用户名: 密码: 验证码:
掺土粉煤灰动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰是火电厂燃煤的副产品,它是一种利用潜力很大的资源。在国外粉煤灰的利用率在80%以上,而在我国粉煤灰的利用起步较晚,利用率仅为20%左右,大多数粉煤灰用作生产建筑材料和水泥混凝土以及作为砂浆的掺和料。而在国外粉煤灰大部分用作建筑结构的填充材料,例如用于坝基、路基的轻质填筑材料,对减轻土体结构自重,减少软土地基路堤和坝体的沉降,提高土体抗剪强度,具有非常好的效果。
     粉煤灰作为路堤、坝体的填充材料时,具有许多的优越的工程性能,比如自重轻、轻度高、压缩沉降小、固结快、压实好等,是其他黏性土无法达到的工程效果。但粉煤灰也有自己不利之处,最大缺陷就是振动荷载作用时极易产生液化现象,强度急剧衰弱;而且当粉煤灰作为坝基路基利用时,如果压实不到位,强度很低等。原因就是,粉煤灰颗粒之间缺少必要的粘聚力,在振动动力作用下易发生强度急剧降低并产生液化现象,不利于路堤、坝体及边坡的稳定,从而对工程的安全运行造成不利影响。粉煤灰基本上属于粉土、粉砂性的无粘土,因而具有类似砂土的性质。
     基于这个思想,我们希望找到一种能够解决粉煤灰“无塑性”的方法。本文采取试验的方法,在粉煤灰中掺入黄土这种粘性土作为黏性来源,来增加粉煤灰中的黏性物质,增大粉煤灰颗粒之间的粘聚力,改善粉煤灰的变形特征和强度特性,改变粉煤灰易于液化的不利现象。
     试验采用在粉煤灰中掺和不同比例的黄土,制作不同掺和土的粉煤灰试样进行动扭剪试验研究,分析掺土粉煤灰的动力特性,从而得到掺土粉煤灰的在振动荷载作用下的变形特征和动动强度特征,分析掺土粉煤灰的动模量和阻尼比及应力应变关系,研究掺土粉煤灰的动强度规律及液化特性。
     研究结果表明随着在纯粉煤灰中掺入黏性土的增加,粉煤灰的干密度近似呈线性增加,而相应的最优含水率近似呈线性递减,可有效的提高粉煤灰的最大干密度,同时降低所用水量。掺入黏性土提高了粉煤灰的动强度指标参数,粉煤灰的黏聚力cd随掺土量的增大呈明显的增大趋势,内摩擦角φd随掺土量的增长呈略微减小的趋势,但黏聚力增大的幅度比内摩擦角的减小要大的多,从而可以有效地改善了粉煤灰的抗液化性能。试验通过分析,表明既能改善粉煤灰的液化性能又能发挥粉煤灰的强度特性的最优掺土量为30%左右,工程中可以根据实际需要和黏性土及粉煤灰物理化学特性进行选择掺土量。
Fly-ash is a by-product of coal-fired thermal power plant, it is a great potential for use of resources. The utilization of fly-ash in foreign countries in more than 80%, while the use of fly ash in China started late, only about 20% utilization, the majority of fly ash and cement, construction materials for the production of concrete as well as mortar admixture. Fly abroad for most of the fill material structure, for example, foundation, embankment fill material of the light, soil structure to reduce weight, reduce the soft embankment and dam settlement, improve soil shear strength, with very good results.
     Fly-ash as embankment fill material of the dam, with a lot of excellent work performance, such as light weight, slightly higher compression small settlement, consolidation fast, good compaction of other clay that can not be attained project results. However, fly-ash also has its own disadvantages, the biggest flaw is the "no plastic", fly-ash particles lack the necessary cohesion, under the driving force in vibration-prone and have a drastic decrease of intensity of the phenomenon of liquefaction is not conducive to the embankment, dam and the stability of the slope, thus the project adversely affect the safe operation. Fly-ash is basically silt, silt and clay-free and thus the nature of a similar sand.
     Based on this idea, we hope to be able to find a solution to fly "no plastic" approach. In this paper, the method of test taking, in the fly-ash by mixing loess clay such as a source of viscosity, to increase the adhesive material in fly-ash, fly-ash increased cohesion between particles, and to improve the powder deformation characteristics of coal ash and strength characteristics of fly-ash is easy to change the negative phenomenon of liquefaction.
     Experiment using different percentage of fly ash admixture of loess, the production of fly ash in different soil samples admixture dynamic torsional shear tests carried out research, analysis of fly ash mixed dynamic characteristics of soil, resulting in the fly ash mixed soil vibration loads in the deformation characteristics and dynamic characteristics of dynamic strength, analysis of fly ash mixed dynamic soil modulus and damping ratio and the stress-strain relationship, research doped the dynamic strength of fly ash soil and liquefaction characteristics of the law.
     The results show that with the introduction of fly ash in a pure increase in clay, fly ash of the dry density increased approximately linearly, while the optimal moisture content of the corresponding approximate linear decrease can be effective to improve coal maximum dry density of gray, while reducing the water consumption. Cohesive soil incorporation of fly ash increased the dynamic strength parameters, cohesion sticky fly ash mixed with soil Cd amount of the increase was significantly larger trend, internal friction angle of soil mixed withφd growth was slightly decreased, but the viscosity increased cohesion than the decrease of internal friction angle of more than larger, which can effectively improve the performance of fly ash of the anti-liquefaction. Test through the analysis, showed that fly ash can improve the performance of the liquefaction strength of fly ash can play the best characteristics of mixed soil about 30 percent of the project can be based on actual needs and cohesive soil and fly ash physical and chemical characteristics to choose the volume of mixed soil.
引文
[1]郭风风,我国粉煤灰综合利用的技术经济与管理研究,南京工业大学硕士学位论文,2004.
    [2]张舒畅,粉煤灰路用性能综述,山西建筑,2005,31(3).
    [3]李时亮,周全能,粉煤灰作为路堤填料的动力特性试验研究[J],岩土力学,2005,26(2).
    [4]冯海宁,杨有海,龚晓南,粉煤灰工程特性的试验研究[J],岩土力学,Vol.23 No.5.
    [5]周健,白冰.粉煤灰作为筑坝排水垫层的动力特性试验研究[J].勘查科学技术,2000(5) :7.11.
    [6]室内土动力测试研究进展
    [7] SEED H B. So il liquefact ion and cyclicmobility evaluat ion fo r level ground during earthquakes[J]. J of theGeo tech Eng D iv, A SCE, 1979, 105 (GT2) : 2012255.
    [8]汪闻韶.土的液化机理[J].水利学报,1981,(5) .
    [9]吴世明等.土动力学现状与发展[J].岩土工程学报,1998,5.
    [10] Seed H B, Lee K L, Idriss IM. Dynamic analysis of slide in thelower san Fernando dam during the earthquake of Feb. 9, 1971.JGED, 1975, 101 (9) : 889~912.
    [11]沈珠江.一个计算砂土液化变形的等价粘弹性模型[A].中国土木工程学会土力学及基础工程学会.第四届全国土力学及基础工程学术会议论文集[C].北京:建筑工业出版社,1986.199~207.
    [12]郑大同,王慧昌.循环荷载作用下土的非线性应力应变模型[J].岩土工程学报,1983,01.
    [13]李小军,廖振鹏.土应力应变关系的粘弹塑模型[J].地震工程与工程振动,1989,03.
    [14]栾茂田,林皋.场地地震反应非线性分析的有效时域算法[J].大连理工大学学报, 1994, 4.
    [15] Desai C S, Gallagher R H. Mechanics of EngineeringMaterials.London: JohnWiley and Sons, 1984. 96 - 103.
    [16] Comm it tee on Earthquake Engineering. Comm issionon engineering and tech incal systems, nat ional re-search council, liquefact ion of so il during earthquakes[R]. N at ionalA cademy P ress, W ash ington, 1985.
    [17]王志良.粘弹塑性土层地震反应的波动分析[J].地震工程与工程振动,1981,01.
    [18] Kabilamany K, Ishihara K. Stress dilatancy and hardening laws forrigid granularmodel of sand. Soil Dynamics and Earthquake Engi-neering, 1990, 9 (2) : 66~77.
    [19]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [20]谢定义,张建民.极限平衡理论在饱和砂土动力失稳过程中的应用[J].土木工程学报,1981,14.
    [21] Hardin B O ,Drnevich V P. Shear Modulus and Damping in Soils. Geotechnical Division of ASCE ,1972 ,98 (6) :603~624 ,98 (7) :667~692.
    [22]吴世明,周景星.土的动力特性及测试和应用。见:汪闻韶主编.第三届全国土动力学学术会议论文集.上海,同济大学出版社,1990. 1~7.
    [23]祝龙根,杜坚.不同类型共振柱仪对比试验[J] .大坝观测与土工测试,1990 ,14(1) :26 - 32.
    [24]徐存森.用动扭转单剪、共振柱仪测定某核电站饱和原状砂土的动剪切模量[J].大坝观测与土工测试.1996,02.
    [25]石兆吉等.土壤压缩模量的共振法测定[J].岩土工程学报,1985,06.
    [26]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998 ,20(3).
    [27]丰万玲.煤灰土的动力特性[J].岩土工程学报,1986 ,02.
    [28]俞培基等.压实干粉煤灰的动力特性[J].岩土工程学报,1988 ,05.
    [29]江茂盛,何昌荣,邱雨均.电厂粉煤灰筑坝的动力特性试验研究[J],四川大学学报(工程科学版),2002,34(3).
    [30]李振,骆亚生,邢义川.动扭剪荷载作用下粉煤灰动力特性试验研究[J].岩石力学与工程学报,2006.
    [31]谢定义,姚仰平等.高等土力学[M].高等教育出版社,2008.
    [32]汪闻韶.往返荷载下饱和砂土的强度、液化和破坏问题[J].水利学报,1980(1) .
    [33]邵生俊,谢定义.饱和砂土的动强度及破坏准则[J].岩土工程学报,1991 ,13(1) :24—33.
    [34]汪闻昭.中国水利工程震害资料汇编(1961~1985)[M].北京:中国科学院、水利电力部水利水电科学研究院抗震防护研究所, 1990.
    [35]陈宗基.对我国土力学、岩石力学中若干重要问题的看法[A ].中国土木工程学会第一届土力学及基础工程学术会议论文选集[C].北京:中国工业出版社, 1964.
    [36] SEED H B, ARAN GO I. CHAN C K. Evaluat ion ofso il liquefact ion po tent ial during earthquake [R].Report No. EERC 75228, Earthquake Engineering Research Center, U niversity of Califo rnia, Berkeley,CA , 1975.
    [37] SEED H B. The comm it tee on so il dynam ic of geo technical engineering division A SCE definit ion of term s related to liquefact ion [J].P roc A SCE J GED, 1979,104 (Gt9) : 119721200.
    [38] SEED H B. So il liquefact ion and cyclicmobility evaluat ion fo r level ground during earthquakes[J].J of theGeo tech Eng D iv, A SCE, 1979, 105 (GT2) : 2012255.
    [39] Bobby O H ,Vincent P D. Shear modulus and damping insoils : measurement and parameter effects [J].Journal of theSoil Mechanics and Foundations Division , ASCE , 1972 , 98(SM6) .
    [40] F INN W D L.地震反应和砂土液化[A].地基与基础译文集(1)砂土液化[C].中国建筑工业出版社, 1979.65274.
    [41] SEED H B, L EE K L , IDR ISS IM. Dynam ic analysisof slide in the low er san fernando dam during theearthquake of feb [J]. J GE D iv A SCE, 1971, 101(GT9) : 8892911.
    [42]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [43]汪闻昭.饱和砂土振动孔隙水压力试验研究[J].水利学报, 1962 (2) : 2242235.
    [44]汪闻昭.饱和砂土振动孔隙水压力产生、扩散和消散[C].第一届土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社, 1964.
    [45]史宏彦,谢定义.饱和砂土地基动力反应分析的瞬态有效应力分析[A].中国土木工程学会土力学及基础工程学会.第5届全国土力学及基础工程学术会议论文选集[C].北京:建筑工业出版社, 1987. 311~315.
    [46] Desai C S, Gallagher R H. Mechanics of EngineeringMaterials.London: JohnWiley and Sons, 1984. 96 - 103.
    [47] Casagrande A. The structure of clay and its importance in foundation engineering. Journal of Boston Society of Civil Engineering,1932,Vol.19.
    [48] Seed H B, Lee K L, Idriss IM. Dynamic analysis of slide in the lower san Fernando dam during the earthquake of Feb. 9, 1971.JGED, 1975, 101 (9) : 889~912.
    [49] Kabilamany K, Ishihara K. Stress dilatancy and hardening laws for rigid granularmodel of sand. Soil Dynamics and Earthquake Engineering, 1990, 9 (2) : 66~77.
    [50]吴世明.土动力学[M] .北京:中国建筑工业出版社,2000.
    [51]吴世明等.土动力学现状与发展[J].岩土工程学报,1998,5.
    [52]李振,骆亚生,邢义川.动扭剪荷载作用下粉煤灰动力特性试验研究[J].岩石力学与工程学报,2006.
    [53]刘汉龙,周云龙,余湘娟,Nakasono Takeshi.静动多功能振动、扭剪三轴仪研制.见:刘汉龙土动力学与岩土地震工程(第六届全国土动力学学术会议论文集),北京:中国建筑土业出版社,2002.
    [54]张国平,王洪谨,周克骥.内外室压力不等的空心圆柱扭剪仪的研制[J].见:第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994.
    [55]何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报,1997 ,19 (2) :39248.
    [56]梁旭,蔡袁强.复合地基动弹性模量和阻尼比的试验研究[J].土木工程学报,2004 ,37 (1) :962101.
    [57]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,2004,11.
    [58]姚仰平.土力学[M].高等教育出版社,2004.
    [59]华南理工大学,东南大学,浙江大学.地基及基础[M].中国建筑工业出版社,1998.
    [60]何广讷.土工的若干新理论研究与应用[M].北京:水利水电出版社, 1994.
    [61] Poulos S J, Castro G, France J W. Liquefaction Evaluation Proce2dure. J of the Geotechnical engineering Division,ASCE, 1985, 111(GT 6) .
    [62] S.C.Dibben,I.F.Jefferson,I.J.Smalley. The“loughborough loess”monte carlo model of soil structure. Computers & Geosciences,1998,Vol.24,No.4,pp.
    [63]邢义川.黄土力学性质研究的发展和展望,水利发电学报,2000, (4).
    [64]周健,池毓蔚.垃圾土室内动力试验研究[J] .岩土力学,1999 ,20(4).
    [65]李作勤.扭转三轴试验综述[J].岩土力学,1994, 15(1).
    [66]王婷.非饱和土等效固结变形分析方法试验研究[D].西安理工大学硕士学位论文.西安:西安理工大学.2007.3 .
    [67]朱思哲,刘虔,包承纲,等.三轴试验原理与应用技术[M].北京:中国电力出版社,2003.
    [68]王伟胜.拉压与扭剪双向振动三轴仪微机控制系统研究.陕西机械学院硕士论文,1993.
    [69]朱思哲,刘虔,包承纲,郭熙灵,常亚屏.三轴试验原理与应用技术[M].北京:中国电力出版社,2003.
    [70]胥洪远.拉压扭剪二轴仪微机控制系统研制[D].西安理工大学硕士论文,1994.
    [71]李万明,周景星.扭剪与三轴试验中孔压不均匀性的研究[J].岩土力学,1991, 12(4).
    [72]许才军,周红波.不排水循环荷载作用下饱和软粘土的孔压增长模型[J] .勘查科学技术,1998(1).
    [73]张茹,何昌荣等,固结应力比对土样动强度和动孔压发展规律的影响,岩土工程学报,2006,28.工测试,1990 ,14(1).
    [74] Nazarian S , and Stokoe K H. In situ shear wave velocities from spectral analysis of surface waves [A] . Proceeding of the 8th World Conference on Earthquake Engineering[C] . San Francisco ,California ,U. S. A. 1984 ,VolumeⅢ..
    [75]张克绪,谢君斐.土动力学[M] .北京:地震出版社,1989.
    [76]刘恢先.唐山大地震震害[M] .北京:地震出版社,1985.
    [77]海城地震震害[M] .北京:地震出版社,1979.
    [78]沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996(1)27-29.
    [79]谢定义,齐吉琳.土结构性及其定量化研究的新途径[J].岩土工程学报,1999 ,21 (6) .
    [80]简连贵,张上君,胡渊男.初始剪应力对海外回填土壤动态特性之影响[J].岩土工程学报,1999 ,21(4).
    [81]牛建新,汪闻韶.循环扭剪试验中饱和砂土的某些动力特性[J] .水利学报,1994(5) .
    [82]周健,董鹏,戚佩江.灰渣坝抗震稳定性的三维有效应力动力分析[J] .水利学报,2000(7).
    [83]陈厚群.中国大坝的抗震设计与研究[J].水利学报,2000(第20届国际大坝会议专辑).
    [84] Lambe T.W. The structure of compacted clay. J.SMFD,ASCE,1958,Vol.84.No.SM2.
    [85] Hideki Ohta,Toru Shibaya. An idealized model of soil structure. Proceedings of the International Symposium on soil structure,1973.
    [86] Ishihara K and Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soil and foundation.1983,23(4)
    [87] Ishihara K and A Yamazaki. Analysis of wave-induced liquefaction in seabed deposits of sand .soil and foundation.1984,24(3)
    [88] Towhata I and Ishihara K. Undrained strength of sand undergoing cyclic rotation of principal stress axe. Soil and foundation.19 85,25(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700