用户名: 密码: 验证码:
机械加工车间设备布局优化模型及求解算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车间设备布局设计是制造系统规划中的重要一环,其结果对生产系统运行过程中的物料搬运费用、搬运效率,乃至系统的产能、生产效率等均有较大影响。尽管车间布局设计研究一直方兴未艾,但由于问题的NP难的属性和实际布局问题的多样性,以及随着制造理念和制造模式的发展变化,现有的大量设计模型及求解算法也已经越来越难以适应现代制造车间布局设计的需要。本论文以四川某公司机械加工车间为主要研究对象,针对多品种小批量式制造车间的特点,对车间设备布局优化模型及其算法进行研究,主要做了以下工作:
     首先,论文对国内外设备布局的研究现状进行综述,对车间布局的基本理论与方法进行分析与总结,为后文布局模型及算法的研究奠定了理论基础。
     其次,详尽的分析了多品种小批量生产方式的特点及此种生产方式布局的特点,提出了此种生产方式下的设备布局目标。接着,将布局目标转换为包含物流成本、搬运时间、面积利用率的综合目标函数,并提出了设备布局的约束条件。
     再次,详尽的分析了遗传算法与模拟退火算法的基本理论、运算过程和优缺点,针对两种算法的优缺点设计了遗传-模拟退火算法。该算法继承了遗传算法及模拟退火算法的优点,同时又克服了遗传算法局部寻优较差及模拟退火算法求解效率较低的问题,是一种非常适合求解设备布局问题的算法。
     最后,在以上理论研究的基础上,将本文的研究成果应用于四川某公司机械加工车间的设备布局问题,在完成车间物流分析后,应用混合算法对该车间设备布局进行了求解,并求出了该车间的最优解。接着,将该算法与标准遗传算法与标准模拟退火算法进行了对比验证,最终证明了该混合算法的可行性与有效性。
Developing a plant layout is an important step when designing manufacturing facilities due to the impact of the layout on material handling cost and efficiency, on the actual capacity, and on productivity of the facility. Although the plant layout design research has been in the ascendant, these studies also in the initial stage, because the problems have NP-hard attributes and the issues of diversity. We have to face a lot of new issues which are significantly different from the traditional layout problems in the design of a plant layout with development and changes of manufacturing concepts and production patterns. This paper takes a machining workshop as the main object of study, mainly studies the plant equipment layout optimization model and its algorithm for manufacturing plant characteristics of multi-variety small-batch. The main work of this paper as follows:
     Firstly, this paper summarizes status of domestic and foreign research about facility layout,analyzes basic theories and methods of facility layout,lays a theoretical foundation for later facility layout model and algorithm.
     Secondly, this paper analyzes characteristics of multi-variety and small-batch production, and characteristics of this production layout model. Then, the targets are converted to a multi-objective synthesis function which includes logistics cost, handling time, space utilization. Equipment layout constraints are also proposed.
     Thirdly, this paper analyzes the basic theory, operation process and the advantages and disadvantages of standard genetic algorithm and standard simulated annealing algorithm. This paper designs a hybrid genetic simulated annealing algorithm according to the advantages and disadvantages of the two algorithms. This hybrid algorithm inherits the advantages of two algorithms, at the same time, avoids poor local optimization of the genetic algorithm and solves inefficient of the simulated annealing algorithm. It is a very suitable algorithm for solving facility layout problems.
     Finally, based on study of above theories, these researches are applied to machining workshop facility layout problem of the C company. After completing the workshop material flow analysis, the workshop facility layout problem is solved by the hybrid algorithm. The optimal solution of the workshop is eventually found. We finally get the facility layout of this workshop. This paper verifies the feasibility and effectiveness of the hybrid algorithm through comparative analysis of standard genetic algorithm,standard simulated annealing algorithm and the hybrid algorithm.
引文
[1] Francis R L, White J A. Facility layout and location: an analytical approach[M]. NJ: Prentice Hall, Englewood Cliffs, 1974.
    [2] Szykman S, Cagan J. Constrained three dimensional component layout using simulated annealing[J].ASME Journal of Mechanical Design,1997,119(1):28-35.
    [3] Baldacci Roberto, Boschetti Marco A. A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem[J]. European Journal of Operational Research, 2007, 183(3):1136-1149.
    [4] Hoeft Jeffrey, Palekar Udatta S. Heuristics for the plate-cutting traveling salesman problem[J]. IIE Transactions (Institute of Industrial Engineers), 1997, 29(9):719-731.
    [5]刘丽文.生产与运作管理[M].北京:清华大学出版,1998.
    [6] Meller R D, Narayanan V, Vance P H. Optimal facility layout design[J], Operations Research Letters, 1999,23:117-127.
    [7] Azadivar F, Wang J. Facility layout optimization using simulation and genetic algorithms[J], International Journal of Production Research,2000,38:4369-4383.
    [8] Lee Y H, Lee M H. A shape-based block layout approach to facility layout problems using hybrid genetic algorithm[J]. Computers and Industrial Engineering, 2002, 42:237-248.
    [9] Shayan E, Chittiilappilly A. Genetic algorithm for facilities layout problems based on slicing tree structure[J]. International Journal of Production Research, 2004, 42:4055-4067.
    [10] Koopmans T C, Beckman M. Assignment problems and the location of economic activities[J], Econometrica, 1957,25:53-76.
    [11] Wang M J, Hu M H, Ku M H. A solution to the unequal area facilities layout problem by genetic algorithm[J], Computers in Industry, 2005,56:207-220.
    [12] Das S K. A facility layout method for flexible manufacturing systems[J], International Journal of Production Research,1993,31:279-297.
    [13] Evan M P. An ant algorithm for the single row layout problem in flexible manufacturing systems[J], Computers and Operations Research, 2005 ,32:583-598.
    [14] Raoot R, Rakshit Jr. Hybrid ant systems for the dynamic facility layout problem, Computers and Operations Research[J], 2006, 33:790-803.
    [15] Gen B J, Cheng C H, Ida N. A hybrid genetic algorithm for the dynamic plant layout problem[J]. International Journal of Production Economics 2003, 86:107-120.
    [16] Chen C W, Sha D Y, Heuristic approach for solving the multi-objective facility layoutproblem[J], International Journal of Production Research, 2005, 43:4493-4507.
    [17] Aiello G, Enea M, Galante G. An integrated approach to the facilities and material handling system design[J], International Journal of Production Research, 2002, 40:4007-4017.
    [18] Kouvelis P, Kim A G. Algorithms for robust single and multiple period layout models for manufacturing systems[J], European Journal of Operation Research,1992,63:287-303.
    [19] Rosenblatt M J, The dynamics of plant layout[J], Management Science, 1986, 37: 272-286.
    [20] Lee R, Kalchik S.CORELAP-computerized relationship layout planning, Journal of Industrial Engineering[J], 1967,18:195-200.
    [21] Seehof J M, Evans W O. Automated layout design program[J]. The Journal of Industrial Engineering, 1967, 18:690-695.
    [22] Tompkins J A, Reed J R. An applied model for the facilities design problem[J], International Journal of Production Research, 1976,14:583-595.
    [23] Armour G C, Buffa E S. A heuristic algorithm and simulation approach to relative allocation of facilities[J], Management Science, 1963, 9:294-300.
    [24] Khalil T M. Facilities relative allocation technique(FRAT) [J], International Journal of Production Research,1973,11:183-194.
    [25] McKendall A R, Shang J. Hybrid ant systems for the dynamic facility layout problem[J], Computers and Operations Research,2004,33:790-803.
    [26] Pierreval H, Caux C, Paris J L, Viguier F. Evolutionary approaches to the design and organization of manufacturing systems[J], Computers and Operations Research,2003,44:339-364.
    [27] Azadivar F, Wang J. Facility layout optimization using simulation andgenetic algorithms[J], International Journal of Production Research,2000,38:4369-4383.
    [28] Solimanpur M, Vrat P, Shankar R. An ant algorithm for the single row layout problem in flexible manufacturing systems[J], Computers and Operations Research, 2005,32:583-598.
    [29] Baykasoglu A, Dereli T, Sabuncu I. An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems[J], Omega, 2006,34:385-396.
    [30] Mahdi G C, Amet E S, A heuristic algorithm and simulation approach to relative allocation of facilities[J]. Management Science,1998,9(2):294-300.
    [31] Mir M R and Inam T L, Solving Quadratic Assignment Problems by Simulated Annealing[J], In IIE Transaction,2001,19(1):107-119.
    [32] McKendall A R., Shang J, Kuppusamy S. Simulated annealing heuristics for the dynamic facility layout problem[J], Computers and Operations Research,2006, 33:2431-2444.
    [33] Apple J M. Plant layout and material handling[M]. New York: John Wiley&Sons, 1977.
    [34] Tompkins J A, White J A, Bozer Y A, Frazelle E H, Tanchoco J M, Trevino J. Facilities planning[M], New York:Wiley,1996.
    [35] Kefter R, Balibek E. Decision making for facility layout problem solutions[J]. Computer& Industrial Engineering, 1999,37(1-2):319-322.
    [36] Hicks V S, Sarker B R. Reducing work-in-process movement for multiple products in one-dimensional layout problems[J]. Journal of the Operational Research Society, 1997, 48(4):412-422.
    [37]董海,梁迪.设施规划与物流分析[M].北京:机械工业出版社,2005.
    [38]朱耀祥,朱立强.设施规划与物流[M].北京:机械工业出版社,2004.
    [39]王家善,吴清一,周佳平.设施规划与设计.北京:机械工业出版社,1995.
    [40]齐二石.物流工程.天津:天津大学出版社,2001.
    [41]邱枫,基于单亲遗传算法的设备布局问题研究[D].天津大学硕士学位论文,2007.
    [42]程国全,柴继峰,王转,等.物流设施与设计[M].北京:中国物资出版社,2003.
    [43] Muther Richard, Systematic layout planning[M], Boston: Industrial Education Institute, Boston,1961.
    [44]林立千.设施规划与物流中心设计[M].北京:清华大学出版社,2003.
    [45]汪应洛.工业工程[M].北京:机械工业出版社,1994.
    [46]易树平,郭伏.基础工业工程[M].北京:机械工业出版社,2007.
    [47]程国全. SLP法在化工厂总平面布置中的应用[J].物流技术与应用,1997,2(2):34-37.
    [48]刘飞.先进制造系统[M].北京:中国科学技术出版社,2001.
    [49]熊富员.现代化机械加工车间设备平面布置[J].汽车工艺与材料,2000,(1):33-35.
    [50]方庆琯,王转,等.现代物流设施与规划[M].北京:机械工业出版社,2004.
    [51]赵景华.工厂设施布置的原则及方法[J].物流技术,1995,(2):20.
    [52]马汉武.物流规划与物流系统设计[M].北京:高等教育出版社,2005.
    [53]李茂军,童调生,罗隆福.单亲遗传算法及其应用研究[J].湖南大学学报,1998,25(6):56-59.
    [54]李茂军,罗日成,童调生.单亲遗传算法的遗传算子分析[J].系统工程与电子技术,2001,23(8):84-87.
    [55] Marcello Braglia, Simone Zanon and Lucio Zavanella, Layout design in dynamic environments: strategies and quantitative indices[J]. International Journal of Production Research, 2003,41(5):995-1016.
    [56]柏甫荣,秦永法.基于智能优化算法的设备布局设计[J].组合机床与自动化加工技术,2004,6:50-53.
    [57]王定益,王丽亚.一种改进遗传算法在生产车间设备布局中的应用[J].计算机工程与应用,2005,14:190-193.
    [58]丁立言,张铎.物流系统工程[M].北京:清华大学出版社,2000.
    [59] Meyer, Fred E, Plant layout and material handling[M]. New Jersey: Regents/prentice Hall, 1993.
    [60] Sunderesh Heragu. Facilities Design[M]. Boston: PWS Publishing Company, 1997.
    [61]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [62] Holland J H. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press, Ann Arbor, 91, 1975.
    [63]龚全胜,李世其.基于遗传算法的制造系统设备布局设计[J].计算机工程与应用,2004,(26):202-204.
    [64]经小川.遗传算法在机器布局问题中的应用[D].四川大学硕士学位论文,2001.
    [65] Ramkumar A S, Ponnambalam S G. Design of single-row layouts for Flexible Manufacturing Systems using genetic algorithm and simulated annealing Algorithm[J]. 2004 IEEE Conference on Cybernetics and Intelligent Systems, 2004:1142-1146.
    [66]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [67]王小平,曹立明.遗传算法--理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [68]玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.
    [69]杨维嘉.布局问题求解算法与策略的研究[D].天津大学硕士学位论文,2005.
    [70]齐继阳,竺长安.改进型模拟退火算法在设备布局设计中的应用[J].计算机工程,2007,33(1):241-243.
    [71] Hassan, M M D.Machine layout problem in mordern manufacturing facilities[J]. International Journal of Production Research,1994,32(11):2559-2584.
    [72] Hassan, M M D.Layout design in group technology manufacturing[J]. International Journal of Production Economics,1995,38:173-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700