用户名: 密码: 验证码:
大腹园蛛粗毒的理化性质及毒素组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用电刺激方法采集大腹园蛛粗毒并进行了系统的分析。凝胶电泳及质谱数据显示,该蛛毒包含丰富的蛋白质或多肽成分,其分子量分布在4-45kDa的范围里。蜚蠊腹腔注射该粗毒后显示出明显的中毒症状,且半致死剂量为30.73μg/g。电生理实验结果显示,该粗毒不能阻断小鼠膈神经膈肌的神经肌肉传导。粗毒的酶活分析显示,该粗毒具有几种水解酶的活性,包括透明质酸酶和蛋白质酶活性。所有的实验结果显示,大腹园蛛粗毒含有丰富的生物学活性成分,对其主要的猎物-昆虫有着较强的毒性,而对哺乳动物的毒性极低。电刺激方法能够有效的避免唾液及其他组织液的污染,且能够重复利用蜘蛛资源。
     为了克隆大腹园蛛毒腺中编码毒素多肽和蛋白质的基因,本文采用了表达序列标签(EST)技术,首次构建了该蛛毒腺的定向全长cDNA文库。随机挑取原始文库的单克隆进行测序,共得到了886个EST序列。通过聚类分析分成246个族,其中49个族属于重叠群(每族都含2个及2个以上的EST),其他197个族是单态(每族仅含1个EST)。随后利用Emboss软件将所有EST翻译成氨基酸序列,根据动物毒素蛋白质的一般特点,设定毒素的筛选条件为:(1)具有4个或4个以上的半胱氨酸;(2)具有信号肽。结果发现,其中68.7%的EST属于的毒素样转录子;20.2%的EST属于细胞转录子;11.1%的EST属于新的转录子。将所有的EST序列去冗余后得到的毒素转录子编码200个开放读码框(ORF),即200个前体肽。根据前体肽的差异可以分成15个超家族,包含AVTX-Ⅰ至AVTX-ⅩⅩⅩ共30个家族。200个前体肽能被推导出150个非冗余成熟肽,且在现有的数据库中未发现高度相似性序列。不同的超家族含有半胱氨酸的数量差异明显,最小的仅为4个,最多的高达20个。此外,编码几丁质酶的基因也被检测到。所有结果显示,大腹园蛛蛋白质类毒素与所有已知的动物毒素存在较大的差别,是一些全新的毒素蛋白质。这些毒素序列的发现丰富了动物毒素的结构模式数据库。
     为了更加全面了解大腹园蛛的蛋白质类毒素的组成,本文通过活体电刺激的方法采集了大腹园蛛的粗毒,并采用组合的蛋白质组学策略来分析这种粗毒,包括两种不同的方法:(i)一维聚丙烯酰胺凝胶电泳后用nanoLC-MS/MS分析;(ii)双向电泳后采用nanoLC-MS/MS分析。凝胶图谱显示,该蛛毒所含蛋白质类成分的分子量主要分布在10到45kDa的范围中,其中三个高丰度的区域分别为10到14kDa、18kDa到26kDa和45kDa,且主要为碱性蛋白质。胶内酶解的多肽经串联质谱分析,得到的质谱数据通过跨物种搜寻的方法共鉴定到71种毒素蛋白质。除了典型的蜘蛛血蓝蛋白质外,几种水解酶被发现存在于这种粗毒中。而且这些水解酶可能与蛛毒的毒性有关。此外,大约有一半以上的高质量的MS/MS数据得不到明显的鉴定结果,这极可能是没有特定的蜘蛛毒素蛋白质数据库的缘故。
     为了更加全面分析蛋白质组学与转录组学数据,本文首次采用了de novo测序与cDNA文库相结合的方法来鉴定蜘蛛毒素的蛋白质类成分。利用Bruker公司的DataAnalysis4.0软件对来自2DE的胶内酶解样品的未匹配到任何已知多肽的高质量的MS/MS数据进行了denovo测序,二级质谱氨基酸残基的误差设定为±0.015。得到了约2000个高质量的de novo测序结果,去冗余后得到约200个。然后人工将这些序列对转录组得到的毒素样序列进行搜索。肽段完全匹配的限制条件设定为:(1)氨基酸序列完全相同且质量误差为±0.5;(2)对应的cDNA文库序列有合理的酶切位点。结果表明,来自cDNA文库测序的30个毒素样家族中的20个家族被明确鉴定,鉴定率达到66.67%。而且首次在蜘蛛毒素中大规模的检测到毒素突变体及谷氨酸残基的甲酯化修饰。该方法给无完整基因组数据库的物种的蛋白质组学鉴定提供了新的途径。
The Araneus ventricousus venom was collected by electrical stimulation and systematically analyzed. Gel electrophoresis and mass spectrometry showed that the venom contained aboundant peptides and proteins with molecular weights ranging from4kDa to45kDa. Injection of the venom in cockroaches Periplaneta americana gave rise to obvious poisoned symptoms, with LD50value of30.73μg/g. Electrophysiological experiments showed that the venom could not block the neuromuscular transmission in isolated mouse phrenic nerve-hemidiaphragm and rat vas deferens preparations. Enzymatic analysis indicated that the venom possessed activities of several kinds of hydrolases including hyaluronidase and proteases. These results demonstrate that A. ventricosus venom is rich in bioactive components targeting insects, the spider natural preys, and the content of neurotoxins to mammals, if present, is low. The electrical stimulation method to collect the venom has the advantages of avioding contamination and repeated use of the valuable A. ventricosus venom resoures.
     In order to clone the genes encoding the proteins and peptides from the venom glands, a directional cDNA library of A. ventricosus venom glands was firstly constructed using the expressed sequence tag (EST) strategy. Clones from original cDNA library were randomly selected to sequence. Eight handreds and eighty-six ESTs from cDNA sequencing were grouped into49clusters and197singletons. All ESTs were translated into protein sequences using software Emboss. According to the usual properties of animal toxins, the parameters of toxin filter were set for:(1)4or more cysteines;(2) contain signal peptide. The result indicated that68.7%of total ESTs belong to toxin-like genes,20.2%are cellular transcripts and11.1%have no significant similarity to any known genes. Two handreds unique propeptides were produced by translating all ESTs and nonredundancing. These propeptides were grouped into15superf ami lies which contain30families from AVTX-I to AVTX-XXX. All precursors were processed to achieve150mature peptides with abundant cysteines. However, the number of cysteine is diversified from4to20among these families. And these propeptides were not identified by any database. Moreover, the gene ecoding chitinase was found in the cDNA library. All results demonstrated that these protein toxins from A. ventricosuswere some novel toxins which may be give novel model for understanding action mechanism of spider toxin.
     In order to analyze systematically the components of A. ventricosus venom, in this paper, combinative proteomic strategies were employed to analyze the venom collected from living spider A. ventricosus by electrostimulation. The combinative proteomic strategies including the following two different approaches:(i) one-dimensional SDS/PAGE plus nanoLC-MS/MS,(ii)2DE plus nanoLC-MS/MS. The images show that most proteins visualized on the gel have molecular masses in the range of10-45kDa. And three major positions correspondings to molecular weight of about10to20kDa,26kDa and43kDa, there were high abundance alkaline proteins. Peptides from in-gel digestion were analyzed by nanoLC-MS/MS. A total of71venomous proteins were identified using cross-species searching. Besides typtical spdier hemocyanins, several hydrolases were found in the venom, which were speculated to be related to insecticidal activity. In addition, beyond half of high-quality MS/MS spectra gave no signification search results, most likely due to the lack of specific database for spider venom.
     In this paper, we employ de novo sequencing to combine the proteomic and transcriptomic data. The gel spots from2-DE were carefully excised and digested with trypsin. Then the tryptic peptides were analyzed by nanoLC-MS/MS. The spectral data were searched against an online Mascot database. Then these data with no signification search results were sequenced using the software DataAnlysis4.0from Bruker company. The mass accuracy better than±0.015Da is required for decreasing the false positive rate. About2000sequences were produced by de novo sequencing. And about200unique sequences were collected by removing the duplication. These sequences were assigned against protein sequences from cDNA library. Efficient results must fill these parameters:(1) Mass accuracy of peptide is better than±0.5Da between theoretical and measurement value;(2) the peptide can be achieved by tryptic digestion. The results indicated that twenty of thirty families from cDNA library were matched by sequences from de novo sequncing. The identification rate is66.67%. Interestingly, abundant mutants and methyl esterification of glutamic acid from the venom were identificated by the method. The method gives a new approach for indentif ication of proteins from an organism whose genome is not known.
引文
[1]Rash, L. D., Hodgson, W. C., Pharmacology and biochemistry of spider venoms. Toxicon,2002,40:225-254.
    [2]Platnick, N.I. Platnick NI. The World Spider Catalog, Version 13.0. American Museum of Natural History, http://research.amnh.org/iz/spiders/catalog/index.html.2012.
    [3]Nieuwenhuys, E. (2008). The spider. http://www.xs4all. nl/-ednieuw/Spiders/InfoNed/The_spider.html [Accessedl June 2009].
    [4]Hillyard, P., The book of the spider:from Arachnophobia to the love of spiders. Random House,1994, New York.
    [5]Gleen F. King, The wonderful world of spiders:preface to the special Toxicon issue on spider venoms. Toxicon,2004,43:471-475.
    [6]梁宋平,潘欣.蜘蛛肽类神经毒素研究进展.生物化学与生物物理进展,1994,21(5):390-395。
    [7]Schanbacher FL, Lee CK, Hall JE, Wilson IB, Howell DE, Odell GV. Composition and properties of tarantula Dugesiella hentzi (Girard) venom. Toxicon 1973; 11:21-4.
    [8]Ori M, Ikeda H. Spider venoms and spider toxins. J Toxicol 1998; 17: 405-26.
    [9]Escoubas, P., Diochot, S., Corzo, G., Structure and pharmacology of spider venom neurotoxins. Biochimie,2000,82:893-907.
    [10]Vassilevski, A. A., Kozlov, S. A., and Grishin, E. V. Molecular Diversity of Spider Venom. Biochemistry,2009,74(13):1505-1534.
    [11]Wang, X., Smith, R., Fletcher, J. I., Wilson, H., Wood, C. J., Howden, M.E., King, G. F., Structure-function studies of omega-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. Eur J bichem.1999,264(2):488-489.
    [12]Skinner, W. S., Adama, M. E., Quistad, C. B., et al. Purification andcharacterization of two classes of neurotoxins from the funnel web spider, Agelenopsis aperta. J Peptide Res.1989,53:486-491.
    [13]de Fegueiredo, S. G., de Lima, M. E., Nascimento, Cordeiro. M., Diniz, C. R., Patten, D., Halliwell, R. F., Gilroy, J., Richardson, M., Purification and amino acid sequence of a highly insecticidal toxin from the venom of the brazilian spider Phoneutria nigriventer which inhibits NMDA-evoked currents in rat hippocampal neurones. Toxicon, 2001,39(2-3):309-317.
    [14]Kovalevskaia, G. I., Pashkov, V. N., Bulgakov,O. V., Fedorova, I. M., Magazanik, L. G., Grishin, E. V., Identification and isolation of the protein insect toxin (alpha-lat roinsec totoxin) from venom of the spider Latrodectus mactans tredecimguttatus. Bioorg Khim, 1990,16(8):1013-1018.
    [15]Mylecharane, E. J., Spence, I., Sheumack, D. D., Claasens, R., Howden, M.E., Actions of robustoxin, a neurotoxic polypeptide from the venom of the male funnel-web spider (Atrax robustus), in anaesthetized monkeys. Toxicon,1989,27(4):481-492.
    [16]Chieng, B., Howden, M. E., Christie, M. J.,. Australian funnel-web spider toxin, versutoxin, enhances spontaneous synaptic activity in single brain neurons in vitro. Brain Res,1993 Oct 29;626(1-2):136-42.
    [17]梁宋平,覃于滨,张东裔等,虎纹捕鸟蛛毒的活性鉴定.动物学研究.1993,14(1):60-65。
    [18]Shu, Q., Liang, S. P., Purification and characterization of huwentoxin-II, a neurotoxin peptide from the venom of the Chinese bird spider Selenocosmia huwena. J Peptide Res.,1999,53:486-491.
    [19]Lizhen, Y., Adams, M.E., Lycotoxins, Antimicrobial peptide from venom of the wolf spider Lycosa carolinensis. J.Biol.Chem,1998, 273:2059-2077.
    [20]Futrell, J. M., Loxoscelism, Am. J. Med. Sci.,1992,304:261-267.
    [21]Herlitze, S., Raditsch, M., Ruppersberg, J. P., Jahn, W., Monyer, H., Schoepfer, R., Witzeman, V., Argiotoxin detects molecular differences in AMPA receptor channels. Neuron,1993 Jun, 10(6):1131-40.
    [22]Salamoni, S. D., Costa da Costa, J., et al., Antiepileptic effect of acylpolyaminetoxin JSTX-3 on rat hippocampal CA1 neurons in vitro. Brain Res,2005 Jun 28,1048(1-2):170-176.
    [23]Ino, H., Nakade, S., Niinobe, M., Characterization of binding sites for spider toxin, [3H]NSTX-3, in the rat brain. Neurosci Res,1990 Apr,8(1):29-39.
    [24]Kozlov, S., Malyavka, A., McCutchen, B., Lu, A., Schepers, E. Herrmann, R., and Grishin, E. A novel strategy for the identification of toxinlike structures in spider venom. Proteins,2005,59:131-40.
    [25]Fernandes-Pedrosa Mde, F., Junqueira-de-Azevedo Ide, L., Goncalves-de-Andrade, R. M., Kobashi, L. S., Almeida, D. D., Ho, P. L., and Tambourgi, D. V. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics,2008,9:279.
    [26]Corzo, G., Diego-Garcia, E., Clement, H., Peigneur, S., Odell, G., Tytgat, J., Possani, L. D., and Alagon, A. An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides,2008.
    [27]da Silveira, R. B., Wille, A. C., Chaim,O. M., Appel, M. H., Silva, D. T., Franco, C. R., Toma, L., Mangili,O. C., Gremski, W., Dietrich, C. P., Nader, H. B., and Veiga, S. S. Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. Biochem J,2007,406:355-63.
    [28]da Silveira, R. B., Pigozzo, R. B., Chain),O. M., Appel, M. H. Dreyfuss, J. L., Toma, L., Mangili,0. C., Gremski, W., Dietrich, C. P., Nader, H. B., and Veiga, S. S. Molecular cloning and functional characterization of two isoforms of dermonecrotic toxin from Loxosceles intermedia (brown spider) venom gland. Biochimie,2006, 88:1241-53.
    [29]Fernandes Pedrosa Mde F, Junqueira de Azevedo Ide L, Goncalves-de-Andrade RM, van den Berg CW, Ramos CR, Ho PL, Tambourgi DV. Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom. Biochem Biophys Res Commun.2002 Nov 15;298(5):638-45.
    [30]Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon. 2008,51 (8):1479-89.
    [31]Chen J, Zhao L, Jiang L, Meng E, Zhang Y, Xiong X, Liang S. Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. Toxicon.2008 Dec 1;52(7):794-806.
    [32]Zhang Y, Chen J, Tang X, Wang F, Jiang L, Xiong X, Wang M, Rong M, Liu Z, Liang S. Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology (Jena).2010 113(1):10-18.
    [33]Tang X, Zhang Y, Hu W, Xu D, Tao H, Yang X, Li Y, Jiang L, Liang S. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. J Proteome Res. 2010.9(5):2550-64.).
    [34]Satake, H., Villegas, E., Oshiro, N., Terada, K., Shinada, T., and Corzo, G. Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Toxicon,2004,44:149-56.
    [35]Prohman, MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleoctide primer. Proc Natl Acad Sci USA,1988, 85(23):8998-9002.
    [36]刁建波.蜘蛛毒素的基因克隆、表达及结构与功能研究[博士学位论文].北京大学,2003.
    [37]Pescatori, M., Bradbury, A., Bouet, F., Gargano, N., Mastrogiacomo, A., and Grasso, A. The cloning of a cDNA encoding a protein (latrodectin) which co-purifies with the alpha-latrotoxin from the black widow spider Latrodectus tredecimguttatus (Theridiidae). Eur J Biochem,1995,230:322-8.
    [38]Diao, J., Lin, Y., Tang, J., and Liang, S. cDNA sequence analysis of seven peptide toxins from the spider Selenocosmia huwena. Toxicon, 2003,42:715-23.
    [39]Liu, Z., Dai, J., Dai, L., Deng, M., Hu, Z., Hu, W., and Liang, S. Function and solution structure of Huwentoxin-X, a specific blocker of N-type calcium channels, from the Chinese bird spider Ornithoctonus huwena. J Biol Chem,2006,281:8628-35.
    [40]Liao, Z., Yuan, C., Deng, M., Li, J., Chen, J., Yang, Y., Hu, W., and Liang, S. Solution structure and functional characterization of jingzhaotoxin-Ⅺ:a novel gating modifier of both potassium and sodium channels. Biochemistry,2006,45:15591-600.
    [41]Pan, Z., Barry, R., Lipkin, A., and Soloviev, M. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis. BMC Mol Biol,2007,8:32.
    [42]Escoubas, P., Sollod, B., and King, G. F. Venom landscapes:mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon,2006,47:650-63.
    [43]Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz,O., Sanchez, J. C., Yan, J. X., Gooley, A. A., Hughes, G., Humphery-Smith, I., Williams, K. L., Hochstrasser, D. F. From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y).1996,14(1):61-65.
    [44]Payne, W. E., Carrels J I. Yeast protein database (YPD):a database for the complete proteome of Saccharomyces cerevisiae. NucleicAcidsRes, 1997,25(1):5717
    [45]Daniel, Figeys., devanand, pinto. Proteomics on a chip:promising developments Electrophoresis.2001,22:08-216
    [46]Phillip, Cash. Charaterisation of bacterial proteomes by two-dimensional electrophoresis. Analytical Chimica Acta 1998, 372:121-145
    [47]Claire,O. D., Rolf Apweiler and Amos Bairoch, The Human proteomics initiative(HPI). Trends in Biotechnology.2001,19(5):178-181
    [48]李伯良,李林,吴家睿.功能蛋白质组学.生物工程进展,1999,19(4):15-16。
    [49]Liao X, Ying T, Wang H, et al.A two dimensional proteome map of Shigella flexneri[J].Electrophoresis,2003,24:2864 2882.
    [50]Lee JW, Lee SY, Song H, et al. The Proteome of Mannheimia succiniciproducens, a Capnophilic Rumen Bacterium. Proteomics, 2006,6(12):3550-3566.
    [51]Bell C, Smith GT, Sweredoski MJ, Hess S. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques:a comprehensive resource for tuberculosis research. J Proteome Res.2012 Jan 1;11(1):119-30. Epub 2011 Nov 30.
    [52]Govorun VM, Moshkovskii SA, Tikhonova OV, Goufman EI, Serebryakova MV, Momynaliev KT, Lokhov PG, Khryapova EV, Kudryavtseva LV, Smirnova OV, Toropyguine IY, Maksimov BI, Archakov AI. Comparative analysis of proteome maps of Helicobacter pylori clinical isolates. Biochemistry (Mosc).2003 Jan;68(1):42-9.
    [53]Islam MK, Miyoshi T, Yokomizo Y, Tsuji N. The proteome expression patterns in adult Ascaris suum under exposure to aerobic/anaerobic environments analyzed by two-dimensional electrophoresis. Parasitol Res.2004 Jun;93(2):96-101. Epub 2004 Apr 28.
    [54]Saisawang C, Wongsantichon J, Ketterman AJ. A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem J.2012 Feb 15;442(1):181-90.
    [55]Peng L, Kapp EA, Fenyo D, Kwon MS, Jiang P, Wu S, Jiang Y, Aguilar MI, Ahmed N, Baker MS, Cai Z, Chen YJ, Van Chi P, Chung MC, He F, Len AC, Liao PC, Nakamura K, Ngai SM, Paik YK, Pan TL, Poon TC, Salekdeh GH, Simpson RJ, Sirdeshmukh R, Srisomsap C, Svasti J, Tyan YC, Dreyer FS, McLauchlan D, Rawson P, Jordan TW. The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard. Proteomics.2010 Nov;10(22):4142-8.
    [56]Vegh MJ, de Waard MC, van der Plui jm I, Ridwan Y, Sassen MJ, van Nierop P, van der Schors RC, Li KW, Hoeijmakers JH, Smit AB, van Kesteren RE. Synaptic proteome changes in a DNA repair deficient erccl mouse model of accelerated aging. J Proteome Res.2012 Mar 2; 11 (3):1855-67. Epub 2012 Feb 13.
    [57]Celis, J. E., Gromover, P., Ostergaard. M., et al. Human 2DE PAGE database for proteome analysis in health and disease:http:// biobase.dk/cgi-bin/celis, FEBS Lett,1999,398 (23):129.
    [58]Jackson, H., Parks, T. N.,1989. Spider toxins:recent applications in neurobiology. Annu Rev Neurosci.12,405-414.
    [59]Escoubas, P., Di'ochot, S.,2000. Structure and pharmacology of spider venom neurotoxins. Biochimie.82(9-10),893-907.
    [60]Monique J. Windley, Pierre Escoubasl, Stella M. Valenzuela, and Graham M. Nicholson. A novel family of insect-selective peptide neurotoxins targeting insect BKCa channels isolated from the venom of the theraphosid spider, Eucratoscelus constrictus. Molecular Pharmacology Fast Forward.2011 Mar 29. [Epub ahead of print].
    [61]Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon.2002 Mar;40(3):225-54.
    [62]Shuting, L. I., Jingqiang, WANG., Xumin, ZHANG., Yan, REN., et al. Proteomic characteriztion of two snake venoms:Naja naja atra and Agkistrodon halys. Biochem. J.,2004,384:119-127 (Printed in Great Britain).
    [63]Serrano, S. M., Shannon, J. D., Wang, D., Camargo, A. C., Fox, J. W., A multifaceted analysis of viperid snake venoms by two -dimensional gel electrophoresis:An approach to understanding venom proteomics. Proteomics,2005,5(2):501-510.
    [64]Juarez, P., Sanz, L., Calvete, J. J., Snake venomics:characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics.2004,4(2):327-338.
    [65]Bazaa, A., Marrakchi, N., El Ayeb, M., Sanz, L., Calvete, J. J., Snake venomics:comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics.,2005,5(16):4223-435.
    [66]Menezes, M. C., Furtado, M. F., Travaglia-Cardoso, S. R., Camargo, A. C., Serrano, S. M., Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon.,2006, 47(3):304-312.
    [67]Nawarak, J., Sinchaikul S, Wu CY, Liau MY, Phutrakul S, Chen ST., Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis.2003, 24(16):2838-2854.
    [68]Igci N, Demiralp DO. A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky,1832) from Southeastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus,1758) from Cyprus by 2D-PAGE. Arch Toxicol.2012 Mar;86(3):441-51. Epub 2011 Oct 12.
    [69]Batista, C. V., del Pozo, L., Zamudio, F. Z., Contreras, S., Becerril, B., Wanke, E., Possani, L. D., Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J. Chromatogr. B. Analyt. Technol. Biomed Life Sci.2004,803(1):55-66.
    [70]Pimenta, A.M., Stocklin, R., Favreau, P., Bougis, P. E. Martin-Eauclaire, M. F., Moving pieces in a proteomic puzzle:mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom.,2001, 15(17):1562-1572.
    [71]Nascimento, D. G., Rates, B., Santos, D. M., Verano-Braga, T., Barbosa-Silva, A., Dutra, A. A., Biondi, I., Martin-Eauclaire, M. F., Lima, M. E., Pimenta, A.M., Moving pieces in a taxonomic puzzle:Venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones). Toxicon.2006 May;47(6):628-39.
    [72]Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics.2012 Feb 16;75(5):1563-76.
    [73]Machado, L. F., Laugesen, S., Botelho, E. D., Ricart, C. A., Fontes, W., Barbaro, K. C., Roepstorff, P., Sousa, M. V., Proteome analysis of brown spider venom:identification of loxnecrogin isoforms []in Loxosceles gaucho venom. Proteomics,2005,5(8):2167-2176.
    [74]Songping, Liang., Xiaolan, Li., Menglin, Cao., Jingyun, Xie., Ping, Chen., Renhuai, Huang., Identification of venom proteins of spider S. huwena on two-dimensional electrophresis gel by N-terminal microsequencing and mass spectrometric peptide mapping. J. Protein. Chem.,2000,19:225-229.
    [75]Liao Z, Cao J, Li S, Yan X, Hu W, He Q, Chen J, Tang J, Xie J, Liang S. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics.2007 Jun; 7 (11):1892-907.
    [76]Yuan, C., Jin, Q., Tang, X., Hu, W., Cao, R., Yang, S., Xiong, J., Xie, C., Xie, J., and Liang, S. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res,2007,6:2792-801.
    [77]Duan Z, Yan X, Cao R, Liu Z, Wang X, Liang S. Proteomic Analysis of Latrodectus tredecimguttatus Venom for Uncovering Potential Latrodectism-Related Proteins. J Biochem Mol Toxicol.2008. 22(5):328-336.
    [78]Machado LF, Laugesen S, Botelho ED, Ricart CA, Fontes W, Barbaro KC, Roepstorff P, Sousa MV. Proteome analysis of brown spider venom: identification of loxnecrogin isoforms in Loxosceles gaucho venom. Proteomics.2005 May;5(8):2167-76.
    [79]Escoubas P, Sollod B, King GF. Venom landscapes:mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon.2006,47(6):650-63.
    [80]Gagne, J. P., Gagne, P., Hunter, J. M., Bonicalzi, M. E., Lemay, J. F. Kelly, I., Le Page, C., Provencher, D., Mes-Masson, A.M., Droit, A., Bourgais, D., Poirier, G. G., Proteome profiling of human epithelial ovarian cancer cell line TOV-112D. Mol Cell Biochem.,2005,275 (1-2): 25-55.
    [81]Warmoes M, Jaspers JE, Pham TV, Piersma SR, Oudgenoeg G, Massink MP, Waisfisz Q, Rottenberg S, Boven E, Jonkers J, Jimenez CR. Proteomics of mouse BRCAl-deficient mammary tumors identifies DNA repair proteins with diagnostic and prognostic value in human breast cancer. Mol Cell Proteomics.2012 Feb 24. [Epub ahead of print]
    [82]Wright GL Jr. High resolution two-dimensional polyacrylamide electrophoresis of human serum proteins. Am J Clin Pathol.1972 Feb; 57 (2):173-85.
    [83]Gygi SP,et al. Mass spectrometry and proteomics.Curr Opin chem Biol,2000,4(5):489-494.
    [84]Perrot, M., Saglicocco, F., Mini, T., et al., Two-dimensional gel protein database of Saccharomyces cerevisiae. Electrophoresis,1999, 20(11):2280.
    [85]Lopez, M. F., Proteome analysis:Gene products are where the biological action is. Journal of Chromatography B,1999,722: 191-202.
    [86]Wasinger VC, et al. Proteomic 'contigs' of Ochrobactrum anthropi, application of extensive pH gradients. Electrophoresis,1997,18(8): 1373-1383.
    [87]Bjellqvist, B., et al., Micropreparative two-dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins. Electrophoresis,1993,14(12): 1375-1378.
    [88]邹清华,张建中.蛋白质组学的相关技术及应用.生物技术讯,2003,14(3):210-213。
    [89]俞利荣,曾嵘,夏其昌.蛋白质组研究技术及其进展.生命的化学,1998,18(6):4-9。
    [90]曹锐,张丽军,聂松,王贤纯,梁宋平,多维色谱-串联质谱联用技术分离和鉴定小鼠肝脏质膜蛋白质,中国生物化学与分子生物学报,2005,21(1):134-142。
    [91]Duan Z, Yan X, Cao R, Liu Z, Wang X, Liang S.,2008. Proteomic Analysis of Latrodectus tredecimguttatus Venom for Uncovering Potential Latrodectism-Related Proteins. J Biochem Mol Toxicol. 22(5):328-336.
    [92]欧阳曙光,贺福初.生物信息学:生物实验数据和计算机技术结合的新领域.科学通报,1999,44(14):1457-1468.
    [93]Edman P. Sequence determination. Mol Biol Biochem Biophys. 1970:8:211-55.
    [94]Mikhail M. Savitski, Michael L. Nielsen, Frank Kjeldsen, and Roman A. Zubarev. Proteomics-Grade de Novo Sequencing Approach. Journal of Proteome Research 2005,4,2348-2354
    [95]Weibin Chen, Peter J. Lee, Henry Shion, Nicholas Ellor, and John C. Gebler. Improving de Novo Sequencing of Peptides Using a Charged Tag and C-Terminal Digestion. Anal. Chem.2007,79,1583-1590
    [96]Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B. PEAKS DB:De Novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2011 Dec 20. [Epub ahead of print]
    [97]Castellana NE, Pham V, Arnott D, Lill JR, Bafna V. Mol Cell Proteomics. Template proteogenomics:sequencing whole proteins using an imperfect database.2010 Jun;9(6):1260-70.
    [98]Ng J, Bandeira N, Liu WT, Ghassemian M, Simmons TL, Gerwick WH, Linington R, Dorrestein PC, Pevzner PA. Dereplication and de novo sequencing of nonribosomal peptides. Nat Methods.2009 Aug;6(8):596-9. Epub 2009 Jul 13.
    [99]Granvogl B, Reisinger V, Eichacker LA. Mapping the proteome of thylakoid membranes by de novo sequencing of intermembrane peptide domains. Proteomics.2006 Jun;6(12):3681-95.
    [100]Nawarak, J., Phutrakul, S., Chen, S. T., Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families. J Proteome Res.2004,3(3):383-392.
    [101]Richardson, M., Pimenta, A. M. C., Bemquerer, M. P., et. al. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comp Biochem Physiol C Toxicol Pharmacol.,2006,142(3-4):173-87.
    [102]Marquez Y, Brown JW, Simpson CG, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res.2012 Mar 5. [Epub ahead of print]
    [103]Chen WZ, Pang B, Yang B, Zhou JG, Sun YH. Differential proteome analysis of conditioned medium of BPH-1 and LNCaP cells. Chin Med J (Engl).2011 Nov; 124 (22).-3806-9.
    [104]Okamoto A, Yamada K. Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome. BMC Microbiol.2011 Nov 10;11:249.
    [105]Cui S, Hu J, Guo S, Wang J, Cheng Y, Dang X, Wu L, He Y. Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration. J Exp Bot.2012 Jan;63(2):711-26.
    [106]Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab.2011 Nov;301 (5):E1013-21.
    [107]Master, R W, Rao, S S. Identification of enzymes and toxins in venoms of Indian cobra and Russell's viper after starch gel electrophoresis, J Biol Chem,1961,236:1986-1990.
    [108]Binz, P. A., Abdi, F., Affolter, M., Allard L, Barblan J, Bhardwaj S, Bienvenut W V, Bulet P, Burgess J, Carrette 0, et al. Proteomics application exercise of the Swiss Proteomics Society: report of the SPS'02 session. Proteomics,2003,3:1562-1566.
    [109]Rioux V, Gerbod MC, Bouet F, Menez A, Galat A. Divergent and common groups of proteins in glands of venomous snakes. Electrophoresis. 1998 May;19(5):788-96.
    [110]Fry, B. G., Wuster, W., Ramjanm, S. F., Jackson, T., Mart el li, P., Kini, R. M., Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry:evolutionary and toxinological implications. Rapid Commun. Mass Spectrom.2003,17: 2047-2062.
    [111]Phizicky E, Bastiaens P I, Zhu H, Snyder M, Fields S. Protein analysis on a proteomic scale. Nature (London) 2003,422:208-215.
    [112]Peiren, N., Vanrobaeys, F., de Graaf, D. C., Devreese, B., Van Beeumen, J., Jacobs, F. J., The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta.,2005, 1752(1):1-5.
    [113]Luch A. Mechanistic insights on spider neurotoxins. EXS.2010,100: 293-315.
    [114]King GF, The wonderful world of spiders:preface to the special Toxicon issue on spider venoms. Toxicon.2004,43(5):471-475.
    [115]Escoubas P. Molecular diversification in spider venoms:a web of combinatorial peptide libraries. Mol Divers.2006,10(4):545-554.
    [116]Adams ME. Agatoxins:ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon.2004, 43(5):509-525.
    [117]Kozlov, S. A., Vassilevski, A. A., et al., Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J. Biol. Chem.,2006,281:20983-20992
    [118]Wang XC, Duan ZG, et al., Physiological and biochemical analysis of L. tredecimguttatus venom collected by electrical stimulation. J Physiol Biochem,2007,63(3):221-230.
    [119]Kuhn-Nentwig, L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci.,2003,60:2651-2668
    [120]Hugo W. Tedford, Brianna L. Sollod, Francesco Maggio, Glenn F. King. 2004. Australian funnel-web spiders:master insecticide chemists. Toxicon.43,601-618.
    [121]Ushkaryov, Y. A., Volynski, K. E., Ashton, A. C.,2004. The multiple actions of black widow spider toxins and theirselective use in neurosecretion studies. Toxicon,43,527-542.
    [122]Kuhn-Nentwiga, L., Schallerb, J., Nentwig, W.,2004. Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon.43,543-553.
    [123]Escoubas, P., Rash, L.,2004. Tarantulas:eight-legged pharmacists and combinatorial chemists. Toxicon 43,555-574.
    [124]Liang SP. An overview of peptides toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [= Ornithoctonus huwena (Wang)]. Toxicon,2004,43:575-585.
    [125]Li GAO, Bao-en SHAN, Jing CHEN, Jiang-hui LIU, Da-xiang SONG, Bao-cheng ZHU.2005. Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells. Acta Pharmacologica Sinica.26 (3):369-376.
    [126]Pierre Escoubas, Frank Bosmans. Spider peptide toxins as leads for drug development. Expert Opinion on Drug Discovery,2007,2(6): 823-83.
    [127]Grishin, E.1999. Polypeptide neurotoxins from spider venoms. Eur. J. Biochem.264,276-280.
    [128]Kawai N, Miwa A, Abe T. Specific antagonism of the glutamate receptor by an extract from the venom of the spider Araneus ventricosus. Toxicon.1983:21(3):438-40.
    [129]Usherwood PN, Duce IR, Boden P.1984. Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, Argiope trifasciata and Araneus gemma. J Physiol (Paris).79(4):241-245.
    [130]Michael is EK, Galton N, Early SL.1984. Spider venoms inhibit L-glutamate binding to brain synaptic membrane receptors. Proc Natl Acad Sci U S A. Sep;81(17):5571-5574.
    [131]Vyklicky L Jr, Krusek J, Vyklicky L, Vyskocil F.1986. Spider venom of Araneus opens and desensitizes glutamate channels in chick spinal cord neurones. Neurosci Lett.68(2):227-231.
    [132]Nicholson GM. Fighting the global pest problem:preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon,2007,49(4):413-422.
    [133]Wilson TG, Ashok M. Insecticide resistance resulting from an absence of target-site gene product. Proc Natl Acad Sci U S A.1998, 95(24):14040-14044.
    [134]Nicholson GM, Graudins A, Spiders of medical importance in the Asia-Pacific:atracotoxin, latrotoxin and related spider neurotoxins. Clin. Exp. Physiol.2002,29 (9):785-794
    [135]Chung, E. H., Lee, K. S., et al., Molecular cloning of two cDNAs encoding an insecticidal toxin from the spider, Araneus ventricosus, and construction of a recombinant baculovirus expressing a spider toxin. Int. J. Indust. Entomol.2002,4 (1):43-49.
    [136]Bradford, M.1976. Analyt. Biochem.,772,248-264.
    [137]Ferrante, N. D.1956. J. Biol. Chem.,220:303-307.
    [138]Rich, W.1963. Methods of Enzymatic Analysis.765-770 H. U. Bergmeyer (ed) Academic Press, New York.
    [139]Liang songping, Qin Yubing, Zhang Dongyi, Pan Xin, Cheng Xiangding, Xie Jingyun.1993. Biological characterization of spider (Selenocosmia huwenaWang) crude venom. Zoological Research.14(1): 60-65.
    [140]Waterman, S. A. British J. Pharmacol.1997,120:393-398.
    [141]Lew, M. J., Flinn, J. P., Pallaghy, P. K., Murphy, R., Whorlow, S. L., Wright, C. E., Norton, R. S. and Angus, J. A.1997. J. Biol. Chem., 272:12014-12023.
    [142]Ian R. Mellor, Peter N. R. Usherwood. Targeting ionotropic receptors with polyamine-containing toxins. Toxicon 43 (2004) 493-508
    [143]Feitosa L, Gremski W, Veiga SS, Elias MC, Graner E, Mangili OC, Brentani RR. Detection and characterization of metalloproteinases with gelatinolytic, fibronectynolitic and fibrinogenolytic activities in brown spider (Loxosceles intermedia) venom. Toxicon 1998:36:1039-1051.
    [144]Veiga SS, Silveira RB, Dreyfuss JL, Haoach J, Pereira AM, Mangili OC, GremskiW. Identification of high molecular weight serine-proteases in Loxosceles intermedia (brown spider) venom. Toxicon 2000:38:825-839.
    [145]Veiga SS, Zanetti VC, Franco CRC, Trindade ES, Porcionatto MA, Mangili OC, Gremski W, Dietrich CP, Nader HB. In vivo and in vitro cytotoxicity of brown spider venom for blood vessel endothelial cells. Throm Res 2001:102:229-237.
    [146]Veiga SS, Zanetti VC, Braz A, Mangili OC, Gremski W. Extracellular matrix molecules as targets for brown spider venom toxins. Braz J Med Bio Res 2001:34:843-850.
    [147]Da Silva PH, Da Silveira RB, Appel MH, Mangili OC, Gremski W, Veiga SS. Brown spiders and loxoscelism. Toxicon 2004:44:693-709.
    [148]Luciano MN, Silva PH, Chaim OM, Santos VP, Franco CRC, Soares MFS, Zanata SM, Mangili 0, Gremski OC, Veiga SS. Experimental evidence for a direct cytotoxicity of Loxosceles intermedia (brown spider) venom on renal tissue. J Histochem Cytochem 2004;52:455-467.
    [149]Liang, S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon,2004,43:575-85.
    [150]Analysis of expressed sequence tags from the venom ducts of Conus striatus:focusing on the expression profile of conotoxins.
    [151]Wagstaff, S. C., and Harrison, R. A. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9betal integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases. Gene,2006,377: 21-32.
    [152]Zhang, B., Liu, Q., Yin, W., Zhang, X., Huang, Y., Luo, Y., Qiu, P., Su, X., Yu, J., Hu, S., and Yan, G. Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC Genomics,2006,7:152.
    [153]Junqueira-de-Azevedo Ide, L., and Ho, P. L. A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene,2002,299:279-91
    [154]Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T., and Goto, S. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res,2006,34:W459-62.
    [155]Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. GenBank. Nucleic Acids Res,2005,33:D34-8.
    [156]Bendtsen, J. D., Nielsen, H., von Hei jne, G., and Brunak, S. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol,2004,340: 783-95.
    [157]Peng, K., Lin, Y., and Liang, S. P. Nuclear magnetic resonance studies on huwentoxin-XI from the Chinese bird spider Ornithoctonus huwena:15N labeling and sequence-specific 1H,15N nuclear magnetic resonance assignments. Acta Biochim Biophys Sin (Shanghai),2006, 38:457-66.
    [158]Francischetti, I. M., My-Pham, V., Harrison, J., Garfield, M. K., and Ribeiro, J. M. Bitis gabonica (Gaboon viper) snake venom gland: toward a catalog for the full-length transcripts (cDNA) and proteins. Gene,2004,337:55-69.
    [159]Johnson, J. H., Bloomquist, J. R., Krapcho, K. J., Krai, R. M., Jr., Trovato, R., Eppler, K. G., Morgan, T. K., and DelMar, E. G. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system. Arch Insect Biochem Physiol,1998,38:19-31.
    [160]Fisher, F. G., Bohn, H.,1957. Die giftsekrete der Volgenspinnen. Justus Liebigs Annalen der Chemie 603,232-250.
    [161]Gilbo, C.M., Coles, N. W., An investigation of certain components of the venom of the female Sydney funnel web spider, Atrax robustus Cambr. Aust. J. Biol. Sci.1964.17,758-763.
    [162]柳亦松,谢锦云,梁宋平。大腹园蛛(Araneus ventricosus)粗毒双向电泳及质谱分析。生命科学研究。2004,8(2):117-121。
    [163]Schupbach J, Ammann RW, Freiburghaus AU. A universal method for two-dimensional polyacrylamide gel electrophoresis of membrane proteins using isoelectric focusing on immobilized pH gradients in the first dimension. Anal Biochem.1991,196(2):337-343.
    [164]Hellmann, U., Wemstedt, C., Gonez, J., Heldin, C. H., Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem.1995,224(1):451-5.
    [165]Mawaenyega. K.G., et. al., Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res,2003, 2:23-35.
    [166]Young, A.R., Pincus, S.J.,Comparison of enzymatic activity from three species of necrotising arachnids in Australia:Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon.2001, 39(2-3):391-400.
    [167]Terri Addona and Karl Clauses 2002. De Novo Peptide Sequencing via Manual Interpretation of MS/MS Spectra. Current Protocols in Protein Science (2002) 16.11.1-16.11.19.
    [168]Kiyatkin, N. I., Dulubova, I.E., Chekhovskaya, I. A., Grishin, E. V. Cloning and structure of cDNA encoding α -Latrotoxin from black widow spider venom. FEBS Lett,1990,270:127-131.
    [169]Diniz, M. R. V., Paine, M.J.I., Diniz, C. R., Theakston, R. D. G, Crampton, J. M. Sequence of the cDNA coding for the lethal neurotoxin Txl from the Brazilian "armed" spider Phoneutria nigriventer predicts the synthesis and processing of a preprotoxin. J. Biol. Chem, 1993,268:15340-15342。
    [170]Santos, A. D., Imperial, J. S., Chaudhary, T., Beavis, R., Chait, B. T. Hunsperger, J. P., Olivera, B. M., Adams, M., Hillyyard, D. R. Heterodimeric structure of the spider toxin ω-Agatoxin IA revealed by precursor analysis and mass spectrometry. J. Biol. Chem,1992, 267:20701-20705。
    [171]Kalapothakis E, Penaforte CL, Beirao PS, Romano-Silva MA, Cruz JS, Prado MA, Guimaraes PE, Gomez MV, Prado VF. Cloning of cDNAs encoding neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon. 1998 Dec;36(12):1843-1850.
    [172]Matavel A, Cruz JS, Penaforte CL, Araujo DA, Kalapothakis E, Prado VF, Diniz CR, Cordeiro MN, Beirao PS. Electrophysiological characterization and molecular identification of the Phoneutria nigriventer peptide toxin PnTx2-6. FEBS Lett. 2002.17; 523 (1-3):219-23.
    [173]Wang DZ, Li C, Xie ZX, Dong HP, Lin L, Hong HS. Homology-Driven Proteomics of Dinoflagellates with Unsequenced Genomes Using MALDI-TOF/TOF and Automated De Novo Sequencing. Evid Based Complement Alternat Med.2011:2011:471020. Epub 2011 Sep 29.
    [174]Zhang PF, Chen P, Hu WJ, Liang SP. Huwentoxin-V, a novel insecticidal peptide toxin from the spider Selenocosmia huwena, and a natural mutant of the toxin:indicates the key amino acid residues related to the biological activity. Toxicon.2003 Jul;42(1):15-20.
    [175]Sweadner KJ. Post-translational modification and evoked release of two large surface proteins of sympathetic neurons. J Neurosci.1983, 3(12):2504-2517.
    [176]Tedford, H. W., sollod, B. L., Maggio, F., King, G. F.,2004, Australian funnel-web spiders:male insecticide chemists. Toxicon 43,601-618
    [177]Bai Y, Li J, Fang B, Edwards A, Zhang G, Bui M, Eschrich S, Altiok S, Koomen J, Haura EB. Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res.2012 Mar 29. [Epub ahead of print]
    [178]Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics.2011 Dec 20. [Epub ahead of print]
    [179]Rob Haselberg, Chitra K. Ratnayak, Gerhardus J. de Jong, Govert W. Somsen. Performance of a sheathless porous tip sprayer for capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins. Journal of Chromatography A,1217 (2010) 7605-7611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700