用户名: 密码: 验证码:
新烟碱类化合物与烟碱乙酰胆碱受体的相互作用及选择性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括三个部分。第一章概述了烟碱乙酰胆碱受体的结构、亚型及亚基组成,归纳了几种新烟碱杀虫剂与受体的作用模式假说并且简述了计算机辅助药物设计和分子动力学方法。
     第二章综合运用了同源模建、分子对接方法研究了典型新烟碱化合物与靶标的作用机制。运用分子对接的方法,评价了顺式硝基烯类化合物IPPA 156011两种构型与AChBP的结合情况,发现S构型的化合物与受体作用好,应为活性构型,而R构型化合物与受体无明显作用;同时发现结合位点水分子存在与否对化合物IPPA156011的作用模式无明显影响。通过序列比对、同源模建、分子对接研究,在一定程度上揭示了吡虫啉对桃蚜等靶标昆虫具有高杀虫活性,而对拟环纹豹蛛低活性的原因。桃蚜Mpβ1亚基和拟环纹豹蛛Ppβ1亚基在活性位点loopD存在R81Q残基的差异,桃蚜Mpβ1亚基Arg81残基带正电胍基的两个N-H可以与吡虫啉硝基的两个O原子形成两根N-H...O氢键,对吡虫啉的结合起关键作用;而环纹豹蛛Ppp1亚基在该位置相对应的残基为Gln81,与吡虫啉距离较远,无法形成氢键作用。模拟结果很好的解释了生物学实验数据。
     第三章通过同源模建以及分子动力学方法模拟了吡虫啉与果蝇α7型和人中枢神经α4p2型nAChRs的动态作用情况。对两个体系分别进行了20 ns的分子动力学模拟研究,从动力学轨迹、结合自由能以及相互作用等方面进行分析,吡虫啉对昆虫和人nAChRs作用存在显著差异。在果蝇α7型nAChR体系中五个配体吡虫啉都能在结合位点与受体有稳定的作用,使受体能稳定保持活性状态;而在人α4β2型nAChR体系中其中一个配体IMI与受体的结合较弱,在动力学过程中偏离了结合口袋,而无法使受体维持通道打开的活性状态,揭示了吡虫啉高选择性的作用机制。进一步分析揭示了吡虫啉与果蝇α7型nAChR活性位点的作用机制:主要通过硝基的氢键作用、共轭部分与Tyr芳香侧链的π-π作用、水桥介导的氢键网络以及咪唑环C-H与芳香侧链的C.H…π弱氢键作用进行结合,同时验证了先前提出的新烟碱“氢键诱导增强的π-π堆积作用模型”
This dissertation consisted of three chapters. Chapter one was the review of the structure and function of nAChRs, the type of the subunit and subtype, and the interaction mechanism with neonicotinoids. Several general methods of computer aided drug design were also concluded.
     Chapter two was the study of the interaction mechanism between the target and some typic neonicotinoids through homology modeling, molecular docking and the point mutant methods. The binding results of AChBP and IPPA156011 were evaluated with the molecular docking. The study suggested that water was not very important to the interaction mechanism of IPPA156011A binding with AChBP. The binding ability between imidacloprid and Myzus persicae or Pardosa pseudoanulata was compared by sequence alignment, homology modeling and molecular docking as well. The dimers of N1α1/Rp Mpβ1 and N1α1/Rp Mpβ1-3M which N1α1/Rp Mpβ1 contains R81Q、N137G、F190W three mutants were modeled by homology modeling. Then molecular docking were used to calculate the binding ability of imidacloprid and the models. Nlal/RβMpβ1 showed the direct interaction between R81 and imidacloprid, but in the model of N1α1/Rβmpβ1-3M, Q81 located apart from imidacloprid. The hydrogen bond between R81 and the nitro group of imidacloprid determined the selectivity of imidacloprid between target insects and other species.
     Chapter three was the study of the selectivity of imidacloprid with Drosophila melanogasterα7 and hunmanα4β2 nAChRs by homology modeling and molecular dynamics. After modeled the two nAChR with imidacloprid and waters which were in the binding site by homology modeling,20ns molecular dynamics were taken by AMBER10 to compare the selectivity of imidacloprid between different species. The RMSD during 20ns of imidacloprid in two models showed that imidacloprid in Dα7 model was more stable than in hunmanα4β2 model. Waters in the binding site were very important in the binding between imidaclopird and Dα7 model through the calculation of hydrogen bond interaction. The waters could not only conform hydrogen bond with the residues around the binding site, but also with the nitro of imidacloprid pyridine cycle. The binding energy was also calculated by AUTODOCK4.1. The energy results suggested that imidacloprid could hold the active construction with lower binding energy in Dα7 model. Imidacloprid in hunmanα4β2 model could not keep the active construction suggested that the interaction between imidacloprid and Dα7 model were stronger than imidacloprid and hunmanα4β2 model. The interaction mechanism between imidacloprid and Dα7 model contains hydrogen bond,π-πinteraction, water bridge, C-H…πinteraction and so on.
引文
[1]唐希灿.邹冈主编,乙酰胆碱.《基础神经药理学》(第二版).北京:科学出版社,1995,162-165
    [2]Karlin A., Akabas M.H. Discovery of the nitromethylene heterocycle insecticides[J]. Neuron. 1995,15(6):1231-1244
    [3]Maeono T., Edwards C., Anraku M., Permeability of the endplate membrane activated by acetylchloline to some organic actions [J]. J.Neurobiol.1997,8:173-184
    [4]Dwyer T., Adams D.J., Hille B. Effects of denervation on the permeability of acetylcholine-activated channels to organic cations [J]. J.Gen.Physiol.1980,75:749-492
    [5]Unwin N. Structure of the acetylcholine-gated channel [J]. The Neurosci.2002,7:67-73
    [6]Rodringues-Pinguet N.O. Nicotinic acetylcholine receptors [M]//Lennarza W.J., Lane M.D. Encyclopedia of Biological Biochemisty. Boston:Elsevier.2004,3 (N-R):57-61
    [7]Cheng X., Lvanov L., Wang H., Sine S.M., McCammon J.A. Nanosecond-timescale conformational dynamics of the human α7 nicotinic acetylcholine receptor[J]. Biophysical J. 2007,93:2622-2634
    [8]Hucho F., Tsetlin V.L., Machold J. The emerging three-dimensional structure of a receptor: The nicotinic acetylcholine receptor[J]. Eur.J.Biochem.1996,239(3):539-557
    [9]Tonder, J.E., Olsen, P.H. Curr.Med.Chem.2001,8,651-674
    [10]Celie P.H.N., Van Rossum-Fikkert S.E., Van Dijk W.J., Brejc K., Smit A.B., Sixma T.K. Nicotine and carbamylchloine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures [J]. Neuron.2004,41:907-912
    [11]Hansen, S.B., et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonsits reveal distinctive binding interfaces and conformations[J]. EMBO J.2005,24, 3635-3346
    [12]Celie, P.H., Van Rossum-Fikkert S.E., Van Dijk W.J., Brejc K., Smit A.B., Sixma, T.K. Crystal structure of acetylcholine-binding protein from Bulinus truncates reveals the conserved structureal scaffold and sityes of variation in nicotinic acetylcholine receptors[J]. J.Biol.Chem.2005,280,26457-26466
    [13]唐希灿,邹冈主编,乙酰胆碱《基础神经药理学》(第二版)[M].北京:科学出版社,1995,162-165
    [14]Tomizawa M., Casida J.E. Selective Toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors[J]. Annu.Rev.Entonmol.2003,48:339-364
    [15]Cecilia G., Michele Z., Francesco C. Brain nicotinic acetylcholine receptors:native subtypes and their relevance[J]. Trends in Pharmacological Science.2006,27,9:482-491
    [16]Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY. Amino acid sequence of a-bungarotoxin from the venom of Bunganus multicinctus[J]. Biochem.Biophys. Res.Commun.1971,44:711-716
    [17]Tomizawa M., Casida J.E. Structure and diveristy of insect nicotinic acetylcholine receptors[J]. Pest.Manag.Sci.2001,57(10):914-922
    [18]Sattelle D.B., Jones A.K., Sattelle B.M., Matsuda K., Reenan R., Biggin P.C. Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster[J]. Bioessays.2005,27(4):366-376
    [19]Jones A.K., Raymond-Delpech V., Thany S.H., Gauthier M., Sattelle D.B. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera[J]. Genome.Res.2006, 16(11):1422-1430
    [20]Jones A.K., Grauso M., Sattelle D.B. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics[J].2005,85(2):176-187
    [21]Huang Y., Williamson M.S., Devonshire A.L., Windass J.D., Lansdell S.J., Millar N.S. Molecualr characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunit from the peach-potato aphid Myzus persicae[J]. J. Neurochem.1999,73(1):380-389
    [22]Huang Y, Williamson M.S., Devonshire A.L., Windass J.D., Lansdell S.J., Millar N.S. Cloning, heterologous expression and co-assembly of Mpbetal, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae[J]. Neurosci.Lett.2000,284(1-2):116-120
    [23]Sgard F., Fraser S.P. Katkowska M.J., Djamgoz M.B., Dunbar S.J., Windass J.D. Cloning and functional characterization of two novel nicotinic acetylcholine receptor alpha subunits from the insect pest Myzus persicae[J].J. Neurochem.1998,71(3):903-912
    [24]Hermsen B., Stetzer E., Thees R., Heiermann R., Schrattenholz A., Ebbinghaus U., Kretschmer A., Methfessel C., Reinhardt S., Maelicke A.. Neuronal nicotinic receptors in the locust Locusta migratoria. Cloning and expression[J]. J.Biol.Chem.1998,273(29):18394-18404
    [25]韩招久,韩召军,李凤良等.小菜蛾烟碱型乙酰胆碱受体(α亚基cDNA片段的克隆和序列分析[J].南京农业大学学报.2003,26(1):29-32
    [26]陈建鸿,白东鲁.作用于烟碱型乙酰胆碱受体激动剂的研究进展[J].药学学报.2002,37(4):309-315
    [27]Moaddel R., Jozwiak K., Whittington K. Conformational Mobility of Immobilized α3β2, α3β4, α4β2, α4β4 Nicotinic Acetylcholing Receptors[J]. Anal.Chem.2005,77:895-901
    [28]Pinner A., Nocotin U. Die Constitution Des Alkaloids[J]. Ber.Dtsch.Chem.Ges,1893,26: 292-305
    [29]Kagabu S., Medei S., Chloronicotinyl Insecticides. Part Ⅵ. Stability Comparison of Imidaclorpid and Related Compounds Under Simulated Sunlight, Hydorlysisi Conditions, and to Oxygen [J]. Biosci.Biotech.Biochem.1995,59:980-985
    [30]Leicht W., Subsituted Aza (Cyclo) Alkanes[J]. Pfanzenschutz-Nachrichten Bayer.1996,49: 71-84
    [31]孙越泽.新烟碱类杀虫剂的合成及杀虫活性研究[J].世界农药.1996,6:19-21
    [32]瞿波泽.烟碱类有关化合物的构效关系[J].世界农药.1995,17(4):10-18
    [33]Bisson W.H., Scapozza L., Westera G. Ligand Selectivity for the Acetylcholine Binding Site of the Rat α4β2 and α3β4 Nicotinic Subtypes Investigated by Molecular Docking[J]. J.Med.Chem.2005,48:5123-5130
    [34]Gohlke H., Gundisch D., Schwarz S. Synthesis and Nicotinic Binding Studies on Enantiopure Diazine Analogues of the Novel (2-Chloro-5-pyridyl)-9-azabicycylo [4.2.1]non-2-ene UB-165[J]. J.Med.Chem.2002,45:1064-1072
    [35]Ihara M., Shimomura M., Ishida C., Nishiwaki H., Akamatsu M., Sattelle D.B., Matsuda K. A hypothesis to account for the selective and diverse actions of neonicotinoid insecticides at their molecular targets, nicotinic acetylcholine receptors:catch and release in hydrogen bond networks[J]. Invert Neurosci.2007,7:47-51
    [36]Kagabu S., Nishimura K., Naruse Y., Ohno I. Insecticidal and neuroblocking potencies of variants of the thiazolidine moiety of thiacloprid and quantitative relationship study for the key neonicotinoid pharmacophore[J]. J.Pestic.Sci.2008,33(1):58-66
    [37]Wang Y.L., Cheng J.G., Qian X.H., Li Z. Actions between neonicotinoids and key residues of insect nAChR based on an ab initio quantum chemistry study:Hydrogen bonding and cooperative π-π interaction[J]. Bioorg.Med.Chem.2007,15:2624-2630
    [38]Talley T.T., Harel M., Hibbs R.E., Radic Z., Tomizawa M., Casida J.E., Taylor P. Atomic interactions of neonicotinoid agonists with AChBP:molecular recognition of the distinctive electronegative pharmacophore[J]. PANS.2008,105,21:7606-7611
    [39]Ihara M., Okajima T., Yamashita A., Oda T., Hirata K., Nishiwaki H., Morimoto T., Akamatsu M., Ashikawa Y.J., Mega R., Kuramitsu S., Sattelle D.B., Matsuda K. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin[J]. Invert Neurosic.2008,8:71-81
    [40]徐筱杰,候廷军,乔学斌,等.《计算机辅助药物分子设计》[M].北京:化学工业出版社,2004
    [41]张礼和,蒋华良.《计算机辅助药物设计》[M].北京:科学出版社,2007
    [42]李洪林,沈建华,罗小民,等.虚拟筛选与新药发现[J]生命科学,2005,17(2):125-131
    [43]朱伟,陈可冀,徐筱杰.计算机药物虚拟筛选技术在中药领域中的应用前景[J].中国中西医结合杂志,2007,27(3):263-266
    [44]Jiang F., Kim S.H. Soft docking-matching of molecular surface cubes[J]. J.Mol Biol.1991, 219:79-87
    [45]Aleksander S.C. QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk[J]. Chemsophere.2001, 43(3):363-375
    [46]刘春萍,戴梅,张华北.新烟碱型乙酰胆碱受体吡啶基醚类配体的三维定量构想关系[J]北京示范大学学报(自然科学版),2003,6(39):785-789
    [47]Nakayama A., Structural Factors Contributing to Insecticidal and Nerve-excitatory Activities of Imidacloprid and Related Compounds [J]. Pestic Sci.1998,28(3):336-343
    [48]Sukekawa M., Nakayama A. Quantitative Structure-acitivity Realtionships of Imidacloprid and Its Analogs[J]. Pestic.Sci.1999,24(1):38-43
    [49]Zhang N., Tomizawa M., Casida J.E. Quantitative Structure-activity Relationship Study Using Electrotoplogical State Atom Index on Some Azidopyridinyl Neonicotinoid Insecticides [J]. J.Med.Chem.2002,45:28-32
    [50]Okazawa A., Akumatsu M, Nishiwaki H. Three-dimensional Quantitative Structure-acitivity Relationship Analysis of Acyclic and Cyclic Chloronicotinyl Insecticides [J]. Pest Manag. Sci.2000,38(6):795
    [51]Alder B.J., Wainwright T.E. Phase transition for a hardsphere system[J]. J.Chem.Phy.1957, 27:1208-1209
    [52]Melis C., Lummis S.C.R., Molteni C. Molecular dynamics simulations of GABA binding to the GABAc receptor:The role of Arg104[J]. Biophysical Journal.2008,95:4115-4123
    [53]Huang X.Q., Zheng F., Chen X., Crooks P.A., Dwoskin L.P., Zhan C.G. Modeling subtype-selective agonists binding with α4β2 and α7 nicotinic acetylcholine receptors: effects of local binding and long-range electrostatic interaciotns[J]. J. Med.Chem.2006,49, 7661-7674
    [54]Huang X.Q., Gu Howard H., Zhan C.G. Mechanism for cocaine blocking the transport of dopamine:insight from molecular modeling and dynamics simulations[J]. J.Phys.Chem. 2009,113:15057-15066
    [55]Zhao P.L., Wang L., Zhu X.L., Huang X.Q., Zhan C.G. Subnanomolar inhibitor of Cytochrome bc1 complex designed by optimizing interaction with comformationally flexible residues[J]. J.Am.Chem.Soc.2010,132(1):185-194
    [56]Huang X.Q., Zheng F., Chen X., Crooks P.A., Dwoskin L.P., Zhan C.G. Modeling binding modes of a7 nicotinic acetylcholine receptor with ligands:the roles of Gln117 and other residues of the receptor in agonist binding[J]. J.Med.Chem.2008,51(20):6293-6302
    [57]邵旭升,田忠贞,李忠等.新烟碱类杀虫剂及稠环固定的顺式衍生物研究进展[J].农药学学报.2008,10(2):117-126
    [58]Ihara, M., Okajima, T., Yamashita, A., Oda, T., Hirata, K., Nishiwaki, H., Morimoto, T., Akamatsu, M., Ashikawa, Y., Kuroda, S., Mega, R., Kuramitsu, S., Sattelle, D.B., Matsuda, K. Crystal structures of lymnaea stagnalis AChBP in complex with neonicotinoid
    insecticides imidaclooprid and clothianidin[J]. Invert.Neurosci.2008,8:71-81
    [59]Tomizawa M., Zhang N.J., Durkin K.A., Olmstead M.M., Casida J.E. The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinoid receptor:an anomaly for the nicotinoid cation-π interaction model[J]. Biochemistry.2003,42:7819-7827
    [60]Liu Z.W., Williamson S.J., Lansdell S.J., Han Z.J., Denholm I., Millar N.S. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agoist potency to a range of neonicotinoids[J]. J.Neurochem.2006,99:1273-1281
    [61]Zhang Y.X., Liu S.H., Gu J.H., Song F., Yao X.M., Liu Z.W. Imidacloprid acts as an antagonist on insect nicotinic acetylcholine receptor containing the Y151M mutation[J]. Neuroscience Letters.2008,446:97-100
    [62]Shimomura M., Yokota M, Matsuda K., Sattelle D.B., Komai K. Roles of loop C and the loop B-C interval of the nicotinic receptor a subunit in its selective interactions with imidacloprid in insects[J]. Neuroscience Letters.2004,36:195-198
    [63]Shimomura M., Yokota M., Ihara M., Akamatsu M., Sattelle D.B., Matsuda K. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine acetylcholine receptor agonist binding site[J]. Mol. Pharmacol.2006,70: 1255-1263
    [64]Song F., You Z.Q., Yao X.M., Cheng J.G., Liu Z.W., Lin K.J. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata[J]. Insect Biochemistry and Molecular Biology.2009,39:833-841
    [65]Dellisanti C.D., Yao Y., Stroud J.C., Wang Z.Z., Chen L. Crystal structure of the extracellular domain of nAChR alphal bound to alpha-bungarotoxin at 1.94 A resolution[J]. Nat. Neurosci.2007,10:953-962
    [66]Talley T.T., Harel M., Hibbs R.E., Radic Z., Tomizawa M., Casida J.E., Taylor P. Atomic interactions of neonicotinoid agonists with AChBP:molecular recognition of the distinctive electronegative pharmacophore[J]. Proc.Natl.Acad. Sci.Usa.2008,105:7606-7611
    [67]Celie P.H.N., Van Rossum-Fikkert S.E., Van Dijk W.J., Brejc K., Smit A.B., Sixma T.K. Nicotine and carbamylchloine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures [J]. Neuron.2004,41:907
    [68]Sunderland T., Tariot P.N., Newhouse P. A. Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly nuropsychiatric populations[J]. Brain Res.1988, 472:371-389
    [69]Wilson A.L., Langley L.K., Monely J., Bauer T., Rottunda S., McFalls E. Nicotine patches in Alzheimer's disease:pilot study on learning, memory, and safety[J]. Phamacol.Biochem.Behav.1995,51:509-514
    [70]White H.K., Levin E.D. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer's disease[J]. Psychopharmacology (Berl).1999,143:158-165
    [71]Newhouse P.A., Sunderland T., Tariot P.N., Blumhardt C.L., Weingartner H., Wellow A. Intravenous nicotine in Alzheimer's disease:a pilot study[J]. Psychopharmacology (Berl). 1988,95:171-175
    [72]Jones G.M., Sahakian B.J., Levy R., Warburton D.M., Gray J.A. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer's disease[J]. Psychopharmacology (Berl).1992,108:485-494
    [73]Sahakian B., Jones G., Levy R., Gray J., Warburton D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type[J]. Br.J.Psychiatry.1989,154:797-800
    [74]Newhouse P.A., Potter A., Kelton M., Corwin J. Nicotinic treatment of Alzheimer's disease[J]. Biol.Psychiatry.2001,49:268-78
    [75]Barr R.S., Culhane M.A., Jubelt L.E., Mufti R.S., Dyer M.A., Weiss A.P. The effects of transdemal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls[J]. Neuropsychopharmacology.2008,33:480-490
    [76]Jon H., Byme J., Roberts. From Molecules To Networks:An Introduction To Cellular and Molecular Neuroscience [M]. Beijing:Science Press.2006,299-334
    [77]Tomizawa M., Maltby D., Talley T.T., Durkin K.A., Medzihradszky K.F., Burlingame A.L Taylor P., Casida J.E. Atypical nicotinic agonist bound conformations conferring subtype selectivity [J]. PNAS.2008,105(5):1728-1732
    [78]Ihara M., Matsuda K., Otake M. Diverse actions of neonicotinoids on chicken α7, α4β2 and Drosophila-chicken SADB2 and ALSB2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis Oocytes[J]. Neuropharmacoloty.2003,45:133-144
    [79]贾俊超.苑建勋.范志金.新烟碱类杀虫剂选择性作用的分子机理[J].农药.2007,46(4):227-234
    [80]Romaneli M.N., Gratteri P., Guandalini L., Martini E., Bonaccini C., Gualtieri F. Central nicotinic receptors:structure, funciton, ligands, and therapeutic potenial[J]. Chem.Med.Chem.2007,2:746-767
    [81]Ohno I., Tomizawa M., Durkin K.A., Casida J.E., Kagabu S. Neonicotinoid substituents forming a water bridge at the nicotinic acetylcholine receptor[J]. J.Agric.Food Chem.2009, 57,2436-2440
    [82]Wang J., Wang W., Kollan P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations[J]. J.Mol.Graph.Model.2006,25:247-260
    [83]Wang J., Wolf R.M., Caldwell J.W., Kollan P.A., Case D.A. Development and testing of a general amber force field[J]. J. Comput.Chem.2004,25(9):1157-1174
    [84]Jorgensen W.L., Chandrasekhar J., Madures J., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water[J]. J.Chem. Phys.1983.79:926-935
    [85]Darden T., York D., Pedersen L. Particle Mesh Ewald:An N log(N) method for Ewald suns in large systems[J]. J.Chem.Phys.1993.98:10089-10092

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700