不断增加和温室效应的日益加剧,人们越来越渴望找到一种新的可再生能源来改变现在的能源结构,促进能源的可持续发展。在过去的20年里,生物质作为一种清洁的可再生资源越来越受到世界工业的关注。据统计,生物质每年提供的能量占到世界总能源的10-14%。除此以外,生物质具有CO2净排放为零,低的硫、氮含量的特点,使生物质燃烧利用排放的SO2、NOx比传统化石燃油低得多。因此,生物质能的广泛开发利用将可能缓解日益严重温室效应和能源短缺等能源问题。
     本论文从脱氧的角度考虑,提出了一种不同于快速热解和高压液化的新的反应方法即“直接脱氧液化法”。实验在密闭的环境中进行,不需要加氢气和其它载气。生物质中大量的氧以CO和CO2的形式脱除,所以得到的液体燃油具有较高热值、低含氧量、高H/C比;初步筛选了可选控的催化重组催化剂,以控制产物中的芳香化合物和直链烷烃的分布。
     本论文着重研究了果壳类生物质中的纤维素、半纤维素、木质素三种主要组份在直接脱氧液化中的反应机理,并确定:纤维素脱氧液化的主要产物是苯酚类衍生物、苯类衍生物、呋喃衍生物和环戊酮类物质;木质素液化的主要产物是苯酚衍生物,其中最为典型的例子就是核桃壳(苯酚衍生物含量为75.88%);对比可提取物和烷烃的含量关系论证了可提取物可能是烷烃的主要来源。另外,由于在生物质中纤维素、半纤维素和木质素交错混生在一起,所以纤维素、半纤维素在生物质脱氧液化过程会受到各组份相互间立体位阻的影响,阻碍呋喃衍生物的生成。同时,也对其它组份液化产生影响。
     本论文对四种常见生物质:大豆秧、核桃壳、葵花籽壳、花生壳进行脱氧液化实验,采用GC-MS、FTIR和元素分析等多种方法定性、定量分析了液化产物组成并进行了质量衡算。研究发现葵花籽壳(其中葵花籽含量低于5wt%)可以通过脱氧液化的方式得到高质量的液体燃油,其主要成分为C7-C19的直链烷烃、苯的衍生物。其最高产率为19.2%、最高热值的液体燃油在450℃反应温度下得到;其物理特性及热值(46.9MJ/kg),都表明这是一种更有可能作为汽柴油的替代品的高品位植物基合成油。高木质素含量生物质脱氧液化更容易生成固体焦炭物质,其油相产物中主要是苯酚衍生物,典型的生物质为核桃壳(苯酚衍生物含量最高可达到75.88%),所以高木质素含量生物质可以作为提供苯酚衍生物中间体及化工品的一种来源。脱氧液化过程所产生的气体主要成份是H2、CO、CH4和CO2,其中CO2的含量在75-90%,充分说明了反应过程中脱除了大量的氧原子。总之,生物质经过直接脱氧液化,产物中氧含量明显降低,热值明显提高,为生物质更为有效的利用开辟了新的途径。
With the increasing demand for energy and the rising atmospheric greenhouse gas levels, renewable energy should be widely explored to renovate the energy source structure and keep sustainable development safe. Biomass as a clean and renewable energy resource has become more and more attractive to industry in the past 20 years. It is estimated to contribute 10-14% of the total energy supply in the world. In addition, biomass has zero net emission of CO2 and has very low contents of sulfur and nitrogen, which gives lower emissions of SO2, NOx than conventional fossil fuels. Therefore, the widely exploration of biomass has great potential for alleviating energy problems, such as the greenhouse effect and the depletion of fossil energy sources.
     A new methord“Direct deoxy-liquefaction”was introduced in this paper, which was different from fast pyrolysis and high pressure liquefaction. Experiments were conducted in an airtight reactor without adding H2, and other carrier gas. In this liquefaction process,the most oxygen in biomass was released in the forms of CO and CO2,thus, high heating value oil can obtained with a low oxygen content and high H/C ratio. Several catalysts were selected and prepared to control the distribution of the aromatic compounds and long-chain alkanes in the liquid oil.
     In this paper, the deoxy-liquefaction mechanics of cellulose, hemicellulose and lignin were studied. The liquid oil obtained from cellulose was mainly composed of phenols, benzenes, furans and cyclopentanones. Abundant phenol derivatives were obtained from high lignin content biomass, for example walnut shell (75.88%). Furthermore, long chain alkanes may come from the extractive part of biomass was confirmed due to the analysis of extractive content and the yield of alkanes. In addition, cellulose, hemicelluloses and lignin mixed with staggered in biomass, they affect each other in deoxy-liuqefaction processes for steric hindrance.
     Four usual biomasses: soybean stalk, walnut shell, sunflower shell, peanut shell was chosen for preparing liquid oil in this paper. Gas chromatography-mass spectrometry (GC-MS) with the National Institute of Standards and Technology (NIST) 98 MS library was used to analyse the composition of liquid oil, while the functional groups analysis was carried out by Fourier transform infrared spectroscopy (FTIR). The element contents of biomass and liquid oil was analyzed by elemental analysis. So the liquid oil components can be analysed qualitatively and quantitatively and the mass distribution of products was done. The liquid oil with a maximum yield 19.2%wt and H/C molar ratio of 1.99 and higher heating value (HHV) of 46.9 MJ/kg was obtained at 450℃from sunflower shell samples via deoxy-liquefaction. Furthermore, the oil analyzed by GC-MS was mainly composed of benzene derivatives, phenolic derivatives, and alkanes (C7-C19). It has more potential to be a substitute for petroleum fuels than the oil that consisted mainlyof aldehydes, ketones, esters, and ethers. On the other hand, the productions of high lignin content biomass are mainly char, and the liquid oil is manily composed of phenolic derivatives. So, high lignin content biomass can be used to prepare phenolic derrivetives and other chemicals. The gaseous products were H2、CO、CH4 and CO2. The major gas product was carbon dioxide (75-90%) for all samples, suggesting that great amount of oxygen atoms have been removed during the process. In conclusion, direct deoxy-liquefaction can limited the oxygen content in the liquid oil and increased the high heating value significantly. It would provide a new prospect for the utilization of biomass.
引文
[1]孙利源.生物质能利用技术比较与分析.能源研究与信息, 2004, 20 (2): 68-73.
    [2]李瑞阳. 21世纪的重要能源-生物质能.世界科学, 1999 (10): 25-27.
    [3]姚向君,田宜水.生物质能资源清洁转化利用技术.第一版.北京:化学工业出版社,2005, 1
    [4]赵建辉.生物质快速热裂解液化传热模型与试验研究重庆大学硕士论文2006.12
    [5]魏学锋,刘建平.生物质燃料的利用现状与展望.云南环境科学, 2005, 24 (2): 16-19.
    [6]中国大百科全书出版社编辑部.能源百科全书.北京:中国大百科全书出版社, 1997.
    [7]刘威.生物质能开发利用设计与环境效应的研究.东北师范大学硕士毕业论文. 2002, 4.
    [8]朱清时,阎立峰,郭庆祥.生物质洁净能源.北京:化学工业出版社, 2002.
    [9] Demirbas MF, Balat M. Recent advances on the production and utilizationtrends of bio-fuels: a global perspective. Energy Conversion and Management. 2006, 47: 2371-2381.
    [10] Dinesh M, Charles U, Pittman J, Philip HS. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels. 2006, 20: 848-889.
    [11]张无敌,董锦艳,宋洪川等.生物质能利用[J].太阳能,2000,1:6-7.
    [12]中科院广州能源所主办.中国新能源网,www.newenerzy.ore.c.
    [13]林士森.生物质热解机制及反应动力学研究.中国林业科学研究院硕士毕业论文2007.7.
    [14]中国大百科全书出版社编辑部.能源百科全书.北京:中国大百科全书出版社, 1997.
    [15] Zhang, Q., Chang, J., Wang, T., et al. Review of biomass pyrolysis oil properties and upgrading research. Energy conversion and management. 2007, 48: 87-92.
    [16]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社, 2003.
    [17]赖艳华,吕明新,马春元等.秸秆类生物质热解特性及其动力学研究.太阳能学报, 2002,23(2):203-206.
    [18] ?zbay, N., Pütün, A.E., Pütün, E. Structural analysis of bio-oils from pyrolysis and steam pyrolysis of cottonseed cake. J. Anal. Appl. Pyrolysis. 2001,60: 89-101.
    [19] Ate?, F., Pütün, A.E., Pütün, E. Catalytic pyrolysis of perennial shrub, Euphorbia rigida in the water vapour atmosphere. J. Anal. Appl. Pyrolysis. 2005, 73: 299-304.
    [20]杨立忠,杨钧锡.别义勋.新能源技术,北京:中国科学技术出版社,1994.
    [21]胡宏义.联合国开发计划署(UNDPY)/全球环境基金(GEF)加速中国可再生能源商业化能力建设项目启动.中国能源,1999, 4: 44.
    [22]张无敌,字尚斌,周长平.生物质能-未来能派的希望,能源研究和利用,1995, 4:3-6.
    [23]史立山.中国能源现状分析和可再生能源发展规划.可再生能源, 2004, 5:1-5.
    [24]袁振宏,李学凤,蔺国芬.我国生物质能技术产业化基础的研究.中国生物质能技术研讨会论文集.南京,2002:太阳能学会生物质能专业委员会,2002,1-18.
    [25]郭艳等.生物质快速裂解液化技术的研究进展.技术进展,2001, Vol8:13.
    [26]陈文七.中国新能源和可再生能源投资市场及其发展.中国能源,1997, 3:45-48
    [27]可再生能源网www.crein.org.
    [28]李伍刚,李瑞阳,郁鸿凌,徐开义.生物质热解技术研究现状及其进展.能源研究与信息, 2001,17 (4):210-215.
    [29]杨淑蕙等.植物纤维化学(第三版)中国轻工业出版社2001:6-9
    [30]王超.生物质直接脱氧液化制备生物石油的研究中科院理化技术研究所2007,5
    [31] http://www.bjhwx.cn/maoxin-10/fz04/jdlf091.htm (纤维素分子结构)
    [32]常用非木材纤维碱法制浆实用手册,中国轻工业出版社,1993:98.
    [33]潘京学.木质纤维素及其衍生物催化转化的研究中科院研究生院博士学位论文,2007.5.
    [34] H.B.Goyal., Diptendu Seal., R.C. Saxena. Bio-fuels from thermochemical conversion ofrenewable resources: A review. Renuwable & Sustainable Energy Reviews. 2008, 12: 504-517.
    [35] McKendry P. Energy production from biomass (Part 2): overview of biomass. Bioresource Technol. 2002, 83:37–46.
    [36] Bridgwater AV, Peacocke GVC. Fast pyrolysis process for biomass. Renew Sustain Energy Rev. 2000, 4:1–73.
    [37]张无敌,刘士清,周斌等,我国农村有机废弃物资源及沼气潜力.自然资源,1997, 1: 67-71.
    [38]方真,曾德超.生物能源利用技术的研究和发展.中国能源,1991, 11: 9~11.
    [39]李文,李保庆,生物质的热解与液体产物的精制.新能源,1997, 19 (10 ): 22~28
    [40]蒋剑春.生物质热化学转化行为特性和工程化研究,中国林业科学研究院博士毕业论文.2003.5
    [41] J. G. Brammer et al. Opportunities for biomass-derived bio-oil in European heat and power markets. Pyrolysis and Gasification of Biomass and Waste Expert Meeting. 2002, Sept 30-October 1, Strasbourg, France.
    [42] Xu, C.; Etcheverry, T. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel. 2008, 87, 335-345.
    [43] Miller, J.E.; Evans, L.; Littlewolf, A.; Trudell, D.E. Bath microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel. 1999, 78, 1363-1366.
    [44] Qu, Y.; Wei, X.; Zhong, C. Experimental study on the direct liquefaction of cunninghamia lanceolata in water. Energy. 2003, 28, 597-606.
    [45]蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业, 2002, 22 (2): 75-80.
    [46] Molten PM, Demmitt TF, Donovan JM, Miller RK. Mechanism of conversion of cellulose wastes to liquid in alkaline solution. In: Klass DL, editor. Energy from biomass and wastes III.Chicago, IL: Institute of Gas Technology. 1983:293.
    [47] K. Raveendran, A. Ganesh. Heating value of biomass and biomass pyrolysis products. Fuel. 1996.75:1715-1720.
    [48] F. He, W. Yi, X. Bai, A.J. Stamm, E. Harris. Investigation on caloric requirement of biomass pyrolysis using TG–DSC analyzer. Energy Conversion and Management. 2006, 47: 2461-2469.
    [49] Chemical processing of wood. New York: Chem. Publ, 1953.
    [50] H. Yang, R.Yan, H. Chen, D. Ho Lee, C. Zheng. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, In Press, Corrected Proof, Available online, 2007.
    [51] A.F. Roberts, G. Clough. Thermal degradation of wood in an inert atmosphere. In: 9th Intern. Symp. Combustion, Pittsburg, PA.1963:158-66.
    [52] H.P.Brown, A.J.Panshin, C.C.Forsaith. In: Textbook of wood technology,vol.Ⅱ.New York: McGraw-Hill, 1952.
    [53] K. Kuroda, A. Nakagawa-izumi. Analytical pyrolysis of lignin: Products stemming fromβ-5 substructures. Organic Geochemistry. 2006(37): 665-673.
    [54] Maschio G, Koufopanos C., Lucchesi A., Pyrolysis, a promising route for biomass utilization, Bioresource Technology, 1992, 42: 219-231
    [55]张洪勋李林,纤维素类生物质热解技术研究进展,北京联合大学学报:自然科学版, 2004,1: 16-19
    [56] Rrichard C., Bailie, Results from Commercial-Demonstration Pyrolysis Facilities extendedto producing Synfuels from Biomass,Energy from Biomass and Wastes.Sy, 1981, mposium papers: 584~569
    [57] Maggi R, Delmon B, Comparison between slow and flash pyrolysis oils from biomass, Fuel, 1994, 73(5), 671~676
    [58] Williams P T, Besler S, The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy.1996,7(3),233~250
    [59] Demirbas A. Mechanism of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management. 2000, 41: 633-646
    [60]张洪勋,李林.纤维素类生物质热解技术研究进展.北京联合大学学报(自然科学版), 2004, 18 (1): 16-19
    [61] Shafizadeh F, Stevenson TT. Saccharification of douglas-fir wood by a combination of prehydrolysis and pyrolysis. Journal of Applied Polymer Science. 1982, 27: 4577-4585
    [62]高洁,汤烈贵.纤维素科学.北京:科学出版社, 1999.
    [63] Dinesh M, Charles U, Pittman J, Philip HS. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 2006, 20: 848-889.
    [64] Hosoya T, Kawamoto H, Saka S. Cellulose-hemicellulose and cellulose-lignin interaction in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis, 2007, 80: 118-125.
    [65] Adjaye JD, Sharma RK, Bakhshi NN. Characterization and stability analysis of wood-derived bio-oil. Fuel Processing Technology, 1992, 31: 241-256.
    [66] Koufopanos CA. Studies on the pyrolysis and gasification of biomass. Comm.Eur. Comm. Final Report of the Grant Period, 1986:1983-1986
    [67] Ayhan Demirbas. Biomass resource facilities and biomass conversion processing for fuels and chemicals [J]. Energy Conversion and Management, 2001,42(7):1357-1378.
    [68]陈于勤,汪华林.生物质热加工液化技术评述.能源技术,2005, 6(26):109-113
    [69]陈平,谢军,阴秀丽等.木屑在鼓泡流化床和循环流化床中气化特性的对比研究. 2006, 4: 417-421
    [70]戴先文,吴创之,周肇秋,陈勇.循环流化床反应器固体生物质的热解液化.太阳能学报.2001(2):124-130
    [71] Meier D, faix O. State ofartofappliedfastpyrolysisof lignocellulosic materials [J]. Bioresource Technology, 1999, 68(4): 71-77
    [72] Serdar Yaman. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Conversion and Management, 2004, 45(5): 651-671
    [73]陈明强,颜涌捷,任铮伟等.导向喷动流化床生物质快速裂解制液体燃料[J].华东理工大学学, 2004, 30(02):143-146
    [74]百度知道生物质能源http://baike.baidu.com/view/237830.htm
    [1] Qu, Y.; Wei, X.; Zhong, C. Experimental study on the directliquefaction of Cunninghamia lanceolata in water. Energy. 2003, 28, 597–606
    [2] Scholze, B.; Meier, D. Characterization of the water-insolublefraction from pyrolysis oil pyrolytic lignin. Part I. PY-GC/MS, FTIR, andfunctional groups. J. Anal. Appl. Pyrolysis. 2001, 60, 41–54
    [1] Zhang, Q., Chang, J., Wang, T., Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion & Management, 2007, 48, 87-92.
    [2] Tomohisa Miyazawa., Takeo Kimura., Jin Ninshikawa., et al. Catalytic properties of Rh/CeO2/SiO2 for synthesis gas production from biomass by catalytic partial oxidation of tar. Science and Technology of Advanced Materials, 2005, 6(6): 604-614.
    [3] ?zbay, N., Pütün, A.E., Uzun, B.B., Pütün, E. Biocrude from biomass: pyrolysis of cottonseed cake. Renewable Energy, 2001, 24: 615-625.
    [4] Cyrille Rioche., Shrikant Kulkarmi., Frederic C., et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B: Environmental. 2005,61: 130-139.
    [5] Pütün, A.E., ?zcan, A., Ger?el, H. F., et al. Production of biocrudes from biomass in a fixed-bed tubular reactor: product yields and compositions. Fuel. 2001, 80: 1371-1378.
    [6] Yaman s. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Convers Manage, 2004, 45(5):651-671.
    [7] Lappas A. A., Samolada M. C., Iatridis D.K., et al. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals [J]. Fuel, 2002, 81(16):2087-2095.
    [8] Xu, C., Lad, N. Production of heavy oils with high caloric values by directliquefaction of woody biomass in sub/near-critical water. Energy & Fuels, 2008, 22: 635-642.
    [9]廖艳芬,王树荣,骆仲泱,岑可法.氧化钙催化纤维素热裂解动力学研究[J],燃料化学学报,2005,33(6):692-697.
    [10]廖艳芬,骆仲泱,王树荣等.纤维素快速热裂解机理试验研究:Ⅰ试验研究[J]燃料化学学报,2003,31(2):133-138.
    [11]王树荣,廖艳芬,谭洪等.纤维素快速热裂解机理试验研究:Ⅱ机理分析[J]燃料化学学报,2003,31(4):317-321.
    [12]王树荣,廖艳芬,文丽华等.钾盐催化纤维素快速热裂解机理研究[J]燃料化学学报,2004,32(6):694-698
    [13]廖艳芬,王树荣,马晓茜.纤维素热裂解反应机理及中间产物生成过程模拟研究[J].燃料化学学报,2006,34(2):184-190.
    [14] Edward B. Sanders, Alan I. Goldsmith, Jeffrey I. Seeman. A model that distinguishes the pyrolysis of Dglucose, D-fructose, and sucrose from that ofcellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis. 2003, 66: 29-50.
    [15] Michael Jerry Antal., Gbor Vrhegyi., Emma Jakab. Cellulose Pyrolysis Kinetics: Revisited. Ind. Eng. Chem. Res., 1998, 37 (4), 1267–1275.
    [16] A. Pappa, K. Mikedi, N. Tzamtzis, M. Statheropoulos. Chemometric methods for studying the effectsof chemicals on cellulose pyrolysis bythermogravimetry–mass spectrometry. J. Anal. Appl. Pyrolysis. 2003, 67: 221–235.
    [17] A. Demirbas. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis. 2006, 76: 285-289.
    [18] Goyal, H., Seal, D., Saxena, R. C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 2008, 12: 504-517.
    [19] E.B. Higman, I. Schmeltz, W.S. Schlotzhauer, J. Agric. Food Chem, 1970,18: 636.
    [20] O.P. Golova, Russ. Chem. Rev. 1975, 44: 687.
    [21] R.J. Evans, C.C. Elam, M. Looker, M. Nimlos, Prepr. Symp. Am. Chem. Soc.Div. Fuel Chem, 1999, 44: 256.
    [22] H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 2000, 26: 565.
    [23] E.W. Robb, W.R. Johnson, J.J. Westbrook, R.B. Seligman, Beitr. Tabakforsch. 1966, 3: 9.
    [24] M. Hajaligol, B. Waymack, D. Kellogg, Fuel. 2001, 80: 1799.
    [25] T.E. McGrath, G.W. Chan, M.R. Hajaligol, J. Anal. Appl. Pyrol. 2003, 66.
    [26] M.G. Essig, T. Lowry, G.N. Richards, E.M. Schenck, in: A.V. Bridgwater, J.L. Kuester (Eds.), Research in Thermochemical Biomass Conversion, Elsevier Applied Science, London. 1988, p. 841.
    [27] M.G. Essig, G.N. Richards, E.M. Schenck, in: C. Schuerch (Ed.), Cellulose and Wood Chemistry and Technology, Wiley, New York, 1989, p. 841.
    [28] K. Kato, Agr. Biol. Chem. 1967, 31: 657.
    [29] K. Kato, T. Doihara, F. Sakai, N. Takahashi, Sci. Pap. Centr. Res. Inst. Jpn. Monop. Corp. 1966, 108: 361.
    [30] S.C. Moldoveanu, Analytical Pyrolysis of Natural Organic Polymers, Elsevier, Amsterdam, 1998.
    [31] I.S. Fagerson, J. Agric. Food Chem. 1969, 17: 747.
    [32] A.E. Pavlath, K.S. Gregorski, in: A.V. Bridgwater, J.L. Kiuester (Eds.), Research Thermochemical Biomass Conversion, Elsevier, London, 1988, p. 155.
    [33] J.I. Seeman, Chem. Rev. 1983, 83: 83.
    [34] Qu, Y.; Wei, X.; Zhong, C. Experimental study on the directliquefaction of Cunninghamia lanceolata in water. Energy. 2003, 28: 597–606.
    [35] Scholze, B.; Meier, D. Characterization of the water-insolublefraction from pyrolysis oil pyrolytic lignin. Part I. PY-GC/MS, FTIR, andfunctional groups. J. Anal. Appl. Pyrolysis, 2001, 60: 41–54.
    [36] Onay, O.; Ko?kar, O.M. Pyrolysis of rapeseed in a free fall reactor for production of bio-oil. Fuel. 2006, 85: 1921-1928.
    [1] Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion & Management. 2007, 48,87-92.
    [2] Xu, C.; Etcheverry, T. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel. 2008, 87, 335-345.
    [3] Mckendry, P. Energy production from biomass (Part 1): overview of biomass. Bioresour Technol. 2002, 83, 37-46.
    [4] Pütün, A.E.; Uzun, B.B.; Apaydin, E.; Pütün, E. Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions. Fuel Process. Technol. 2005, 87, 25-32.
    [5] ?zbay, N.; Pütün, A.E.; Pütün, E. Structural analysis of bio-oils from pyrolysis and steam pyrolysis of cottonseed cake. J. Anal. Appl. Pyrolysis. 2001, 60, 89-101.
    [6] Ate?, F.; Pütün, A. E.; Pütün, E. Catalytic pyrolysis of perennial shrub, Euphorbia rigida in the water vapour atmosphere. J. Anal. Appl. Pyrolysis. 2005, 73, 299-304.
    [7] Meng, N.; Dennis, Y.C. Leung.; Michael, K.H. Leung.; Sumathy, K. An overview of hydrogeng production from biomass. Fuel Process. Technol. 2006, 87, 461-472.
    [8] Xu, C.; Lad, N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy & Fuels. 2008, 22, 635-642.
    [9] Goyal, H.; Seal, D.; Saxena, R. C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews.2008, 12, 504-517.
    [10] Luo, Z.Y.; Wang, S.R.; Liao, Y.F.; Zhou, J.S.; Gu, Y.L.; Cen, K.F. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy. 2004, 26, 455-462
    [11] Zhang, S.P.; Yan, Y.J.; Ren, Z.W. Analysis of liquid product obtained by the fast pyrolysis of biomass. J. Chin. Sci. Technol. 2001, 27, 666-668.
    [12] Miller, J.E.; Evans, L.; Littlewolf, A.; Trudell, D.E. Bath microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel. 1999, 78, 1363-1366.
    [13] Qu, Y.; Wei, X.; Zhong, C. Experimental study on the direct liquefaction of cunninghamia lanceolata in water. Energy. 2003, 28, 597-606.
    [14] Wang, C.; Du, Z.; Pan, J.; Li, J.; Yang, Z. Direct conversion of biomass to bio-petroleum at low temperature. J. Anal. Appl. Pyrolysis. 2007, 78, 438-444.
    [15] Li, J.; Wu, L.; Yang, Z. Analysis and upgrading of bio-petroleum from biomass by direct deoxy-liquefaciton. J. Anal. Appl. Pyrolysis. 2008, 81, 199-204.
    [16] Scholze, B.; Meier, D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis. 2001, 60, 41-54.
    [17] Dinesh, M.; Charles, U.P.J.; Philip, H.S. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels. 2006, 20, 848-889.
    [18] Wang, C.; Pan, J.; Li, J.; Yang, Z. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction. Bioresour. Technol.2008, 99,2778-2786.
    [19] Pütün, A.E.; Apaydin, E.; Pütün, E. Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition. Energy. 2002, 27, 703-713.
    [20] ?zbay, N.; Pütün, A.E.; Uzun, B.B.; Pütün, E. Biocrude from biomass: pyrolysis of cottonseed cake. Renewable Energy. 2001, 24, 615-625.
    [21] Piyali, D.; Anuradda, G. Bio-oil from pyrolysis of cashew nut shell—a near fuel. Biomass and Bioenergy. 2003, 25, 113-117.
    [22] ?ens?z, S.; ?lknur, D.; Ger?el, H.F. Olive bagasse (Olea europea L.) pyrolysis. Bioresour. Technol. 2006, 97, 429-436.
    [23] Valenzuela-Calahorro, C.; Bernalte-Garcia, A.; Gomez-Serrano, V.; Bernalte-García M.J. Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood. J. Anal. Appl. Pyrolysis. 1987, 12, 61–70.
    [24] Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels. 2004, 18, 590-598.
    [25] Onay, O.; Ko?kar, O.M. Pyrolysis of rapeseed in a free fall reactor for production of bio-oil. Fuel. 2006, 85, 1921-1928.
    [26] Demirba?, A. Mechanisms of liquefaction and pyrolysis reactions ofbiomass. Energy Conversion & Management. 2000, 41, 633-646.
    [27] Akiya, N.; Savage, P.E. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 2002, 102, 2725-2750.
    [28] Zhang, S.; Yan, Y.; Li, T.; Ren, Z. Upgrading of liquid fuel from the pyrolysisof biomass. Bioresour. Technol. 2005, 96, 545-550.
    [29] Uzun, B.B.; Pütün, A.E.; Pütün, E. Fast pyrolysis of soybean cake: Product yields and compositions. Bioresour. Technol. 2006, 97, 569-576.
    [30] Williams, P.T.; Nugranad, N. Comparision of products from the pyrolysis and catalytic pyrolysis of rice husks. 2000, 25, 493-513.
    [31]杨淑惠,主编.植物纤维化学.北京:中国轻工业出版社,2001
    [32] S. Yaman, Energy Conv. Manage. The sustainable management of renewable energy sources installations: legal aspects of their environmental impact in small Greek islands. 2004 (45): 651-796.
    [33] A. Demirbas, E. Pehlivan, T. Altun. Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. International Journal of Hydrogen Energy. 2006 (31): 613-620.
    [34] Z.H.Y.Cao, Clean Coal Technologies of China,1sted., Chinese Material Publishing Inc., Beijing, 1998: 423.
    [1] S. Yaman, Energy Conv. Manage. The sustainable management of renewable energy sources installations: legal aspects of their environmental impact in small Greek islands. 2004 (45): 651-796.
    [2] http://baike.baidu.com/view/3665.htm百度知道.
    [3]冯继华,曾静芬,陈茂椿.应用Van Soest法和常规法测定纤维素及木质素的比较,西南民族学院学报,自然科学版.1994,20(1):55-56.
    [4] Qu, Y.; Wei, X.; Zhong, C. Experimental study on the directliquefaction ofCunninghamia lanceolata in water. Energy 2003, 28, 597–606.
    [5] Scholze, B.; Meier, D. Characterization of the water-insolublefraction from pyrolysis oil pyrolytic lignin. Part I. PY-GC/MS, FTIR, andfunctional groups. J. Anal. Appl. Pyrolysis 2001, 60, 41–54.
    [6] B. Scholze, D. Meier. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups J. Anal. Appl. Pyrolysis. 2001(60): 41-54.
    [7] Chao Wang, Jingxue Pan, Jinhua Li, Zhengyuyang. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction. 2008(99): 2778-2786.
    [8] Dinesh Mohan, Charles U. Pittman, Jr., and Philip H. Steele. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels 2006, 20, 848-889.
    [9] Sharma, R. K.; Wooten, J. B.; Baliga, V. L.; Lin, X.; Chan, W. G.; Hajaligol, M. R. Characterization of chars from pyrolysis of lignin. Fuel. 2004 83 1469-1482.
    [10] Michelangelo Dall’Ora, Peter Arendt Jensen and Anker Degn Jensen. Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology, and Reactivity. Energy Fuels, 2008, 22 (5), 2955–2962
    [11] J.A. Caballero, R. Font and A. Marcilla. Study of the primary pyrolysis of Kraft lignin at high heating rates: Yields and kinetics. J Anal Appl Pyrol. 1996, 36 p. 159.
    [12] E. Avani, R.W. Coughlin, P.R. Solomon and H.-H. King. Prepr Pap Am Chem Soc Div Fuel Chem 28 (1983), p. 307.
    [13] Agustín García Barneto, JoséAriza Carmona, et al. Effects of the Composting and the Heating Rate on Biomass Gasification. Energy Fuels, 2009, 23 (2), 951–957
    [14]王超,生物质直接脱氧液化制备生物石油的研究,中国科学院研究生院博士学位论文,2007.6.p78.
    [15] Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion & Management. 2007, 48,87-92
    [16] Shipeng Guo, Libin Wu, Chao Wang, et al. Direct Conversion of Sunflower Shellsto Alkanes and Aromatic Compounds. Energy Fuels, 2008, 22 (5), 3517-3522.
    [17]吕雪松,杨昌炎,姚建中,林伟刚.生物质热解过程中含氮污染物前驱体的转化规律,中国科学院过程工程研究所多相反应重点实验室.
    [18]谨若鹤.世界苯酚产需现状和生产技术进展[J].中国石油和化工.2005,(8):80-84.
    [19]岳金方,应浩.工业木质素的热裂解试验研究,农业工程学报,2006,22(sup1):125-129.
    [20] Demirba?, A. Mechanisms of liquefaction and pyrolysis reactions ofbiomass. Energy Conversion & Management. 2000, 41, 633-646.
    [21] Yang, H.; Yan, R.; Chen, R.; Ho, D.; Zheng, Ch. Characteristics of Hemicellulose, Cellulose and Lignin. Pyrolysis Fuel. 2007(86): 1781-1788.
    [22] A.E. Pavlath, K.S. Gregorski, in: A.V. Bridgwater, J.L. Kiuester (Eds.), Research ThermochemicalBiomass Conversion, Elsevier, London, 1988, p. 155.
    [23] A.E. Pavlath, K.S. Gregorski, in: A.V. Bridgwater, J.L. Kiuester (Eds.), Research Thermochemical Biomass Conversion, Elsevier, London, 1988, p. 155.
    [24] T. Hosoya, H. Kawamoto , S. Saka. Cellulose–hemicellulose and cellulose–lignin interactions inwood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis. 80 (2007) 118–125.
    [25] J.I. Seeman, Chem. Rev. 83 (1983) 83.
    [26]常用非木材纤维碱法制浆实用手册,中国轻工业出版社,1993:98.
    [1] L. R. Lynd, C. E. Wyman, T. U. Gerngross. Biocommodity engineering. Biotechnol. Prog.1999, 15, 777–793.
    [2] A.T. Bell, B. C. Gates, D. Ray and M. R. Thompson, Basic Research Needs: Catalysis for Energy, Technical Report, U.S. Department of Energy, PNNL-17214, 2008.
    [3] ?Ilknur Demiral, Sevgi ?ens?z. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresource Technology 99 (2008) 8002–8007.
    [4] Antonakou, E., Lappas, A., Nilsen, M.H., Bouzga, A., St?ker, M. Evaluation of various types of A1-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel. 2006, 85, 2202–2212.
    [5] Chen, G., Andries, J., Spliethoff, H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energ. Convers. Manage. 2003, 44, 2289–2296.
    [6] Phillip E. Savage. A perspective on catalysis in sub- and supercritical water. J. of Supercritical Fluids. 2009, 47: 407–414.
    [7] Selhan K,Thallada B,Akinori M,et al. Low-temperature catalytic hydrothermal treatment of wood biomass:Analysis of liquid products[J].Chemical Engineering Journal, 2005, 108:127—137.
    [8] Selhan K,Thallada B,Akinori M,et al. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J]. Fuel, 2005, 84: 875—884.
    [9] Daniel J, Nowakowski, Charles R, Woodbridge, Jenny M. Jones. Phosphorus catalysis in the pyrolysis behaviour of biomass. J. Anal. Appl. Pyrolysis 83 (2008) 197–204.
    [10]郭晓亚,颜涌捷,李庭琛,任铮伟,袁传敏.生物质裂解油催化裂解精制[J].过程工程学报,2003,3(1):91-95.
    [11]徐俊明,蒋剑春,孙云娟,卢言菊,介孔分子筛反应精馏催化改性生物质裂解油,燃料化学学报,2008,4(36):421-425.
    [12]鲁长波,杨昌炎,林伟刚等.生物质催化热解的TG-FTIR研究.太阳能学报.2007,28:638-643.
    [13] samolada M C,Baldauf W,Vasalos I A.Production of a bio-gasoline by upgrading biomss flash pyrolysis liquids via hydrogen processing and catalytic cracking[J]. Fuel, 1998, 77(14): 1667—1675.
    [14] Srinivas S T,Dalai A K,Bakhshi N N.Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system [J].Tne Canadian Jounal of Chemical Engineering, 2000, 78:343—354.
    [15] Adijaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil, Part I: Conversion over various catalysts [J]. Fuel Processing Technology, 1995, 45: 161-183.
    [16] Williams P T, Home P A. The influence of catalyst regenation on the composition of zeolite-upgraded biomass pyrolysis oils [J]. Fuel, 1995, 74(12): 1839-1851.
    [17] Gayubo A G, Aguayo A T, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids [J]. Ind Eng Chem Res, 2004, 43: 2619-2626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700