用户名: 密码: 验证码:
表面引发活性自由基聚合法制备有机/无机复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机纳米复合材料以其同时具有无机材料优越的光、电、磁等性质,有机材料的优良加工性能、生物相容性能等特性受到了人们的极大关注。近年来,设计具有特殊功能特性的有机/无机复合纳米材料成为纳米科学技术的研究热点。尽管无机/有机杂化材料作为新型材料已被人们广泛研究,然而很多研究的重点往往只是侧重在无机材料的性能上,忽略了有机高分子部分对材料性能的影响。活性自由基聚合,特别是原子转移自由基聚合和可逆加成-断裂链转移自由基聚合恰恰是以其合成的聚合物材料结构可控的优点而受到各领域研究者们的广泛关注。本文通过有机/无机复合纳米材料的制备,对可逆加成一断裂链转移自由基聚合法(RAFT)制备PMMA/SiO_2有机/无机杂化粒子,原子转移自由基聚合法(ATRP)在Si片表面制备润湿性可调的聚离子液体刷,原子转移自由基聚合法(ATRP)制备有机/无机复合粒子及中空聚离子液体微球做了详细的研究。其中主要工作如下:
     本文合成了离子液单体1-(4-乙烯基苄基-)-3-丁基咪唑六氟磷酸盐,并用核磁共振波谱做了表征。实验结果表明:相对于其它一般的单体,离子液单体更易构筑具有特殊性质的材料。
     为了实现在硅片表面的ATRP聚合,硅片处理后,在其上引入了一层引发剂单层。椭圆偏光仪测量显示硅片表面膜厚为1.9±0.2 nm,说明引发剂在硅片表面形成一层膜。静态接触角由原来的5°上升到66°,说明硅片表面的润湿性发生了改变。IR,XPS,AFM测量均表明引发剂单层成功接枝到硅片表面。
     本文以1-(4-乙烯基苄基))-3-丁基咪唑六氟磷酸盐为单体,2-溴-2-甲基-N-(3-(三乙氧基硅烷)丙基)丙酰胺(BTPAm)为引发剂,CuBr为催化剂,PMDETA为配体,丁腈为溶剂,在硅片表面引发ATRP法合成了聚合可控的、润湿性可调的聚离子液体刷,实现了硅片表面的可控性润湿。动力学研究表明薄膜的厚度随着时间的增长呈线性关系,证明了链在表面的增长是可控的活性聚合。此外,聚离子液体刷具有可调控的润湿性,亲疏水间的可逆转换可通过变换相应的阴离子来实现。
     本文设计并合成了RAFT试剂,即链转移剂二硫代苯甲酸异丁腈酯(CPDB),通过1H-NMR进行了表征。参考文献方法,将纳米SiO_2表面羟基进行氯化并引入了过氧基团。经检测,纳米SiO_2表面过氧基团含量为0.08 mmol/g。利用合成的苯甲酸异丁腈酯(CPDB)为链转移剂,含过氧化引发基团的纳米SiO_2为引发剂,MMA为单体,RAFT聚合制备SiO_2-g-PMMA杂化材料,研究表明该纳米材料聚合物接枝层的分子量基本可控,单体转化率与分子量具有一定的线性关系。ln([M]_0/[M])与反应时间成正比,两者成线性关系,具有“活性”/可控自由基聚合的特征,是一个“活性”/可控自由基聚合历程。TEM研究表明,未经处理纳米SiO_2存在严重团聚,经表面引发聚合后团聚程度减轻。AFM研究显示:SiO_2纳米粒子的平均粒径大约为20.0 nm,杂化粒子的平均粒径增加到大约为80.0 nm, PMMA接枝物层的厚度约为20.0±1.0 nm,杂化粒子分散非常均匀,未出现团聚现象,表明PMMA已完全接枝到纳米SiO_2表面。
     由Sol-gel法合成了纳米SiO_2,将其活化后,在表面固载引发剂层,运用红外光谱,XPS光电子能谱进行表征,结果表明,引发剂单层成功地在其表面通过共价键结合。
     本文以VBIm-PF6为单体、CuBr2为催化剂、PMDETA作为配体、甲苯作为溶剂,使用DVB作为交联剂,在引发剂固载的纳米SiO_2微粒上,采用表面引发ATRP法聚合制备了SiO_2@ PVBIm-PF6有机-无机复合微球,通过红外光谱,XPS光电子能谱进行表征,结果表明,生成了以SiO_2为核,以聚合离子液体为壳层的核壳微粒。进一步用化学方法除去内核得到了聚离子液体中空微球,结果通过TEM表征,发现得到的聚离子液体中空微球平均粒径大约在250 nm左右,其中,外壳的厚度在25 nm左右,中空芯的直径大约在200 nm左右。
With the development of nanotechnology, organic/inorganic nanocomposite particles have been of great interest based on the fact that the inorganic maintains intrinsic predominant optical, electrical, and magnetic properties while the organic enahnces mechanistic capability and biocompatibility. More recently, the synthesis of organic/inorganic hybrid nanoparticles with stimuli-responsive, antibacterial, and biocompatible properties has attracted special interest. Living radical polymerization, especially atom transfer radical polymerization(ATRP) and reversible addition fragmentation chain transfer (RAFT) radical polymerization, has become a main method for preparation of these kinds of nanoparticles just because of its merits to control the structure and the surface properties of polymeric materials. In this dissertation, several different organic/inorganic nanocomposites including the poly(methyl methacrylate)(PMMA)-grafted silica nanoparticles, a novel polyelectrolyte-grafted core-shell organic/inorganic hybrid nanospheres which possesses a hard backbone of silica nanoparticles and a soft shell of cross-linked poly(ionic liquids) (PILs), hollow polyelectrolyte nanospheres and a poly(ionic liquid)brush surface modified silicon wafer with tunable wettability, reversible switching between hydrophilicity and hydrophobicity, have been successfully synthesized.
     A novel functional ion liquid [1-(4-vinylbenzyl)-3-butyl imidazolium hexa- fluorophosphate(PVBIm-PF6) has been synthesized successufully. And using it as a monomer, with 2-bromoisobutyryl bromide and 3-aminopropyltriethoxysilane as the initiator, butyronitrile as the solvent, CuBr as the catalyst and PMDETA as the ligand, well-defined poly [1-(4-vinylbenzyl)-3-butyl imidazolium hexafluoro- phosphate brushes with tunable wettability using surface initiated atom transfer radical polymerization (ATRP) are synthesized. Kinetic studies revealed a linear increase in polymer film thickness with reaction time, indicating that chain growth from the surface was a controlled process with a‘living’characteristic. Furthermore, the surface of poly (ionic liquid) brushes with tunable wettability, reversible switching between hydrophilicity and hydrophobicity can be easily achieved by exchanging their counteranions.
     Methyl methacrylate is polymerized by using functional silica with peroxide groups as the initiator, 2-cyanoprop-2-yl dithiobenzoate as the RAFT agent and toluene as the solvent, through a reversible addition fragmentation chain transfer (RAFT) radical polymerization at 80℃. Polymerization using this treated silica initiator displayed the diagnostic criteria for a‘living’/controlled radical polymerization. The molecular weight of the grafted polymer and the thickness of the polymer film can be controlled and linearly increase with the conversion of monomer.The kinetic studies show that ln([M]0/[M]) increases linearly with the increase of polymerization time. The surface topography analysis of these particles is carried out through TEM and AFM.
     Using PVBIm-PF6 as a monomer, initiator immobilized silica nanoparticles an initiator, CuBr as the catalyst, PMDETA as the ligand, and propionitrile as the solvent, a new core-shell hybrid nanosphere, with silica nanoparticles as core and crosslinked PVBIm-PF6 and PDVB as shell is prepared via surface-initiated ATRP polymerization. After removal of the silica core, nearly monodispersed hollow polyelectrolyte nanospheres are obtained. TEM result indicates that the average particle size of the hollow nanospheres to be around 250 nm, and the average diameter of the hollow core was ca. 200 nm with a shell thickness of ca. 25 nm. The obtained hollow polyelectrolyte nanospheres could be applied in release-control systems, the related researches are going under way.
引文
[1]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社, 2006
    [2]张立德.纳米材料与纳米科学[M].北京:科学出版社, 2002
    [3] Zilg C, Reichert P. Plastics and ruber nanaocomposites based upon layered silicates[J] . Kunstsofe Plast Europe, 1998, 88(10),1812-1818
    [4]白春礼.纳米科技:梦想与现实[C]. 2004年中国纳米技术应用研讨会.
    [5] R. E. Cavicchi, R. H. Silsbee, Coulomb suppression of tunneling rate from small metal particles[J]. Phys. Rev. Lett., 1984, 52(16), 1453-1456.
    [6] W. P. Halperrin, Quantum size effects in metal particles[J]. Rev. Modern Phys., 1986, 58(3), 533-605
    [7] Z. K. Zhang, Z. L.Cui, K. Z.Chen, Behavior of hydrogen in nano-transition metals[J]. J. Mater. Sci. Technol., 1996, 12, 75-79
    [8] R. Denton, B. Muhlschlegel, D. J. Scalapion, Electronic heat capacity and susceptibility of small metal particles[J]. Phys. Rev. Lett., 1971, 26(12),707-711
    [9] R.Kobo, Electronic properties of metallic fine particles[J]. J. Phys. Soc. JPN, 1962, 17(5), 975-986
    [10]余明斌,李雪梅,何宇亮.纳米硅薄膜的电致发光和光致发光[J].半导体学报,2002,16(2),913-917
    [11] B. Bihari, H. Eilers, B. M. Tissue, Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals[J]. J. Lumin., 1997, 75,1-10
    [12]催小丽,江志裕.纳米TiO2纳米薄膜的制备方法[J].化学进展, 2002, 14(5), 325-331
    [13] J. P. Bucher, D. C. Douglass, L. Bloomfield, Magnetic properties of free cobalt clusters[J]. Phys. Rev. Lett., 1991,66(23),3052-3055
    [14] U. Jeong, X. W. Teng, Y. Wang, Superparamagnetic colloids: Controlled synthesis and niche applications[J]. Adv. Mater., 2007, 19(1), 33-60,
    [15] T. Yamamoto, M. C. Croft, R. D.Shull, Phase identification of superparamagnetic iron-ox-ide/silver nanocomposite[J]. Nanostruc. Mater., 1995, 6(5-8), 965-968
    [16]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2002,503-504
    [17] S. Luyckx, C. Oshorne, L. A. Cornish, et al, Fine-grained WC-VC-Co hard metal[J]. Powder Metallurgy, 1996, 39(3), 210-213
    [18] S. Iijima, Helical microtubules of graphitic carbon[J]. Nature, 1991, 354, 56-58
    [19]欧忠文,徐滨士,丁培道.纳米润滑材料应用研究进展[J].材料导报,2000,14,28-30
    [20]陈爽,刘维民.温度对PbS纳米微粒摩擦学性能的影响[J].摩擦学报,1999,19,169-172
    [21] D. M. Eigler, C. P. Lutz, W. E. Rudge, An atomic switch realized with the scanning tunnelling microscope[J]. Nature, 352, 600 - 603
    [22] R. Gref, Y. Minamitake, M.T. Peracchia, Biodegradable long-circulating polymeric nanospheres[J]. Science, 1994,263(5153), 1600-1603
    [23] Vu L. Truong-Le, J. Thomas August, Kam W. Leong. Controlled gene delivery by DNA–gelatin nanospheres[J]. Human Gene Therapy. 1998, 9(12), 1709- 1717.
    [24] Daeyeon Lee, Robert E. Cohen, and Michael F. Rubner, Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles[J]. Langmuir, 2005, 21 (21), 9651–9659
    [25] S. V. Ho, P. W. Sheridan, E. Krupetsky, Supported polymeric liquid membranes for removing organics from aqueous solutions I. Transport characteristics of polyglycol liquid membranes[J]. J.Membrane Sci., 1996,112, 13-27
    [26] Yasuo Imae, Tatsuo Atsumi, Na+-driven bacterial flagellar motors[J]. Journal of Bioenergetics and Biomembranes, 1989, 21,705-716
    [27]李玲,向航著.功能材料与纳米技术[M].北京:化工工业出版社,2002.
    [28]周震,吉林大学硕士学位论文,2001.
    [29] Phillip B. Messersmith, Emmanuel P. Giannelis. Polymer-layered silicate nanocomposites: in situ intercalative polymerization of .epsilon.-caprolactone in layered silicates[[J]. Chem. Mater., 1993, 5,1064–1066
    [30] Marc W. Weimer, Hua Chen, Emmanuel P. Giannelis, Dotsevi Y. Sogah, Direct synthesis of dispersed nanocomposites by in situ living free radical polymerization using a silicate-anchored initiator[J]. J. Am. Chem. Soc., 1999, 121, 1615–1616
    [31] Yuchun Ou, Feng Yang, Zhong-Zhen Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization[J]. J. Polym. Sci., Part B,1998,36,789-795
    [32] J. H. Fendler. Atomic and molecular clusters in membrane mimetic chemistry[J]. Chem. Rev., 1987, 87, 877-899.
    [33]王旭,黄锐,濮阳楠.聚合物基纳米复合材料的研究进展[J].塑料,2000, 29, 25-30,37.
    [34]朱军,李毕忠.聚合物/无机纳米复合材料研究进展[J].化工新型材料,2000, 28, 3-11.
    [35] X. Chen, K. E. Gonsalves, G. M. Chow, T. D. Xiao, Homogeneous dispersion of nanostructured aluminum nitride in a polyimide matrix [J]. Adv. Mater., 1994, 6, 481-484.
    [36] Jianye Wen and Garth L. Wilkes. Organic/Inorganic Hybrid Network Materials by the Sol?Gel Approach. Chem. Mater., 1996, 8, 1667–1681
    [37] Hans-Jürgen Gl?sel, Frank Bauer, Horst Ernst, Matthias Findeisen, Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 2 Characterization of radiation-cured polymeric nanocomposites[J]. Macromol. Chem. Phys., 2001, 201, 2765-2770
    [38] Pandiyan Murugaraj, David Edward Mainwaring et al., Electron transport in semiconducting nanoparticle and nanocluster carbon–polymer composites[J]. Solid State Commu., 2006,137,422-426
    [39] Laura L. Beecroft, Christopher K. Ober, Nanocomposite materials for optical applications[J]. Chem. Mater., 1997, 9, 1302-1317
    [40] Jeffrey Pyun, Krzysztof Matyjaszewski, Synthesis of nanocomposite organic/ inorganic hybrid materials using controlled/“living”radical polymerization[J]. Chem. Mater., 2001, 13, 3436-3448
    [41] Rupali Gangopadhyay, Amitabha De, Conducting polymer nanocomposites: A brief overview[J]. Chem. Mater., 2000, 12, 608-621
    [42] José-Luiz Luna-Xavier, Alain Guyot, Elodie Bourgeat-Lami, Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator[J]. J Colloid Interface Sci., 2002, 250, 82-92
    [43] L. L.Beecroft, C. K. Ober, High refractive index polymers for optical applications[J]. J. Macromol. Sci.-Pure Appl. Chem., 1997, 34, 573-586.
    [44] L. Erskine, T. Emrick, A. P. Alivisatos, J. M. J. Fréchet, Preparations of semiconductor nanocrystal-polystyrene hybrid materials[J]. Polym. Prepr., 2000, 41, 593-594.
    [45] E. Bourgeat-Lami, J. Lang, Encapsulation of inorganic particles by dispersion polymerization in polar media: 2. Effect of silica size and concentration on the morphology of silica–polystyrene composite particles[J]. J. Colloid Interface Sci., 1999, 210, 281-289.
    [46] I. Sondi, T. H. Fedynyshyn, R. Sinta, E. Matijevic, Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer[J]. Langmuir ,2000, 16, 9031-9034.
    [47] L. Quaroni, G. Chumanov, Preparation of polymer-coated functionalized silver nanoparticles[J]. J. Am. Chem. Soc., 1999, 121, 10642-10643.
    [48] Y. Zhang, G. E. Zhou, Y. H. Zhang, L. Li, L. Z. Yao, C. M. Mo, Preparation and optical absorption of dispersions of nano-TiO2/MMA (methylmethacrylate) and nano-TiO2/PMMA (polymethylmethacrylate)[J]. Mater. Res. Bull., 1999, 34, 701-709.
    [49] J. Pyun, K. Matyjaszewski, T. Kowalewski, D. Savin, G. Patterson, G. Kickelbick, N. Huesing, Synthesis of hybrid nanoparticles and morphological characterization of composite ultrathin film[J]. Polym.Prepr., 2001, 42, 223.
    [50] Yujie Xiong, Yi Xie, Jun Yang, Rong Zhang, Changzheng Wu and Guoan Du. In situ micelle–template–interface reaction route to CdS nanotubes and nanowires[J]. J. Mater. Chem., 2002, 12, 3712– 3716
    [51] Hangxun Xu, Jian Xu, Zhiyuan Zhu, Hewen Liu, and Shiyong Liu. In-situ formation of silver nanoparticles with tunable spatial distribution at thepoly(N-isopropylacrylamide) corona of unimolecular micelles[J]. Macromolecules, 2006, 39, 8451-8455
    [52] B. Zhao, W. J. Brittain,Polymerbrushes:surfaee-immobilized macromolecules Prog. Polym.Sci., 2000, 25, 677-710
    [53] N. Tsubokawa, S. Yoshikawa, Grafting of polymers with controlled moleeular weight onto ultrafine silica surfaces[J]. J. Polym. Sci. PartA: Polym.Chem.,1995, 33, 581-586
    [54] M. L. Green , W. E. Rhine, P. Calvert, Preparation of poly(ethylene glycol)-grafted alumina[J]. J. Mater.Sci. Lett., 1993,12,1425-1427
    [55] T. Yoshihara, Dispersion of surface-modified ultrafine particles by use of hydrophobic monomers[J]. Int. J. Adhesion Adhesive, 1999,353-357
    [56] N. Tsubokawa, I. Hisanori, Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface[J]. J. Polym. Sci. Part A: Polym. Chem., 1992,30:2241-2246
    [57] S. Luciana, P. Maurizio, B. Fabio, Grafting of seleeted presynthesized macromonomers onto various dispersions of silica particles[J]. J. Appl. Polym. Sci., 2002, 85, 1287-1296
    [58] N. Tsubokawa, H. Ishida, K. Hashimoto, Effect of initiating groups introduced onto ultrafine silica on the molecular weight polystyrene grafted onto the surface[J]. Polym.Buli., 1993, 31, 457-464
    [59] S. Hayashi, S. Handa, N. Tsubokawa, Introduce of peroxide groups onto carbon black surface by radical trapping and radical graft polymerization of vinyl monomers initiated by the surface peroxide groups[J]. J. Polym. Sci. Part A: Polym.Chem., 1996, 34,1589-1595
    [60] S. Yukio, S. Kumi, N. Tsubokawa, Effective grafting of polymers onto ultrafine silica surface: Photo polymerization of vinyl monomers initiated by the system consisting og trichloroacetyl groups on the surface and Mn2(CO)10[J]. J. Polym. Sci. PartA: Polym. Chem., 2001, 39, 2157-2163
    [61] V. Nguyen, W. Yoshida, Y. Cohen, Graft polymerization of vinyl aceate onto Silica[J]. J. Appl. Polym. Sci., 2003, 87, 300-310
    [62] T. Meyer, S. Spange, S. Hsse, Radical grafting polymerization of vinyl formamide with functionalized silica partieles[J]. Macromol. Chem. Phys., 2003, 204, 725-732
    [63] K. Zhang, H. Chen, X. Chen, Monodisperse silica-polymer core-shell micro spheres via surface grafting and emulsion polymerization[J]. Macromol. Mater. Eng., 2003, 288, 380-385
    [64] Y. Yagci, M. A. Tasdelen, Mechanistic transformations involving living an controlled/living Polymerization methods. Prog. Polym.Sci., 2006, 3, 1133-1170
    [65] M. Szwarc,‘Living’polymer. Nature, 1956, 176, 1168–1169
    [66] K. Matyjaszewski, J. S. Wang, WO Pat. 9630421, U.S. Pat. 5, 763,548.
    [67] K.Matyjaszewski, J.H.Xia, Atom transfer radical polymerization.[J]. Chem.Rev., 2001, 101, 2921-2990.
    [68] F. J. Xu, Q. J. Cai, Y. L. Li, E. T. Kang, K. G. Neoh, Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization[J], Biomacromolecules, 2005 ,6, 1012 -1020.
    [69] Igor Korczagin, Mark A. Hempenius, G. Julius Vancso, Poly (ferrocenylsilane- block- methacrylates) via sequential anionic and atom transfer radical polymerization[J]. Macromolecules, 2004, 37, 1686 -1690,.
    [70] F. J. Xu, Q. J. Cai, E. T. Kang, K. G. Neoh, Surface-initiated atom transfer radical polymerization from halogen-terminated Si(111) (Si-X, X = Cl, Br) surfaces for the preparation of well-defined polymer-Si hybrids[J]. Langmuir, 2005, 21, 3221 -3225,
    [71] Youqing Shen, Shiping Zhu, Robert Pelton,Effect of ligand spacer on silica gel supported atom transfer radical polymerization of methyl methacrylate[J]. Macromolecules, 2001, 34, 5812 -5818,
    [72] Ursula Meyer, Anja R. A. Palmans, Ton Loontjens, Andreas Heise,Enzymatic ring-opening polymerization and atom transfer radical polymerization from a bifunctional initiator[J]. Macromolecules, 2002, 35, 2873 -2875,
    [73] Xiao-Ping Chen, Bilal A. Sufi, Anne Buyle Padias, H. K. Hall,Controlled/"living" reverse atom transfer radical polymerization of a monocyclic olefin, methyl 1-cyclobutenecarboxylate[J]. Macromolecules, 2002, 35, 4277 -4281,
    [74] Michael Malkoch, Anna Carlmark, Andreas Woldegiorgis, Anders Hult, Eva E. Malmstrom,Dendronized aliphatic polymers by a combination of ATRP and divergent growth[J]. Macromolecules, 2004, 37, 322 -329,
    [75] T. E. Patten, K. Matyjaszewski,Review:Atom transfer radical polymerization and the synthesis of polymeric materials[J]. Adv. Mater., 1999,10, 901-915
    [76] Frank Schon, Markus Hartenstein, Axel H. E. Muller, New strategy for the synthesis of halogen-free acrylate macromonomers by atom transfer radical polymerization[J]. Macromolecules, 2001, 34, 5394 -5397
    [77] Andreas Heise, Mikael Trollsas, Teddie Magbitang, James L. Hedrick, Curtis W. Frank, Robert D. Miller, Star polymers with alternating arms from miktofunctional -initiators using consecutive atom transfer radical polymerization and ring-opening polymerization[J]. Macromolecules, 2001, 34, 2798 -2804,
    [78] Bongjin Moon, Thomas R. Hoye, Christopher W. Macosko,Synthesis of end- and mid-phthalic anhydride functional polymers by atom transfer radical polymerization[J]. Macromolecules, 2001, 34, 7941 -7951,
    [79] Kohji Ohno, Takashi Morinaga, Kyoungmoo Koh, Yoshinobu Tsujii, Takeshi Fukuda, Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization[J]. Macromolecules, 2005, 38, 2137 -2142,
    [80] Yuanli Cai and Steven P. Armes, Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom-transfer radical polymerization[J]. Macromolecules, 2005,38, 271 -279,
    [81] Daniel Nystrom,Per Antoni, Eva Malmstrom,Mats Johansson,Michaelhittaker, Anders Hult, Highly-ordered hybrid organic-inorganic isoporous membranes from polymer modified nanoparticles[J]. Macromol. Rapid commun., 2005, 26, 524-548
    [82] Takashi Morinaga, Masahiro Ohkura, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda. Monodisperse Silica Particles Grafted with Concentrated Oxetane-Carrying Polymer Brushes: Their Synthesis by Surface-Initiated Atom Transfer Radical Polymerization and Use for Fabrication of Hollow Spheres. Macromolecules, 2007, 40, 1159–1164
    [83] M. Piech, N. S. Bell, Controlled synthesis of photochromic polymer brushes by atom transfer radieal polymerization[J]. Macromolecules, 2006,39, 915-922
    [84] Kai Zhang, Jia Ma, Bao Zhang, Shuang Zhao, Yapeng Li,Yaxin Xu, Wenzhi Yu, Jingyuan Wang, Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids byaqueous surface-initiated atom transfer radical polymerization[J]. Mater. Lett., 2007, 61, 949–952
    [85] Y. P. Bai, B. Teng, S. H. Chen, Y. Chang, Z.L. Li, Preparation of magnetite nanoparticles coated with an amphiphilic block copolymer: A potential drug carrier with a core-shell-corona structure for hydrophobic drug delivery[J]. Macromol. Rapid Commun., 2006, 27, 2107-2112
    [86] D. J. Kim, S. M. Kang, B. Kong, Formation of thermoresponsive gold nanoparticle/PNIPAAm hybrids by surface-initiated, atom transfer radical polymerization in aqueous media[J]. Macromol. Chem. Phs., 2005, 206, 1941-1946
    [87] J. Chiefari,Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery,T. P. T. Le,R. T. A. Mayadunne, G. F. Meijs, C. L. Moad,G. Moad,E. Rizzardo,S. H. Thang, Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process[J]. Macromolecules, 31, 1998, 5559-5562.
    [88] Marina Baum, William J. Brittain, Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique[J]. Macromolecules, 2002, 35, 610 -615.
    [89] Michelle L. Coote, David J. Henry, Effect of substituents on radical stability in reversible addition fragmentation chain transfer polymerization: An ab initio study[J]. Macromolecules, 2005, 38, 1415-1433
    [90] John G. Tsavalas, F. Joseph Schork, Hans de Brouwer, Michael J. Monteiro,Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions[J]. Macromolecules, 2001, 34, 3938-3946
    [91] Yezi You, Chunyan Hong, Wenping Wang, Weiqi Lu, Caiyuan Pan, Preparation and characterization of thermally responsive and biodegradable block copolymer comprised of PNIPAAM and PLA by combination of ROP and RAFT methods[J]. Macromolecules, 2004, 37, 9761-9767
    [92] John F. Quinn, Leonie Barner, Christopher Barner-Kowollik, Ezio Rizzardo, Thomas P. Davis, Reversible addition-fragmentation chain transfer polymerization initiated with ultraviolet radiation[J]. Macromolecules, 2002, 35, 7620-7627
    [93] Stuart W. Prescott, Mathew J. Ballard, Ezio Rizzardo, Robert G. Gilbert, Successful use of RAFT techniques in seeded emulsion polymerization of styrene: Living character, RAFT agent transport, and rate of polymerization[J]. Macromolecules, 2002, 35, 5417-5425
    [94] Simon Harrisson,Thomas P. Davis, Copolymerization behavior of 7-methylene-2-methyl -1,5-dithiacyclooctane: Reversible cross-propagation[J]. Macromolecules, 2001, 34, 3869-3876
    [95] M. Laus, R. Papa, K. Sparnacci, Controlled radical polymerization of styrene with phosphoryl- and (thiophosphoryl)dithioformates as RAFT agents[J]. Macromolecules, 2001, 34, 7269-7275
    [96] J. B. McLeary, F. M. Calitz, J. M. McKenzie, M. P. Tonge,R. D. Sanderson, B. Klumperman, Beyond inhibition: A 1H NMR investigation of the early kinetics of RAFT-mediated polymerization with the same initiating and leaving groups[J]. Macromolecules, 2004, 37, 2383-2394
    [97] Michael S. Donovan, Brent S. Sumerlin, Andrew B. Lowe, Charles L. McCormick, Controlled/“living”polymerization of sulfobetaine monomers directly in aqueous media via RAFT[J]. Macromolecules, 2002, 35, 8663-8666
    [98] David B. Thomas, Anthony J. Convertine, Roger D. Hester, Andrew B. Lowe, Charles L. McCormick, Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations[J]. Macromolecules,2004, 37, 1735-1741
    [99] Alexander Theis, Achim Feldermann, Nathalie Charton, Martina H. Stenzel, Thomas P. Davis, Christopher Barner-Kowollik, Access to chain length dependent termination rate coefficients of methyl acrylate via reversible addition-fragmentation chain transfer polymerization[J]. Macromolecules, 2005, 38, 2595–2605
    [100] Jean-Francüois Lutz, Dorota Neugebauer, Krzysztof Matyjaszewski, Stereoblock copolymers and tacticity control in controlled/living radical polymerization[J]. J. Am. Chem. Soc., 2003,125, 6986-6993
    [101] Christine M. Schilli, Mingfu Zhang, Ezio Rizzardo, San H. Thang, (Bill) Y. K. Chong, Katarina Edwards, Go1ran Karlsson, Axel H. E. Mu1 ller, A new double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide) -block- poly (acrylic acid)[J]. Macromolecules, 2004, 37, 7861-7866
    [102] Michelle L. Coote, Leo Radom, Ab initio evidence for slow fragmentation in RAFT polymerization[J]. J. Am. Chem. Soc., 2003, 125, 1490-1491
    [103] Bryan Parrish, Todd Emrick, Aliphatic polyesters with pendant cyclopentene groups: Controlled synthesis,and conversion to polyester-graft-PEG copolymers[J]. Macromolecules, 2004, 37, 5863-5865
    [104] David B. Thomas, Brent S. Sumerlin, Andrew B. Lowe, Charles L. McCormick, Conditions for facile, controlled RAFT polymerization of acrylamide in water[J]. Macromolecules, 2003, 36, 1436-1439
    [105] Christopher J. Ferguson, Robert J. Hughes, Binh T. T. Pham, Brian S. Hawkett, Robert G. Gilbert, Algirdas K. Serelis, Christopher H. Such, Effective ab initio emulsion polymerization under RAFT control[J]. Macromolecules, 2002, 35(25), 9243–9245
    [106] F. M. Calitz, J. B. McLeary, J. M. McKenzie, M. P. Tonge, B. Klumperman, R. D. Sanderson, Evidence for termination of intermediate radical species in RAFT-mediated polymerization[J]. Macromolecules, 2003, 36, 9687-9690
    [107] Anthony J. Convertine, Neil Ayres, Charles W. Scales, Andrew B. Lowe,Charles L. McCormick, Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide[J]. Biomacromolecules, 2004, 5, 1177-1180
    [108] C. Li, J. Han, C. Y. Ryu, B. C. Benicewicz, A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles[J]. Macromolecules, 2006, 39, 3175-3183
    [108] Youliang Zhao, Se′bastien Perrier. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by ZsSupported RAFT polymerization[J]. Macromolecules, 2006, 39, 8603-8608
    [109]刘春才,潘才元.通过RAFT聚合制备SiO2/接枝共聚物纳米杂化粒子[J].高等化学学报,2008, 2, 404-408.
    [110]李德玲,罗英武,张冰姿,李伯耿,朱世平.甲基丙烯酸甲酯/苯乙烯在硅片表面的RAFT接枝聚合[J].高分子学报,2007,8,699-704
    [111] Chunzhao Li, Brian C. Benicewicz, Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition?fragmentation chain transfer polymerization[J]. Macromolecules, 2005, 38, 5929–5936
    [112] Wen-Cai Wang, Koon-Gee Neoh, En-Tang Kang, Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization[J]. Macromol. Rapid Commun., 2006,27,1665-1669
    [113] M. S. Fleming, T. K. Mandal, D. R. Walt, Nanosphere-microsphere assembly: methods for core-shell materials preparation[J]. Chem. Mater., 2001, 13, 2210-2216.
    [114] J. J. Schneider, Magnetic Core/Shell and Quantum-Confined Semiconductor Nanoparticles via Chimie Douce Organometallic Synthesis[J]. Adv. Mater., 2001, 13(7), 529-533.
    [115] E. Matijevic, Preparation and properties of uniform size colloids[J]. Chem. Mater., 1993, 5, 412-426.
    [116] A. Hanprasopwattana, S. Srinivasan, A.G. Sault, A. K. Datye, Synthesis of nanosized gold-silica core-shell particles[J]. Langmuir, 1996, 12(18), 4329-4335.
    [117] K. F. Lin, Y. D. Shieh, Core–shell particles designed for toughening epoxyresins[J]. J. App. Poly. Sci., 1998, 69, 2069–2078
    [118] H. Otsuka, Y. Nagasaki, K. Kataoka, PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv. Drug Delivery Rev., 2003, 55, 403-419
    [119] X. Xu, G. Friedman, K. D. Humfeld, Synthesis and utilization of mono -disperse superparamagnetic colloidal particles for magnetically controllable photonic crystals[J]. Chem. Mater., 2002, 14, 1249-1256
    [120] T. V. Werne, T. E. Patten, Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces[J]. J. Am. Chem. Soc., 2001,123, 7497-7505
    [121] Christy R. Vestal and Z. John Zhang,Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/Polystyrene Core/Shell Nanoparticles[J]. J. Am. Chem. Soc., 2002,124, 14312-14313
    [122] F. Caruso, H. Lichtenfeld, E. Donath, H. Mohwald, Investigation of electrostatic interactions in polyelectrolyte multilayer films: Binding of anionic fluorescent probes to layers assembled onto colloids[J]. Macromolecules, 1999, 32, 2317-2322
    [123] Farkhad G. Aliev, Miguel A. Correa-Duarte, Layer-by-layer assembly of core-shell magnetite nanoparticles: Effect of silica coating on interparticle interaction and magnetic properties[J]. Adv. Mater., 1999, 11,1006-1010
    [124] F. Caruso, H. Lichtenfeld, M. Giersig, and H. Mohwald, Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles[J]. J. Am. Chem. Soc., 1998, 120, 8523-8524
    [125] F. Caruso, R. A. Caruso, H. Mohwald, Production of hollow microspheres from nanostructured composite particles[J]. Chem. Mater., 1999, 11, 3309-3314
    [126] S. Keller, W. Kim, H.-N. Mallouk, T. E. Layer-by-layer assembly of inter- calation compounds and heterostructures on surfaces, toward molecular "Beaker" epitaxy[J]. J. Am. Chem. Soc., 1994, 116, 8817-8818
    [127] N. A. Kotov, T. Haraszti, L. Turi, Mechanism of and defect formation in the self-assembly of polymeric polycation-montmorillonite ultrathin films[J]. J. Am.Chem. Soc., 1997, 119, 6821-6832
    [128] S. Santra, R. Tapec, N. Theodoropoulou, Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion, the effect of nonionic surfactants[J]. Langmuir, 2001, 17, 2900-2906
    [129] F. Grasset, R. Marchand, A. M. Marie, D. Fauchadour, F. Fajardie, Synthesis of CeO2@SiO2 core-shell nanoparticles by water-in-oil microemulision. Preparation of functional thin film[J]. J. Collod Interface Sci., 2006, 299, 726-732
    [130] V. G. Pol, M. Motiei, A.Gedanken, Sonochemical deposition of air-stable Iron Nanoparticles on Monodispersed Carbon spherules[J]. Chem. Mater., 2003, 15, 1378-1384
    [131] A. Gedanken, R. Reisfeld, E. Sominski, Sonochemical preparation and chara- cterization of europium oxide doped in and coated on ZrO2 and yittium- stabilized zirconium(YSZ)[J]. J. Phys. Chem. B, 2000, 104, 7057-7065
    [132] A. Patra, E. Sominska, S. Ranesh, Y. koltypin, A. Gedanken, Sonochemical preparation and characterization of Eu2O3 and Tb2O3 doped in and coated on silica and alumina nanoparticles[J]. J. Phys. Chem. B, 1999, 103, 3361-3365
    [133] Z. Zhong, Y. Mastai, Y. Koltypin, Y. Zhao, A. Gedanken, Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate[J]. Chem. Mater., 1999, 11, 2350-2359
    [134] S. Ramesh, Y. Koltypin, R. Prozorov, A. Gedanken, Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres[J]. Chem. Mater., 1997, 9, 546-551
    [135] S. Ramesh, R. Prozorov, A. Gedanken, Ultrasound driven deposition and reactivity of nanophasic amorphous iron clusters with surface silanols of submicrospherical silica[J]. Chem. Mater., 1997, 9, 2996-3004
    [136] V. G. Pol, R. Reisfeld , A.Gedanken, Sonochemical synthesis and optical prop- erties of europium oxide nanolayer coated on titania[J]. Chem. Mater., 2002, 14, 3920-3924
    [137] Arul Dhas, A.zaban, A.Gedanken, Surface synthesis of zinc sulfide nano -particleson silica microspheres, sonochemical preparation, characterization, and optical properties[J]. Chem. Mater., 1999, 11, 806-813
    [138] L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles[J]. Langmuir, 1996, 12, 4329-4335
    [139] R.C. Plaza, J. D. G. Duran, A. Quirantes, M. J. Ariza, A. V. Delgado, Surface chemical analysis and electrokinetic properties of spherical hematite particles coated with yttrium compounds[J]. J Colloid Interface Sci., 1997, 194, 398-407
    [140] C. J.McDonald, M.Devon, Hollow latex particles: synthesis and applications[J]. J. Adv. Colloid Interface Sci. 2002, 99, 181-213.
    [141] Z. Q.Shi, Y. F Zhou, D. Y.Yan, Preparation of poly(β-hydroxybutyrate) and poly(lactide) hollow spheres with controlled wall thickness[J]. Polymer, 2006, 47, 8073-8079.
    [142] T. K.Mandal, M. S. Fleming, D. R.Walt, Production of hollow polymeric microspheres by surface-confined lLiving radical polymerization on silica templates[J]. Chem. Mater. 2000, 12, 3481-3847.
    [143] G. D. Fu, J. P.Zhao, Y. M. Sun, E. T.Kang, K. G. Neoh, Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oOxidative graft copolymerization of aniline[J]. Macromolecules, 2007, 40, 2271-2275.
    [144] L. Y.Hao, C. L. Zhu, C. N. Chen, P. Kang, Y. Hu, W. C. Fan, Z. Y. Chen, Fabrication of silica core–conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates[J]. Synthetic Metals, 2003, 139, 391-396.
    [145] I. P-Santos, B. Scholer, F. Caruso, Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins[J]. Adv. Funct. Mater. 2001, 11, 122-128.
    [146] D. B. Shenoy, A. A. Antipov, G. B. Sukhorukov, H. Mohwald, Layer-by-layer engineering of biocompatible, decomposable core?shell structures[J]. Biomacromolecules, 2003, 4, 265-272.
    [147] T. Kida, M. Mouri, M.Akashi, Fabrication of hollow capsules composed ofpoly(methyl methacrylate) stereocomplex films[J]. Angew. Chem. Int. Ed., 2006, 45, 7534-7536.
    [148] S. M.Marinakos, J. P.Novak, L. C.Brousseau, A. B.House, E. M. Edeki, J. C.Feldhaus, D. L.Feldheim, Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation[J]. J. Am. Chem. Soc., 1999, 121, 8518-8522.
    [149] J. Jang, H.Ha, Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers[J]. Langmuir, 2002, 18, 5613-5618.
    [150] J.Jang, J. H.Oh, X. L. J.Li, A novel synthesis of nanocapsules using identical polymer core/shell nanospheres[J]. Mater. Chem., 2004, 14, 2872-2880.
    [151] J.Jang, H.Ha, Fabrication of carbon nanocapsules using PMMA/PDVB core/shell nanoparticles[J]. Chem. Mater., 2003, 15, 2109-2111.
    [152] C. J.McDonald, K. J.Bouck, A. B.Chaput, Emulsion polymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolecules, 2000, 33, 1593-1605.
    [153] L. J. Zhang, M. X.Wan, Self-assembly of polyaniline - From nanotubes to hollow microspheres Adv[J]. Funct. Mater., 2003, 13, 815-820.
    [154] X. D.He, X. W.Ge, H. R.Liu, M. Z.Wang, Z. C.Zhang, Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of lLatex particles at the emulsion droplet iInterface[J]. Chem. Mater., 2005, 17, 5891-5892.
    [155] X. D. He, X. W.Ge, H. R.Liu, M. Z.Wang, Z. C.Zhang, Cagelike polymer microspheres with hollow core/porous shell structures[J]. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 933-941.
    [156] Y. B. Yoon, K-S.Kim, A physical method of fabricating hollow polymer spheres directly from oil/water emulsions of solutions of polymers[J]. Macromol. Rapid Commun., 2004, 25, 1643-1649.
    [157] C. A.McKelvey, E. W.Kaler, J. A.Zasadzinski, B.Coldren, H.-T.Jung, Templating hollow polymeric spheres from catanionic equilibrium vesicles: Synthesis and vharacterization[J]. Langmuir, 2000, 16, 8285-8290.
    [158] L. Y.Song, X. W. Ge, M. Z. Wang, Z. C.Zhang, S. C.Li, Anionic/nonionic mixed surfactants templates preparation of hollow polymer spheres via emulsion polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 2533-2541.
    [159] W.Schmidt, G.Roessling, Novel manufacturing process of hollow polymer microspheres[J]. Chem. Eng. Sci., 2006, 61, 4973-4981.
    [160] Tongjie Yao, Quan Lin, Kai Zhang, Dengfeng Zhao, Hui Lv, Junhu Zhang, Bai Yang. Preparation of SiO2@polystyrene@polypyrrole sandwich composites and hollow polypyrrole capsules with movable SiO2 spheres inside[J]. J Colloid Interface Scie., 2007,434-438
    [161] M.Okubo, T.Yamashita, T. Suzuki, T. Shimizu, Production of micron-sized monodispersed composite polymer particles by seeded polymerization utilizing the dynamic swelling method[J]. Colloid Polym. Sci., 1997, 275, 288-292.
    [162] M.Okubo, H.Minami, T. Yamashita, Production of micron-sized monodispersed cross-linked polymer particles having hollow structure[J]. Macromol. Symp., 1996, 101, 509-511
    [163] M.Okubo, H.Minami, Formation mechanism of micron-sized monodispersed polymer particles having a hollow structure[J]. Colloid Polym. Sci., 1997, 275, 992-997.
    [164] M.Okubo, H.Minami, K.Morikawa, Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles[J]. Colloid Polym. Sci., 2003, 281, 214-219.
    [165] Y.Konishi, M.Okubo, H.Minami, Phase separation in the formation of hollow particles by suspension polymerization for divinylbenzene/toluene droplets dissolving polystyrene[J]. Colloid Polym. Sci., 2003, 281, 123-129.
    [166] H.Minami, M.Okubo, Y.Oshima, Preparation of cured epoxy resin particles having one hollow by polyaddition reaction[J]. Polymer, 2005, 46, 1051-1056.
    [167] H.Minami, H.Kobayashi, M Okubo, Preparation of hollow polymer particles with a single hole in the shell by SaPSeP[J]. Langmuir, 2005, 21, 5655-5658.
    [168] H.Kobayashi, E.Miyanaga, M.Okubo, Preparation of multihollow polymerparticles by seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier[J]. Langmuir, 2007, 23, 8703-8707.
    [169] X. Z.Kong, C.Kan, H.Li, Synthesis and characterization of hollow polymer latex particles[J]. Polym. Advan. Techno., 1997, 8, 627.
    [170] C. D.Yuan, A. H. Miao, J. W.Cao, Y. S.Xu, T. Y. J.Cao, Preparation of monodispersed hollow polymer particles by seeded emulsion polymerization under low emulsifier conditions[J]. Appl. Polym. Sci., 2005, 98, 1505-1510.
    [171] K.Kang, C. Y.Kan, Y.Du, D. S.Liu, The generation of void morphology inside soap-free P(MMA-EA-MAA) particles prepared by seeded emulsion polymerization[J]. J. Colloid Interface Sci., 2006, 297,505-512.
    [172] S.Jain, F. S.Bates, On the origins of morphological complexity in block copolymer surfactants[J]. Science, 2003, 300, 460-464.
    [173] Q. Zhang, E. E. Remsen, K. L.Wooley, Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains[J]. J. Am. Chem. Soc., 2000, 122, 3642-3651.
    [174] Y. W.Zhang, M.Jiang, J. X.Zhao, J. Zhou, D. Y. Chen, Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water[J]. Macromolecules, 2004, 37, 1537-1543.
    [175] Y. W. Zhang, M.Jiang, J. X.Zhao, Z. X.Wang, H. J.Dou, D. Y. Chen, pH-responsive core-shell particles and hollow spheres attained by macromolecular self- assembly[J]. Langmuir, 2005, 21, 1531-1538.
    [176] H. W.Duan, M. Kuang, J. Wang, D. Y. Chen, M. Jiang, Self-assembly of rigid and coil polymers into hollow spheres in their common solvent[J]. J. Phys. Chem.B, 2004, 108, 550-555.
    [1] Xu, C.; Wu, T.; Drain, C. M; Batteas, J. D.; Fasolka, M. J.; Beers, K. L. Effect of block length on solvent response of block Copolymer brushes: Combinatorial study with block copolymer brush gradients. Macromolecules, 2006, 39, 3359-3364.
    [2] Buriak, J. M. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev., 2002, 102, 1271-1308.
    [3] Husemann, M.; Morrison, M.; Benoit, D.; Frommer, J.; Mate, C. M.; Hinsberg, W. D.; Hedrick, J.L.; Hawker, C. J. Manipulation of surface properties by patterning of covalently bound polymer brushes. J. Am. Chem. Soc., 2000, 122, 1844-1845.
    [4] Shah, R. R.; Mecerreyes, D.; Husemann, M.; Rees, I.; Abbott, N. L.; Hawker, C. J.; Hedrick, J. L. Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules, 2000, 33, 597-605.
    [5] Kong, X.; Kawai, T.; Abe, J.; Iyoda, T. Amphiphilic polymer brushes grown from the silicon surface by atom transfer radical polymerization. Macromolecules, 2001, 34, 1837-1844.
    [6] Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology, 2006, 17, 1359–1362.
    [7] Paik, P.; Pamula, V. K.; Pollack, M. G.; Fair, R. B. Electrowetting-based droplet mixers for microfluidic systems. Lab Chip, 2003, 3, 28–33.
    [8] Kuiper, S.; Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys Lett., 2004, 85, 1128–1130.
    [9] Milner, S. T. Polymer brushes. Science, 1991, 251, 905–914.
    [10] Prucker, O.; Rühe, J. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules, 1998, 31, 592-601.
    [11] Maynor, B.W.; Filocamo, S.F.; Grinstaff, M.W.; Liu, J. Direct-writing ofpolymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces. J. Am. Chem. Soc., 2002, 124, 522-523.
    [12] Wang, Y.; Pei, X.; He, X.; Lei, Z. Synthesis and characterization of surface-initiated polymer brush prepared by reverse atom transfer radical polymerization. Eur. Polym. J., 2005, 41, 737-741.
    [13] Yang, Y.; Wu, D.; Li, C.; Liu, L.; Cheng, X.; Zhao, H. Poly(l-lactide) comb polymer brushes on the surface of clay layers. Polymer, 2006, 47, 7374-7381.
    [14] Wang, X.; Tu, H.; Braun, P. V.; Bohn, P. W. Length scale heterogeneity in lateral gradients of poly(N-isopropylacrylamide) polymer brushes prepared by surface-initiated atom transfer radical polymerization coupled with in-plane electrochemical potential gradients. Langmuir, 2006, 22, 817-823.
    [15] Hu, D.; Cheng, Z.; Zhu, J.; Zhu, X. Brush-type amphiphilic polystyrene-g-poly (2-(dimethylamino)ethyl methacrylate)) copolymers from ATRP and their self-assembly in selective solvents. Polymer, 2005, 46, 7563-7571.
    [16] Zhao, B.; He, T. Synthesis of well-defined mixed poly(methyl methacrylate)/ polystyrene brushes from an asymmetric difunctional initiator-terminated self-assembled monolayer. Macromolecules, 2003, 36, 8599-8602.
    [17] Wu, T.; Efimenko, K.; Genzer, J. Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide. J. Am. Chem. Soc., 2002, 124, 9394-9395.
    [18] Tomlinson, M. R.; Genzer, J. Formation of grafted macromolecular assemblies with a gradual variation of molecular weight on solid substrates. Macromolecules, 2003, 36, 3449-3451.
    [19] Xu, C.; Wu, T.; Drain, C. M.; Batteas, J. D.; Beers, K. L. Microchannel confined surface-initiated polymerization. Macromolecules, 2005, 38, 6-8.
    [20] Xu, C.; Wu, T.; Batteas, J. D.; Drain, C. M.; Beers, K. L.; Fasolka, M. J. Surface-grafted block copolymer gradients: Effect of block length on solvent response. Appl. Surf. Sci., 2006, 252, 2529-2534.
    [21] Tsujii, Y.; Ejaz, M.; Yamamoto, S.; Fukuda, T.; Shigeto, K.; Mibu, K.; Shiujo, T. Fabrication of patterned high-density polymer graft surfaces. II. Amplification of EB-patterned initiator monolayer by surface-initiated atom transfer radicalpolymerization. Polymer, 2002, 43, 3837-3841.
    [22] Zhang, M.; Liu, L.; Wu, C.; Fu, G.; Zhao, H.; He, B. Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer, 2007, 48, 1989-1997.
    [23]朱步瑶,赵振国.界面化学基础,北京:化学工业出版社, 1996, p 208
    [24] Bain C. D.; Whitesides G. M. Molecular-level control over surface order in self-assembledmonolayer films of thiols on gold. Science, 1988, 240, 62-63
    [25] Bain C. D.; Whitesides G. M. Correlations between wettability and structure in monolayersof alkanethiols adsorbed on gold. J. Am. Chem. Soc., 1988, 110, 3665-3666
    [26] Wenzel R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28, 988-994
    [27] Cassie A. B. D.; Baxter S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40, 546-551
    [28] Nakajima A.; Hashimoto K.; Watanabe T. Recent studies on super-hydrophobic films. Monatsh. Chem., 2001, 132, 31-41
    [29] McHale G.; Shirtcliffe N. J.; Newton M. I. Super-hydrophobic and super-wetting surfaces: Analytical potential. Analyst, 2004, 129, 284-287
    [30] Sun T.; Feng L.; Gao X.; Jiang L. Bioinspired surfaces with special wettability. Acc. Chem. Res., 2005, 38, 644-652
    [31] Callies M.; QuéréD. On water repellency. Soft Matter, 2005, 1, 55-61
    [32]江雷,从自然到仿生的超疏水纳米界面材料,化工进展, 2003, 22, 1258-1264
    [33]高雪峰,江雷,天然超疏水生物表面研究的新进展,物理, 2006, 35, 559-564
    [34] Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 965-967.
    [35] Wasserscheid, P.W. Keim. Ionic liquids-new "solutions" for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
    [36] Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 3, 156-164.
    [37] Ding, S.; Tang, H.; Radosz, M.; Shen, Y. Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 5794-5801.
    [38] Masahiro, Y.; Ohno, H. Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochim. Acta, 2001, 46, 1723-1728.
    [39] Washiro, S.; Yoshizawa, M.; Nakajima, H.; Ohno, H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer, 2004, 45, 1577-1582.
    [40] Azzaroni, O.; Moya, S.; Farhan, T.; Brown, A. A.; Huck, W. T. S. Switching the properties of polyelectrolyte brushes via“hydrophobic collapse”. Macromolecules, 2005, 38, 10192-10199.
    [41] Sun, Y.; Ding, X.; Zheng, Z.; Cheng, X.; Hu, X.; Peng, Y. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur. Polym. J., 2007, 43, 762-772.
    [42] Tang, H.; Tang, J.; Ding, S.; Radosz, M.; Shen, Y. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1432-1443.
    [43] Werne, V.; Patten, T. E. Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/“Living”Radical Polymerizations from Surfaces.J. Am. Chem. Soc., 2001, 123, 7497–7505.
    [44] Ohno, K.; Koh, K.; Tsujii, Y.; Fukuda, T. Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules, 2002, 35, 8989–8993.
    [45] Yu, W. H.; Kang, E. T.; Neoh, K. G. Controlled grafting of well-defined polymers on hydrogen-terminated silicon substrates by surface-initiated atom transfer radical polymerization. J. Phys. Chem. B, 2003, 107, 10198–10205.
    [46] Matyjaszewski, K.; Miller, P. J.; Shukla, N.; Immaraporn, B.; Gelman,A.;Luokala, B. B.; Siclovan, T. M.; Kickelbick, G.; Vallant, T.;Hoffmann, H.; Pakula, T. Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 1999, 32, 8716–8724.
    [47] Shen, Y.; Zhang, Y.; Zhang, Q.; Niu, L.; You, T.; Ivaska, A. Immobilization of ionic liquid with polyelectrolyte as carrier. Chem. Commun., 2005, 4193-4195.
    [48] Lee, B. S.; Chi, Y. S.; Lee, J. K.; Choi, I. S.; Song, C. E.; Namgoong, S. K.; Lee, S. Imidazolium ion-terminated self-assembled monolayers on Au: Effects of counteranions on surface wettability. J. Am. Chem. Soc., 2004, 126, 480-481.
    [49] Chi,Y. S.; Lee, J. K.; Lee, S.; Choi, I. S. Control of wettability by anion exchange on Si/SiO2 surfaces. Langmuir, 2004, 20, 3024-3027.
    [50] Yu, B.; Zhou, F.; Liu, G.; Liang, Y.; Huck, W. T. S.; Liu, W. The electrolyte switchable solubility of multi-walled carbon nanotube/ionic liquid (MWCNT/IL) hybrids. Chem. Commun., 2006, 2356-2358.
    [1] von Werne T, Patten T E. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations. J. Am. Chem. Soc., 1999, 121, 7409-7410
    [2] Xu F J, Cai Q J, Kang E T, Neoh K G. Surface-initiated atom transfer radical polymerization from halogen-terminated Si(111) (Si-X, X = Cl, Br) surfaces for the preparation of well-defined polymer-Si hybrids. Langmuir, 2005, 21,3221-3225
    [3] Mandal T K, Fleming M S, Walt D R. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett., 2002, 2,3-7
    [4] Ohno K, Koh K, Tsujii Y, Fukuda T. Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules, 2002, 35, 8989-8993
    [5] Vestal C R, Zhang Z J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J. Am. Chem. Soc., 2002, 124, 14312-14313
    [6] Kickelbick G, Holzinger D, Brick C, Trimmel G, Moons E. Hybrid inorganic-organic core-shell nanoparticles from surface-functionalized titanium, zirconium, and vanadium oxo clusters. Chem. Mater., 2002, 14, 4382-4389
    [7] Li C, Benicewicz B C. Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition-Fragmentation Chain Transfer Polymerization. Macromolecules, 2005, 38, 5929-5936
    [8] Park J, An K J, Hwan G Y S, et al. Ultra-large-scale syntheses of monodisperse nano-crystals. Nature Materials, 2004,3(12), 891-895.
    [9]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [10] Georges M K, Veregin P R N, Kazmater P M, et al. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26,2987-2988
    [11] Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules, 1995, 28, 1721-1723
    [12] Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules, 1995, 28, 7901-7910
    [13] Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT pocess. Macromolecules, 1998, 31, 5559-5562
    [14] Wang Y P, Pei X W, He X Y, Yuan K. Synthesis of well-defined, polymer-grafted silica nanoparticles via reverse ATRP. European Polymer Journal, 2005, 41, 1326-1332
    [1]马光辉,苏志国,高分子微球材料,北京:化学工业出版社, 2005.
    [2] Dahne, L.; Leporatti, S.; Donath, E.; Mohwald, H. Fabrication of micro reaction cages with tailored properties. J. Am. Chem. Soc., 2001,123, 5431-5436.
    [4] Shchukin, D. G.; Sukhorukov, G. B. Selective YF3 nanoparticle formation in polyelectrolyte capsules as microcontainers for yttrium recovery from aqueous solutions. Langmuir, 2003, 19, 4427-4431.
    [5] Shchukin, D. G.; Radtchenko, I. L.; Sukhorukov, G. B. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. J. Phys. Chem. B., 2003, 107, 86-90.
    [6] Peyratout, C. S.; Mohwald, H.; Dahne, L. Preparation of photosensitive dye aggregates and fluorescent nanocrystals in microreaction containers. Adv. Mater., 2003, 15, 1722-1726.
    [7] Won Hyuk Suh, Ah Ram Jang, Yoo-Hun Suh, Kenneth S. Suslick. Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv. Mater., 2006, 18, 1832–1837
    [8] Brand, T.; Ratinac, K.; Castro, J. V.; Gilbert, R. G. Hollow latex particles as submicrometer reactors for polymerization in confined geometries. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 5706-5713.
    [9] Cheng, D. M.; Zhou, X. D.; Xia, H. B.; Chan, H. S. O. Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem. Mater., 2005, 17, 3578-3581.
    [10] Lvov, Y.; Antipov, A. A.; Mamedov, A.; Mohwald, H.; Sukhorukov, G. B. Urease encapsulation in nanoorganized microshells. Nano Lett., 2001, 1, 125-128.
    [11] Xu, X. L.; Asher, S. A. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J. Am. Chem. Soc., 2004, 126, 7940-7945.
    [12] McDonald, C. J.; Devon, M. Hollow latex particles: synthesis and applications. J. Adv. Colloid Interface Sci., 2002, 99, 181-213.
    [13] Caruso F.; Caruso R. A.; Mohwald H. Nanoengineering of inorganic and hybridhollow spheres by colloidal templating. Science, 1998, 282, 1111–1114.
    [14] Jiang P.; Bertone J. F.; Colvin V. L. A lost-wax approach to monodisperse colloids and their crystals. Science, 2001, 291, 453–457.
    [15] Kidambi S.; Dai J. H.; Jin Li, Merlin L. Bruening. Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. J. Am. Chem. Soc., 2004, 126, 2658–2659.
    [16] Wang Y.; Cai L.; Xia Y. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv. Mater., 2005, 17, 473–477.
    [17] Yang Z.; Niu Z.; Lu Y.; Hu Z.; Han C. C. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew. Chem. Int. Ed., 2003, 42, 1943–1945.
    [19] Li Y.; Shi J.; Hua Z.; Chen H.; Ruan M.; Yan D. Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett., 2003, 3, 609–612.
    [20] Fu G. D.; Zhao J. P.; Sun Y. M.; Kang E. T.; Neoh K. G. Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules, 2007, 40, 2271–2275.
    [21] Liu J.; Yang Q.; Zhang L.; Yang H.; Gao J.; Li C. Organic-inorganic hybrid hollow nanospheres with microwindows on the shell. Chem. Mater., 2008, 20, 4268–4275.
    [22] Ding S.; Tang H.; Radosz M.; Sen Y. Atom transfer radical polymerization of oonic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 5794–5801.
    [23] Masahiro Y.; Ohno H. Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochim. Acta, 2001, 46, 1723–1728.
    [24] Washiro S.; Yoshizawa M.; Nakajima H.; Ohno H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer, 2004, 45, 1577–1582.
    [25] He X.; Yang W.; Pei X. Preparation, characterization, and tunable wettability ofpoly(ionicliquid) brushes via surface-initiated atom transfer radical polymerization. Macromolecules, 2008, 41, 4615–4621.
    [26] Pei X.; Xia Y.; Liu W.; Yu B.; Hao J. Polyelectrolyte-grafted carbon nanotubes: Synthesis, reversible phase-transition behavior, and tribological properties as lubricant additives. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 7225–7237.
    [27] Zhou L.; Yuan W.; Yuan J.; Hong X. Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater. Lett., 2008, 62, 1372–1375.
    [28] Wang J.; Matyjaszewski K. Controlled/’living’radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 1995, 117, 5614–5.
    [29] Mori H.; Seng D. C.; Zhang M.; Muller A. H. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces. Langmuir, 2002, 18, 3682–93.
    [31] Fu G.; Shang Z.; Hong L.; Kang E.; Neoh K. G. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations. Macromolecules, 2005, 38, 7867–7871.
    [32] Sun Y.; Ding X.; Zheng Z.; Cheng X.; Hu X.; Peng Y. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur. Polym. J., 2007, 43 762–72.
    [33] St?ber W.; Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26, 62–89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700