用户名: 密码: 验证码:
黄土高原小流域淤地坝控制坡沟系统土壤侵蚀的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择黄土高原丘陵沟壑区典型小流域王茂沟流域作为研究对象,综合运用土壤侵蚀和水土保持理论、滑坡侵蚀原理、强度折减法理论和有限元技术,采用实地观测及取样和室内分析相结合的方法,开展淤地坝淤积信息空间分布规律的研究和坡沟系统土体的物理力学特性研究。进而结合有限元技术研究了小流域坡沟系统随坝地淤高其稳定性、滑坡概率和滑坡侵蚀量的变化规律、以及随着淤地坝的淤高,坡沟系统重力滑坡侵蚀中峁坡和沟坡滑塌物的体积和重量之比、峁坡和沟坡滑塌物的体积和重量占总滑塌物的体积和重量的比例,最后得出坡沟系统在稳定系数最小时的应力场与位移场的分布规律。本研究对定量评价小流域淤地坝的减侵蚀作用与综合治理效应、科学调整规划设计方案、关键技术配置、治理措施优化布局等宏观决策,推动生态环境建设的深入开展具有重要意义。
     本研究得出的主要成果如下:
     (1)通过淤地坝分层取样和干容重测定分析,得知坝地淤积物其干容重随淤积层厚的变化不是太明显,虽有变化,但其数值波动范围不大,基本在平均值1.37g/cm3上下小范围波动。坝前淤积物其加权干容重沿淤积深度方向的变化幅度为1.34-1.41g/cm3,基本沿着平均值1.38g/cm3成一条直线,坝地淤积物的加权干容重沿深度方向比较均一,在定量计算淤地坝的拦泥量时淤积泥沙的干容重可以采用一个数值进行计算。通过室内颗粒分析试验,得出坝地淤积物中各淤积层土样的颗粒级配组成规律。结果表明,坝地淤积物的粒径主要分布在0.005mm-0.1mm之间,各淤积层淤积物的颗粒级配呈不均匀分布,而且淤积泥沙颗粒组成沿深度也无明显的变化。
     (2)通过实地调查分析,建立了关地沟坡沟系统概化模型,经过纯数学的推导,得到了坡沟系统的剩余坡长L'随坝地的淤高的表达式:通过有限元软件模拟出随着坝地逐渐淤高坝库淤积的泥沙量与坝高的相关关系式为y=449.59x2+1182.1x-926.31;通过建立原型模型,得出了随坝地淤高相同淤积高度(0.9m)各淤积阶段的淤积泥沙量与淤积高度的相关关系满足二项式关系,即y=-19.83x2+997.65x-277.27及随着坝地的淤高,相同的产沙量(100 m3)落淤在坝地上垂直淤积高度与坝地当前淤高的相关关系满足乘幂关系,即y=0.1142x-1.0055。
     (3)通过峁坡和沟坡分降雨前与降雨后土的体积含水量随土层深度变化规律的研究,说明了不同植被覆盖条件下土体含水量的保持和蒸散发的强弱,指出了保持土壤水分有利的植物覆盖类型,同时也为建立降雨和土体含水量关系方面的研究提供了一种方法,并得到了简单的土体含水量随土层深度的变化规律;得到峁坡和沟坡电导率随含水量的变化规律分别为:峁坡:y=1287.6x-0.7798,沟坡:y=0.3371x2-18.372x+358.16,为土壤化学分析提供重要指标。分析了峁坡和沟坡土壤干容重随高程的变化规律,为滑坡侵蚀定量计算和小流域重力滑坡侵蚀的物理分析提供重要基础参数;建立了统一的小流域坡沟系统土体的抗剪强度随含水量的变化规律:τf=σ·tg(pω-q)+sω-t,为降雨型滑坡侵蚀预报模型提供了重要科学依据。
     (4)基于有限元技术,通过建立关地沟4号坝上游典型坡沟系统的概化模型,分析了随淤地坝坝地的淤高坡沟系统的稳定性、滑塌概率和滑塌量的变化规律,得到了三者的相关方程分别如下:①稳定系数:y=0.0004x2+0.00004x+1.2572;②滑塌概率(%):y=0.025x2-0.6346x+6.5439;③滑塌量(m3/m):y=-68.775x+2141.5,三者的精度均较高,可用于该沟道重力滑坡侵蚀的预报、滑坡侵蚀的定量计算和指导淤地坝的分期加高。
     (5)通过软件模拟计算,分别得到了峁坡和沟坡的滑塌量及各自在滑坡侵蚀总量中所占的比重。在坡沟系统重力滑坡侵蚀中,随着淤地坝的淤高,峁坡和沟坡滑塌物的体积和重量之比基本为1:50;峁坡滑塌物的体积和重量占总滑塌物的体积和重量的2%,而沟坡滑塌物的体积和重量占总滑塌物的体积和重量的98%,在重力侵蚀产沙中,沟坡重力侵蚀是沟道泥沙的主要来源。
     (6)应用有限元强度折减法对坡沟系统的应力场和位移场进行了仿真分析,指出了稳定系数最小、滑坡概率最大、坡沟系统濒临滑坡侵蚀时的最大应力和位移分布区域,分别如下:①X方向的最大位移:沟坡中下部位垂直向坡体内约15m的范围;②Y方向的最大位移:从峁顶向左向右各延伸10m左右的扇形区域;③拉应力最大值区域:从峁顶经峁坡向沟坡坡缘线向坡体内延伸9m左右的带形区域。这些区域是坡沟系统最容易发生侵蚀的危险区域,在配置坡面水土保持工程措施(水平沟和鱼鳞坑等)和生物措施的时候要有针对性的进行重点防护,以使坡沟系统的土壤侵蚀降低到最低限度。
In this study, Wangmaogou watershed, one of the typical small catchments in Loess Plateau Hilly and Gully Area,was selected as the study object. The space spread patterns of alluvial information in the check dam and the physical and mechanics characteristics of soil on slope-gully system were studied with the theory of soil erosion and soil and water conservation, landslide erosion principle and finite element method strength reduction theory and its technology, and field observations and laboratory analysis methods. Then, combined with finite element method technology, the changing law of stability factor, land sliding probability and land sliding amount of the slope-gully system in small watershed with dam land raised gradually were studied. It is also obtained that the erosion amount and percentage of mound slope and gully slope in landsliding erosion of slope-gully system with dam land raised gradually. Finally,the slope-gully system's stress fields and displacement fields were also analyzed by finite element method strength reduction theory. When the stability factor was minimum and the slope-gully system was on the edge of sliding erosion, the maximum stress and displacement fields were obtained. The studies are of practical significance in evaluating the ecological environment restoration and comprehensive management effect, scientifically adjusting macroeconomic policy, such as planning and designing programs, collocating key technique and optimizing the layout of father measurement, and promoting construction of ecological environment for further development.
     The main results are as follows:
     (1)The dry density result of depositing matter from layers of warped farmland indicated that the dry density of each layer was generally stabilized. Though there were some changes, but the range of the numerical fluctuating was little, just upper and lower on the average of 1.37g/cm.The range of weighted dry density changing with deposit depth was very little, and its range was about 1.34~1.41g/cm3, just like one line along the average number of 1.38g/cm3.So the dry density of silting sediments can indicated with one parameter when calculating the sedimentation quantity of check dam.The grain composition analysis of depositing matter on layers in the warped farmland indicated that the grain diameter was mainly distributed among the range from 0.005 mm to 0.1 mm, sludge soil particles were distributed unevenly, and there were no obvious changes along the dam to the deep profile.
     (2) Through field investigation and analysis,the generalized model of slope-gully system in Guandigou Watershed was established. Through pure mathematical deducing, the function about the remaining slope lengthof slope-gully system changing with gradual rise of dam land was obtained: .By finite element software, the function about the sediment silted in dam reservoir changing with dam land vertical silting higher was obtained:y= 449.59x2+1182.1x-926.31.Through establishing prototype model, the function about sediment amount silted of every alluvium following dam land silting the same higher(0.9meter) was obtained:y=-19.83x2+997.65x-277.27,and at the same time,it was also obtained that the function about vertical sedimentation height of 100 cubic metre sediment falling on dam land changing with dam land current sedimentation height which was:y=0.1142x-1.0055.
     (3)The law about soil's volume water content which lies in mound slope and gully slope before and after the rain changing along with the soil layer vertical depth was analyzed by measuring and sampling respectively in field on mound slope and gully slope. The strong and weak of soil water content keeping and evapotranspiration under different vegetation cover conditions was explained, and plant-cover types which was favorable for keep soil moisture was pointed out at the same time. The law of electrical conductivity changing along with the water content was also analyzed which could provide important index for soil chemical analysis:mound slope:y=1287.6x-0.7798,gully slope:y=0.3371x2-18.372x+358.16. The soil dry density which lies in mound slope and gully slope changing along with elevation was obtained by sampling respectively in field and determining the soil's dry density indoor which can provide important foundational parameters for quantitative calculating of landslide erosion and physical analysis about gravity landslide erosion in small watershed. It is also found that unified function about soil's shear strength changing along with the water content of slope-gully system of small watershed by mechanical experiments on undisturbed soil under different water content which was that:τf=σ·tg (pω-q)+sω-t.The results can provide prediction model of rainfall landslide erosion in small watershed on loess plateau.
     (4)Based on finite element techniques, the stability of slope-gully system,its land sliding probability and its land sliding amounts were analyzed with gradual rise of dam land by establishing a generalization model of Guandigou watershed in Gully's classical slope-gully system. Correlation equations were obtained just as follows:①stability factor: y=0.0004x2+0.00004x+1.2572;②land sliding probability(%):y=0.025x2-0.6346x+6.5439;③land sliding amounts (m3/m):y=-68.775x+2141.5,all of which had high accuracy. The three functions can be used to forecast and quantitative calculation of landslide erosion.
     (5) Through calculating and simulating by software, the erosion amount and percentage of mound slope and gully slope in land sliding erosion of slope-gully system was obtained. In land sliding erosion of slope-gully system, with dam land raised gradually, the volume and weight of slumping soil on mound slope compared to that of gully slope was about 1:50,that of slumping soil on mound slope compared to that of total slumping soil was about 2 percent, and that of gully slope was about 98 percent. So among gravity erosion producing sediment, the gravity erosion on gully slope was the main source of channel producing sediment.
     (6) Concerning on the slope-gully system's mechanical stabilization and damage by stress, the slope-gully system's stress fields and displacement fields were also analyzed by finite element method strength reduction theory. When the stability factor was minimum and the slope-gully system was on the edge of sliding erosion, the maximum stress and displacement fields were obtained. The obtained maximum stress and displacement fields was as follows:①the maximum displacements of X direction was the area which lie in middle and lower part on edge of slope-gully system and vertical to slope of about 15 meters.②the maximum displacements of Y directions was a sector region which from replat top to the left or right 10 meters.③the maximum tensile stress was a strip region which from replat top to toe of the slope extending 9 meters.The above areas were dangerous region in where erosion was easier. The results provide a valuable reference for configuration of project measures of water and soil conservation,which can decrease the erosion amount of the slope-gully system to the minimum.
引文
[1]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    [2]景可,陈永宗.我国土壤侵蚀与地理环境的关系[J].地理研究,1990,9(2):29-37
    [3]辛树帜,蒋德麒.中国水土保持概论[M].北京:农业出版社,1982.
    [4]Basher L R,Matthews K M Zhi L. Surface erosion assessment in the South Canterbury down-lands, New Zealand using Cs-137 distribution [J].Australian Journal of Soil Research,1995,33 (4):787-803.
    [5]Zingg, A W. Degree and length of land slope as it affects soil loss in runoff [J].Agriculare,1940, 21(2):59-64
    [6]Musgrave G W. The Quantitative Evalution of Factors in Water Erosion-A First Approximation [J]. Journal of Soil and Water Conser,1947,2(3):133-138
    [7]Ellison W D. Soil erosion studies-Part Ⅰ, Part Ⅱ, Part Ⅲ, Part Ⅳ, Part Ⅴ, Part Ⅵ, Part Ⅶ[M]. Agricultural Engineering,1947,4(2):145-444
    [8]Knaus R M. Accretion and canal impacts in a rapidly subsiding wetland:Ⅱ. A new soil horizon maker method for measuring recent accretion [J].Estuaries,1989,12(4):269-283
    [9]Mian Li, Zhan-bin Li,Wen-feng Ding,et al. Using rare earth element tracer and neutron activeation analysis to study rill erosion process[J].Applied Radiation and Isotopes,2006,64(2):402-408
    [10]Meyer L D. Use of the rainulator for runoff plot research [J].Soil Sci. Soc. Am. Proc.,1960,24(4): 319-322
    [11]Meyer L D, E J Monke. Mechanics of soil erosion and overland flow [J].Transactions of the ASAE, 1965,8(4):572-580
    [12]Meyer L D. How rainfall intensity affects interrill erosion [J].Transactions of the ASAE 1981,24(6): 1472-1475
    [13]Edwards W M and L B Owens. Large storm effects on total soil erosion [J].Journal of Soil and Water. Cons.,1991,1(5):75-78
    [14]Park S W, J K Mitchell and G D Bubenzer. Rainfall Characteristics and Their Relation to Splash Erosion [J]. Transactions of the ASAE 1983,6(3):795-804.
    [15]Park S W,J K Mitchell and G D Bubenzer:Splash erosion modeling:Physical analysis [J]. Transactions of the ASAE.,1987,125(2):357-361.
    [16]蒋德麒.黄河中游丘陵沟壑区沟道小流域的水土流失及治理[J].中国科学,1978,11(6):671-678
    [17]蒋德麒,赵诚信,陈章霖.黄河中游小流域径流泥沙来源初步分析[J].地理学报,1966,32(1):20-35
    [18]常茂德.陇东黄土高原沟道小流域的土壤侵蚀[J].水土保持通报,1986,6(3):56-60
    [19]胡建军,牛萍,曹炜.浅谈黄河上中游地区水土保持淤地坝工程的作用[J].西北水资源与水工程,2002,13(2):28-31
    [20]李敏.淤地坝在黄河中游水土流失防治中的作用[J].人民黄河,2003,25(12):25-27
    [21]唐克丽.中国水土保持[M].北京:科学出版社,2004:100-103
    [22]方学敏,兆惠,匡尚富.黄河中游淤地坝拦沙机理及作用[J].水利学报,1998,29(10):49-53
    [23]刘秉正,翟明柱,吴发启.渭北高原沟谷侵蚀初探[A].西北水土保持研究所集刊[C],杨凌:中科院水保所,1990,23-45
    [24]陈浩.黄土丘陵沟壑区流域系统侵蚀与产沙关系[J].地理学报,2000,55(3):354-363.
    [25]郑宝明.黄土高原丘陵沟壑区淤地坝建设效益与存在问题[M].绥德:黄河绥德水土保持科学试验站,2003.
    [26]黄自强.黄土高原地区淤地坝建设的地位及发展思路[J].中国水利,2003,9(A):8-11.
    [27]张永涛,王洪刚,李增印,等.坡改梯的水土保持效益研究[J].水土保持研究,2001,8(3):9-11.
    [28]焦菊英,王万中,李靖.黄土丘陵区不同降雨条件下水平梯田的减水减沙效益分析[J.]土壤侵蚀与水土保持学报,1999,5(3):60-63.
    [29]杨文治,余存祖.黄土高原治理与评价[M].北京:科学出版社,1992.
    [30]李玉山.黄土高原治理开发与黄河断流的关系[J].水土保持通报,1997,17(6)4:1-43.
    [31]吴家兵,裴铁璠.长江上游、黄河上中游坡改梯对其径流及生态环境的影响.国土与自然资源研究,2002,(2):59-61.
    [32]王礼先.水土保持工程学[M].北京:中国林业出版社,1991,42-44.
    [33]刘正杰.黄土高原淤地坝建设现状及其发展对策[J].中国水土保持,2003,(4):1-3
    [34]Williams J R,Berndt H D.Sediment yield prediction based on watershed hydrology[J].Transaction of the ASAE,1977,20(6):1100-1104.
    [35]Nachtergaele J,Poesen J.Vandekerck hove L,et al.Testing the ephemeral gully erosion model (CEGEM)for two mediter ranean environmen[J].Earth surface process and landforms,2001,26 (3):17-30.
    [36]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4(2):99-115
    [37]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988
    [38]唐克丽主编.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993
    [39]刘元保.黄土高原坡面沟蚀的危害及其发生发展规律[D].中国科学院西北水土保持研究,1984
    [40]张科利.浅沟发育对土壤侵蚀作用的研究[J]冲国水土保持,1991,1:17-19
    [41]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000
    [42]田均良,周佩华,刘普灵,等.土壤侵蚀REE示踪法研究初报[J].水土保持学报,1992,6(4):23-27
    [43]孟庆枚主编.黄土高原水土保持[M].郑州:黄河水利出版社,1996
    [44]曾茂林,朱小勇,康玲玲,等.黄土丘陵沟壑区淤地坝的拦尼减蚀作用及发展前景[J].水土保 持研究,1999,6(2):126-133
    [45]李占斌.黄土地区坡地系统暴雨侵蚀试验及小流域产沙模型[J].陕西机械学院,1991,7(2):23-25
    [46]王贵平,曾伯庆,陆兆熊,等.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究[J].中国水土保持,1992,3:16-20
    [47]侯建才.黄土丘陵沟壑区小流域侵蚀产沙特征示踪研究[D]:[博士论文].西安:西安理工大学,2007.
    [48]高照良等.黄土高原地区淤地坝存在问题分析[J].水土保持通报,1999.
    [49]李占斌,符素华,鲁克新.秃尾河流域暴雨洪水产沙特性的研究[J].水土保持学报,2001,15(2):88-91
    [50]李昌志,刘兴年,曹叔尤,等.前期降雨与不同沙源条件小流域产沙关系的对比研究[J].水土保持学报,2001,15(6):36-39
    [51]李占斌.黄土地区小流域次暴雨侵蚀产沙研究[J].西安理工大学学报,1996,12(3):177-183
    [52]李占斌,符素华,靳顶.流域降雨侵蚀产沙过程水沙传递关系研究[J].土壤侵蚀与水土保持学报,1997,3(4):44-49
    [53]冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙作用研究[J].中国水利,2003,A(9):67-69
    [54]许炯心.黄河中游多沙粗沙区水土保持减沙的近期趋势及其成因[J].泥沙研究,2004,2:5-10
    [55]张胜利,于一鸣,姚文艺,著.水土保持减水减沙效益计算方法[M].北京:中国环境科学出版社,1994.
    [56]内蒙古准格尔旗水土保持局皇甫川治沟骨干工程研究组.川掌沟治沟骨干工程坝系建设及其重大作用[J].中国水土保持,1995,4:15-19.
    [57]张文英.坝系工程效益及建设体会[J].山西水利,1999,3:11-12.
    [58]刘汉喜,田永宏,程益民.绥德王茂沟流域淤地坝调查及坝系相对稳定规划[J].中国水土保持,1995,12(2):16-21
    [59]方学敏,曾茂林.黄河中游淤地坝坝系相对稳定研究[J].泥沙研究,1996,3:12-20
    [60]范瑞瑜主编.黄土高原坝系生态工程[M].郑州:黄河水利出版社,2004
    [61]李勇等.陕北黄土高原陡坡耕地土壤侵蚀变异的空间格局.水土保持学报,2000,14(4):17-21
    [62]赵听,李毓祥,韩学士.坝系农业与生态环境建设[J].水土保持研究,2001,8(4):43-45.
    [63]王协康,方铎.土壤侵蚀产沙量的人工神经网络模拟[J].成都理工学院学报,2000,27(2):197-202
    [64]唐莉华,张思聪.小流域产汇流及产输沙分布式模型的初步研究[J].水力发电学报,2002,76(1)(专刊):119-127
    [65]贾媛媛,郑粉莉,杨勤科.黄土高原小流域分布式水蚀预报模型[J].水利学报,2005,36(3):328-332
    [66]刘高焕,蔡强国,朱会义,等.基于地块汇流网络的小流域水沙运移模拟方法研究[J].地理科学进展,2003,22(1):71-78.
    [67]郑书彦.滑坡滑坡侵蚀及其动力学机制与定量评价研究[D]:[博士论文].杨陵:中国科学院水土保持研究所,2002.
    [68]蒋德麒,赵诚信,陈章霖.黄河中游小流域径流泥沙来源初步分析[J].地理学报,1966,(1):6-10
    [69]曹银真.黄土地区重力侵蚀的机理及预报[J].水土保持通报,1981,4:19-22
    [70]朱同新.黄土地区重力侵蚀发生的内部条件及地貌临界值分析[M]。北京:气象出版社,1987:100-110.
    [71]朱海之.地震崩滑与坡面破坏[J].中国水土保持,1988,(5):16-17
    [72]李天池,王淑敏.区域滑坡研究的内容、方法与步骤[J].中国水土保持,1988,(6):17-20.
    [73]靳泽先,韩庆宪.黄土高原滑坡分布特征及宏观机理[J].中国水土保持,1988,(6):21-25.
    [74]张信宝,柴宗新,汪阳春.黄土高原重力侵蚀的地形与岩性组合因子分析[J].水土保持通报,1989,9(5):40-44.
    [75]朱同新,陈永宗.晋西黄土地区重力侵蚀产沙分区的模糊聚类分析[J].水土保持通报,1989,9(2):27-34
    [76]李昭淑.戏河流域重力侵蚀规律的研究[J].水土保持通报,1991,11(3):1-6
    [77]宋克强,孙超图,袁继国,等.黄土滑坡的模型试验研究[J].水土保持学报,1991,5(2):15-21
    [78]徐茂其,张大泉,周晓骆,等.九寨沟流域突发性重力侵蚀初步研究[J].水土保持学报,1991,5(2):1-7
    [79]王德甫,赵学英,马浩禄,等.黄土重力侵蚀及其遥感调查[J].中国水土保持,1993,(12):25-28.
    [80]唐川,周钜,朱静.云南崩塌滑坡危险度分区的模糊综合分析法[J].水土保持学报,1994,8(4):48-54
    [81]孙尚海,张淑芝,张丰.中沟流域的重力侵蚀及其防治[J].中国水土保持,1995,(9):25-27.
    [82]付炜.土壤重力侵蚀灰色系统模型研究[J].水土保持学报,1996,2(4):9-17
    [83]李树德.武都白龙江流域滑坡活动性探讨[J].水土保持通报,1997,17(6):28-32
    [84]王军倪,晋仁,杨小毛.重力地貌过程研究的理论与方法[J].应用基础与工程科学学报,1999,9,7(3):240-251
    [85]周择福,林富荣,张友炎.五台山南梁沟自然风景区重力侵蚀调查研究[J].水土保持学报,2000,10,14(5):141-143
    [86]王光谦,薛海,李铁键.黄土高原沟坡重力侵蚀的理论模型[J].应用基础与工程科学学报,2005,12,13(7):336-344
    [87]金鑫,郝振纯,张金良,等.考虑重力侵蚀影响的分布式土壤侵蚀模型[J].水利学报,2008,3,19(2):257-263
    [88]冯自立.云南蒋家沟上游重力侵蚀和支沟泥石流形成的研究[J].安徽农业科学,2008,36(8):3319-3322
    [89]李铁键,王光谦,张成,等.黄土沟壑区流域重力侵蚀模拟[J].天津大学学报,2008,9,41(9):1137-1141.
    [90]郑宝明,王晓,田永宏,等.黄河水土保持生态工程韭元沟示范区建设理论与实践[M].郑州:黄河水利出版社,2006,12.
    [9l]郑宝明,王晓,田永宏,等.淤地坝试验研究与实践[M].郑州:黄河水利出版社,2003,8.
    [92]师长兴,章典,尤联元,等.黄河口泥沙淤积估算问题和方法——以钓口河亚三角洲为例[J].地理研究,2003,22(1):49-59
    [93]张金慧.王茂沟综合防治体系建设试验研究[J].人民黄河,1993,15(9):20-23
    [94]冯国安.陕北王茂沟流域综合治理的启示[J].人民黄河,1998,20(1):15-17.
    [95]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.86-133.
    [96]穆兴民,陈霁伟.黄土高原水土保持措施对土壤水分的影响[J].水土保持学报,1999,5(4):39-44
    [97]李代琼,姜峻,梁一民,等.安塞黄土丘陵区人工草地水分有效利用研究[J].水土保持研究,1996,3(2):66-74.
    [98]FamigliettiJS, RudnickiJW,RodellM.Variability in surface moisture contental on gahill slopetransect Rattlesnake Hill Texas[J].Journal of Hydrology,1998,2(3):259-281.
    [99]CraveA, Gascuel-OdouxC.The in fluence of topography on time and space distribution of soil surface water content[J].Hydrological Processes,1997,11(1):203-210.
    [100]DavidsonDA, WatsonAI.Spatial variability in soil moisture aspredicted from air borne thematic mapper (ATM) data [J].Earth Surface Processes and Landform,1995,2(1):219-230.
    [101]胡伟,邵明安,王全九.黄土高原退耕坡地土壤含水率空间变异的尺度性研究[J].农业工程学报,2005,21(8):11-16.
    [102]李哈滨,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651-657.
    [103]HuismanJA,SperlC,BoutenW,etal.Soil water content measurement sat different scales:accuracy of timed omain reflect ometry and ground-penetrating radar [J].Journal of Hydrology,2001,2 (3):48-58.
    [104]Kalma, JD.Predicting catchment scale moisture status with limited field measurements [J].Hydrological Processes,1995,9(2):445-468.
    [105]CerdaA.The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope [J].Hydrological Processes,1998,12 (4):661-671.
    [106]AndrewW.Western,Sen-LinZhou,RodgerB.Grayson,etal.Spatial correlation of soil moisture in small catchment sandits relationship to dominant spatial hydrological processes[J].Journal of Hydrology,2004,2(3):113-134.
    [107]刘春利,邵明安,张兴昌,等.神木水蚀风蚀交错带退耕坡地土壤含水率空间变异性研究[J].水土保持学报,2005,19(1):132-135.
    [108]潘成忠,上官周平.黄土半干旱丘陵区陡坡地土壤含水率空间变异性研究[J].农业工程学报,2003,19(6):5-10.
    [109]刘成伦,徐龙君,鲜学福.水溶液中盐的浓度与其电导率的关系研究[J].中国环境监测,1999,15(4):21-24.
    [110]刘文通.电导率测定中几个问题的探讨[J].四川电力技术,1995,5:41-47.
    [111]陈建生,董海洲.堤坝渗漏探测示踪新理论与技术研究[M].北京:科学技术出版社,2007,104-106.
    [112]廖丽霞,廖春奇.水样电导率干扰因素的排除实验[J].防灾减灾工程学报,2002,22(4):32-35.
    [113]西北水利科学研究所.西北黄土的性质[S].西安:陕西人民出版社,1959,30-31,38-46,96-103.
    [114]陈德兴,刘大维,陈秉聪,等.大庆沼泽土壤力学特性的试验研究[J].吉林工业大学学报,1994,24(3):7-13.
    [115]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1996.
    [116]黄正荣,梁精华.有限元强度折减法在边坡三维稳定分析中的应用[J].工业建筑,2006,36(6):59-64.
    [117]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [118]Zienkiewicz,0 C,Humpeson C,Lewis R W. Associated and Nonassociated Visco-Plasticity in Soil Mechanics[J].Geotechnique,1975,25(4):671-689
    [119]王兰民等著.黄土动力学[M].北京:地震出版社,2003.10.
    [120]王家臣.边坡工程随机分析原理[M].北京:煤炭工业出版社,1996.5.
    [121]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.4.
    [122]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,10,23(19):3381-3388.
    [123]Zienkiewicz,O.C., and Taylor, R.L.The finite element method[M].New York:McGraw-Hill,1989
    [124]Zienkiewicz,O.C, Humpeson C, Lewis R W. Associated and Nonassociated Visco-Plasticity in Soil Mechanics[J].Geotechnique,1975,25(4):671-689
    [125]吴海真,顾冲时.有限元强度折减法在土石坝边坡稳定分析中的应用[J].水电能源科学,2006,8,24(4):54-58.
    [126]邵龙潭,唐宏祥,韩国城.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18(1):81-87.
    [127]龚晓南.土塑性力学[M].第2版.杭州:浙江大学出版社,1999.
    [128]张彩双,李俊杰,胡军.有限元强度折减法的边坡稳定分析[J].中国农村水利水电,2006,5:72-74.
    [129]刘丽萍,折学森.土石混合料压实特性试验研究[J].岩石力学与工程学报,2006,25(1):206-209.
    [130]郑书彦.滑坡滑坡侵蚀及其动力学机制与定量评价研究[D]:[博士论文].杨陵:中国科学 院水土保持研究所,2002.
    [131]戚筱俊.工程地质及水文地质[M].北京:中国水利水电出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700