用户名: 密码: 验证码:
周期性微结构表面辐射特性及其调控方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的发展,电子、机械、航天、生物、医药学等各领域的设备器件均从传统工艺向微型工艺发展,微电子机械系统(MEMS)成为一个新兴的技术领域。系统结构的微小型化使得工业界面临机遇与挑战并存的境地。一方面,微小型化产生了系统散热困难,热光电系统转化效率低等问题;另一方面,微结构内具有的一些特殊辐射特性为上述问题的解决提供了新的方案和思路。目前,已有诸多研究工作针对利用微结构的辐射特性,满足工业应用需求,解决技术难题。但由于微结构辐射特性研究仍处于起步阶段,很多设计难以满足工业要求。
     基于上述研究背景,为深入发展微尺度结构表面辐射特性调控技术,利用其特点解决工业技术难题,提高应用系统性能,本文针对以辐射为主要能量传递和转换方式的应用领域,如热光电转换系统、航天器热控制系统等,对周期性微结构表面的辐射特性进行了研究,提出了选择性吸收峰等效带宽的拓宽技术和三种主动调控光谱特性的周期性微结构。使用严格耦合波分析法,结合等效LC回路模型理论,对提出的微结构表面辐射特性和辐射机理进行了研究,有效改善了系统辐射性能,进一步满足了工业应用的实际需要,为实际应用提供了理论基础。其中主要工作包括:
     鉴于周期性光栅结构表面光谱辐射特性具有不同的机制,本文分别研究了光栅辐射特性随入射波类型、入射角度、光栅结构尺度和材料的变化规律。结果表明,磁极化比等离子激元极化更适宜作为调节辐射特性的共振机制。该机制形成的共振峰位置、峰值大小和半波全宽均可按规律通过光栅几何结构尺寸进行调节。材料的吸收性能与其消光系数和折射率的比值κ/n成反比。金属铝、金和银因其在中远红外波段恒定的吸收率及较强的导电性而较适合选作微结构表面的加工材料。
     实际应用中常遇到简单光栅结构的高吸收率共振峰过窄,不能满足航天器热控系统的宽谱带波长选择性散热需求的问题。本文进行了等效吸收带宽的拓宽方法研究,提出了二重凹槽光栅和复杂二重凹槽光栅两种等效吸收带宽拓宽结构。该方法通过结构设计实现不同波段共振峰的毗连,从而达到在宽波段范围激发高吸收率峰的目的。研究结果通过等效带宽增益系数的比较,证实该两种结构可以有效提高指定波段的等效吸收带宽。
     实现根据应用环境变化主动调节表面的光谱辐射特性有助于在实际应用中提高辐射散热设备的机动能力。本文提出了移动盖板光栅结构、填充液光栅结构和梳齿微驱动器光栅结构三种光谱辐射特性主动调控方法,并对其共振激发机制和调控规律进行了研究。研究表明,此三种结构可分别通过改变盖板厚度和位置,调节填充液材料和高度,以及调整梳齿几何尺寸和位置对光栅光谱辐射特性进行有效调节。从而实现了微结构加工成型后的辐射特性调控功能,加强了微结构表面光谱辐射特性调控能力的灵活性和在不同应用环境下的兼容性。
As the development of technology, the equipments in differnet fields, such aselectronics, mechanism, aerospace, biology, medicine, turn to minitype fromtraditional technics. Micro-electromechanical systems (MEMS) become an risingtechnolgoy field. The minimization of system structures brings the industry fileds toa position that facing to both opportunities and challenges. On the one hand, severaldifficulties, such as harder to dissipate heat, lower transform efficiency ofthermophotovaltic system, are produced. On the other hand, the special properties ofmicro-scale structures provide some new methods and ideas to solve those problems.Recently, there have been some researches about meeting the industrial applicationrequirments by the radiation properties of micro-structures. However, since theresearches about micro-structure radiation are not mature, there are still lots ofrequirements in practical application can not be satisfied.
     Based on the above background, in order to develop the radiation propertycontrol technology of microscale structure surface to solve industrial problems andimprove the application system performance, this paper does some researches aboutthe spectral radiation properties of periodic micro-scale structure surface. Theresearch of this paper aims to the application field that take radiation as the mainenergy transition and transfer way, such as thermophotovoltaic system andaerospace thermal control system. In this study, two methods are proposed to widenthe equivalent absorptance wavelength band. And it also proposes three newstructures for active control of radiaiton properties. The spectral properties andresonance mechanism are studied by rigourous coupled-wave analysis combinedwith the equivalent LC circuit model theory. It is found that the radiation propertiesof systems are much improved and meet the requirment of practicle applicationsbetter. The scope of present study contains three parts:
     There are several different adjust mechanisms for the radiation properties ofperiodic grating structure surface. The changing law of grating radiation propertieswith incident ray, grating structure demensions and grating materials areinvestigated in this paper. The results show that the absorptance peaks excited byMagnetic Polaritons (MPs) are properer for radiaiton adjustment than that excited bySurface Plasmon/Phonon Polaritons (SPPs). The absorptance peaks excited by MPscan be adjusted by changing the grating structure dimensions. The absorbency ofmaterials is inversely proportional to (κ/n)2. Aluminum, gold and silver are proper tothe materials of periodic micro-structure due to their strong electrical conductivityand constant absorptance in mid-and far-infrared wave band.
     The high absorptance peaks excited by simple grating are too narrow to meetthe requirement of aerospace thermal control system. This paper proposes adual-groove grating structure and a complex dual-groove grating structure forpassive control of system radiation property. It is proved that these two structuresincreased the effecitve wave band within interested wavelength band by combiningabsorptance peaks excited in different wavelength through structrue design. And thesimulation shows that these two structures are promising for specral radiaitonproperty improvement.
     It is helpful to improve the flexbility and manoeuvrability of radiation heatdisspation equipments. A sliding cover board grating structure, a filling solutiongrating structure and a comb-driven micro-actuator grating structure are proposedfor active control of system spectal radiaiton properties. The resonance mechanismand adjusting laws are investigated. It is proved that the absorptance peaks can beadjusted by changing the thickness and position of cover board, height of fillingsolutions and geometry dimensions or displacement of comb finger. This designprovides the posibility of adjusting system radiation property after the graitngstructures are frabricated, thus enable change the spectral properties according toenvironment demand.
引文
[1]谈和平,夏新林,刘林华.红外辐射特性与传输的数值计算:计算热辐射学[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [2] S. Pradhan and T. Murmu. Small Scale Effect on the Buckling ofSingle-Layered Graphene Sheets under Biaxial Compression Via NonlocalContinuum Mechanics[J]. Computational Materials Science.2009,47(1):268-274.
    [3] T. Murmu and S. Pradhan. Small-Scale Effect on the Vibration ofNonuniform Nanocantilever Based on Nonlocal Elasticity Theory[J].Physica E: Low-dimensional Systems and Nanostructures.2009,41(8):1451-1456.
    [4] N.E. Dutoit, B.L. Wardle and S.-G. Kim. Design Considerations forMems-Scale Piezoelectric Mechanical Vibration Energy Harvesters[J].Integrated Ferroelectrics.2005,71(1):121-160.
    [5] T.W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio and P. Wolff. ExtraordinaryOptical Transmission through Sub-Wavelength Hole Arrays[J]. Nature.1998,391(6668):667-669.
    [6] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C.M. Soukoulis.Electromagnetic Waves: Negative Refraction by Photonic Crystals[J]. Nature.2003,423(6940):604-605.
    [7] C. Fu and Z.M. Zhang. Thermal Radiative Properties of Metamaterials andOther Nanostructured Materials: A Review[J]. Frontiers of Energy andPower Engineering in China.2009,3(1):11-26.
    [8] J.W. Gardner and V.K. Varadan. Microsensors, Mems and Smart Devices[M].New York: John Wiley&Sons, Inc.,2001.
    [9] A.A. Alexeenko, D.A. Fedosov, S.F. Gimelshein, D.A. Levin and R.J.Collins. Transient Heat Transfer and Gas Flow in a Mems-Based Thruster[J].Microelectromechanical Systems, Journal of.2006,15(1):181-194.
    [10] N. Damean, P.P. Regtien and M. Elwenspoek. Heat Transfer in a Mems forMicrofluidics[J]. Sensors and Actuators A: Physical.2003,105(2):137-149.
    [11] H Yokoyama. Physics and Device Applications of OpticalMicrocavities[M]//Confined Electrons and Photons, NATO ASI Series.1995,340:865-869.
    [12]李珏蓉.半导体微腔的设计与实现[D].北京邮电大学,2009.
    [13] J.B. Pendry. Negative Refraction Makes a Perfect Lens[J]. Physical ReviewLetters.2000,85(18):3966-3969.
    [14] D.R. Smith and N. Kroll. Negative Refractive Index in Left-HandedMaterials[J]. Physical Review Letters.2000,85(14):2933-2936.
    [15] J.E. Wijnhoven and W.L. Vos. Preparation of Photonic Crystals Made of AirSpheres in Titania[J]. Science.1998,281(5378):802-804.
    [16] J.D. Joannopoulos, P.R. Villeneuve and S. Fan. Photonic Crystals: Putting aNew Twist on Light[J]. Nature.1997,386(6621):143-149.
    [17] G. Buselli. The Effect of Near-Surface Superparamagnetic Material onElectromagnetic Measurements[J]. Geophysics.1982,47(9):1315-1324.
    [18] R. McMichael, R. Shull, L. Swartzendruber, L. Bennett and R. Watson.Magnetocaloric Effect in Superparamagnets[J]. Journal of magnetism andmagnetic materials.1992,111(1):29-33.
    [19] V G Veselago. The Electrodynamics Of Substances With SimultaneouslyNegative Values Of Img align=ABSMIDDLE alt=eps/IMG AND μ[J].Physics-Uspekhi,1968,10(4):509-514.
    [20] S. John. Strong Localization of Photons in Certain Disordered DielectricSuperlattices[J]. Physical Review Letters.1987,58(23):2486-2489.
    [21] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics andElectronics[J]. Physical Review Letters.1987,58(20):2059-2062.
    [22] M. Loncar, T. Yoshie, A. Scherer, P. Gogna and Y Qiu. Low-ThresholdPhotonic Crystal Laser[J].Applied Physics Letters.2002,81(15):2680-2682.
    [23] Y. H. Lee, H. Y. Ryu, H. K. Park, et al. Low threshold2-D photonic crystallasers[C]//Lasers and Electro-Optics Society, IEEE/LEOS Annual MeetingConference Proceedings.15th Annual Meeting of the IEEE Lasers andElectro-Optics Society2002,1:219-220.
    [24] Hai-Tao J, Hong C, Nian-Hua L, et al. Engineering Photonic CrystalImpurity Bands for Multiple Channelled Optical Switches[J]. ChinesePhysics Letters,2004,21(1):101.
    [25] H.-T. Hsu, M.-H. Lee, T.-J. Yang, Y.-C. Wang and C.-J. Wu. AMultichanneled Filter in a Photonic Crystal Containing Coupled Defects[J].Progress In Electromagnetics Research.2011,117:379-392.
    [26] J. Knight, T. Birks, P.S.J. Russell and D. Atkin. All-Silica Single-ModeOptical Fiber with Photonic Crystal Cladding[J]. Optics Letters.1996,21(19):1547-1549.
    [27] J. Knight, J. Broeng, T. Birks and P.S.J. Russell. Photonic Band GapGuidance in Optical Fibers[J]. Science.1998,282(5393):1476-1478.
    [28] A. Tanimoto and S. Kuribayashi. Application of Superparamagnetic IronOxide to Imaging of Hepatocellular Carcinoma[J]. European journal ofradiology.2006,58(2):200-216.
    [29] X. Hong, X. Gao and L. Jiang. Application of Superhydrophobic Surfacewith High Adhesive Force in No Lost Transport of SuperparamagneticMicrodroplet[J]. Journal of the American Chemical Society.2007,129(6):1478-1479.
    [30] R. Ritchie. Plasma Losses by Fast Electrons in Thin Films[J]. PhysicalReview.1957,106(5):874.
    [31] P. Tien. Light Waves in Thin Films and Integrated Optics[J]. Applied Optics.1971,10(11):2395-2413.
    [32] M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher and W.Knoll. Thermally Induced Emission of Light from a Metallic DiffractionGrating, Mediated by Surface Plasmons[J]. Optics communications.1999,168(1):117-122.
    [33] A. Heinzel, V. Boerner, A. Gombert, B. Bl si, V. Wittwer and J. Luther.Radiation Filters and Emitters for the Nir Based on Periodically StructuredMetal Surfaces[J]. Journal of modern optics.2000,47(13):2399-2419.
    [34] H. Sai, Y. Kanamori and H. Yugami. Tuning of the Thermal RadiationSpectrum in the near-Infrared Region by Metallic Surface Microstructures[J].Journal of Micromechanics and Microengineering.2005,15(9): S243.
    [35] K. Arya, Z. Su and J.L. Birman. Localization of the Surface PlasmonPolariton Caused by Random Roughness and Its Role in Surface-EnhancedOptical Phenomena[J]. Physical Review Letters.1985,54(14):1559-1562.
    [36]赵凯华,罗蔚茵.新概念物理教程:光学[M].北京:高等教育出版社,2005.
    [37] Z. M. Zhang. Nano/Microscale Heat Transfer [M]. New York: McGraw-Hill,2007.
    [38] D. Polder and M. Van Hove. Theory of Radiative Heat Transfer betweenClosely Spaced Bodies[J]. Physical Review B.1971,4(10):3303.
    [39] J.-P. Mulet, K. Joulain, R. Carminati and J.-J. Greffet. Enhanced RadiativeHeat Transfer at Nanometric Distances[J]. Microscale ThermophysicalEngineering.2002,6(3):209-222.
    [40] K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati and J.-J. Greffet. SurfaceElectromagnetic Waves Thermally Excited: Radiative Heat Transfer,Coherence Properties and Casimir Forces Revisited in the near Field[J].Surface Science Reports.2005,57(3):59-112.
    [41] A. Narayanaswamy and G. Chen. Surface Modes for near FieldThermophotovoltaics[J]. Applied physics letters.2003,82(20):3544-3546.
    [42] A. Narayanaswamy and G. Chen. Thermal Radiation in1d PhotonicCrystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer.2005,93(1):175-183.
    [43] J.S. Hammonds Jr. Thermal Radiative Transport Enhancement Via SurfacePlasmon Polaritons in Microscale Cylindrical Regions Bounded by a SurfaceActive Ceramic[C]. Proceedings of the ASME Heat Transfer Division.2005,376HTD(2):767-772.
    [44] J.S. Hammonds. Thermal Transport Via Surface Phonon Polaritons across aTwo-Dimensional Pore[J]. Applied physics letters.2006,88(4):041912-041912-3.
    [45] R. Carminati and J.-J. Greffet. Near-Field Effects in Spatial Coherence ofThermal Sources[J]. Physical Review Letters.1999,82(8):1660-1663.
    [46] Z. M. Zhang, C. J. Fu. Unusual photon tunneling in the presence of a layerwith a negative refractive index[J]. Applied Physics Letters,2002,80(6):1097-1099.
    [47] S. Basu, Z. Zhang and C. Fu. Review of near‐Field Thermal Radiation andIts Application to Energy Conversion[J]. International Journal of EnergyResearch.2009,33(13):1203-1232.
    [48] M. Francoeur and M. Pinar Mengü. Role of Fluctuational Electrodynamicsin near-Field Radiative Heat Transfer[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.2008,109(2):280-293.
    [49] H. Zhou, Z. Huang, Q. Cheng, W. Lü, K. Qiu, C. Chen and P.-f. Hsu. RoadSurface Mirage: A Bunch of Hot Air?[J]. Chinese Science Bulletin.2011,56(10):962-968.
    [50] K. Fu and P.-f. Hsu. Modeling the Radiative Properties of MicroscaleRandom Roughness Surfaces[J]. Journal of Heat Transfer.2007,129(1):71-78.
    [51] K. Fu and P.-f. Hsu. Radiative Properties of Gold Surfaces withOne-Dimensional Microscale Gaussian Random Roughness[J]. InternationalJournal of Thermophysics.2007,28(2):598-615.
    [52] K. Tang, R.A. Dimenna and R.O. Buckius. Regions of Validity of theGeometric Optics Approximation for Angular Scattering from Very RoughSurfaces[J]. International Journal of Heat and Mass Transfer.1996,40(1):49-59.
    [53] A.V. Zayats, I.I. Smolyaninov and A.A. Maradudin. Nano-Optics of SurfacePlasmon Polaritons[J]. Physics Reports.2005,408(3):131-314.
    [54] W.L. Barnes, A. Dereux and T.W. Ebbesen. Surface Plasmon SubwavelengthOptics[J]. Nature.2003,424(6950):824-830.
    [55] T. Li, H. Liu, F. Wang, Z. Dong, S. Zhu and X. Zhang. Coupling Effect ofMagnetic Polariton in Perforated Metal/Dielectric Layered Metamaterialsand Its Influence on Negative Refraction Transmission[J]. Opt. Express.2006,14(23):11155-11163.
    [56] B. Lee, L. Wang and Z. Zhang. Coherent Thermal Emission by Excitation ofMagnetic Polaritons between Periodic Strips and a Metallic Film[J]. OpticsExpress.2008,16(15):11328-11336.
    [57] E.L. Albuquerque and M.G. Cottam. Polaritons in Periodic andQuasiperiodic Structures[M]. Amsterdam: Elsevier,2004.
    [58] W. Hopman, K. Van Der Werf, A. Hollink, W. Bogaerts, V. Subramaniam andR. De Ridder. Nano-Mechanical Tuning and Imaging of a Photonic CrystalMicro-Cavity Resonance[J]. Optics Express.2006,14(19):8745-8752.
    [59] A. Murakami, K. Kawashima and K. Atsuki. Cavity Resonance Shift andBandwidth Enhancement in Semiconductor Lasers with Strong LightInjection[J]. IEEE Journal of Quantum Electronics.2003,39(10):1196-1204.
    [60] A. Hessel and A. Oliner. A New Theory of Wood’s Anomalies on OpticalGratings[J]. Applied Optics.1965,4(10):1275-1297.
    [61] J.E. Stewart and W.S. Gallaway. Diffraction Anomalies in GratingSpectrophotometers[J]. Applied Optics.1962,1(4):421-429.
    [62] Y.-W. Jiang, L.D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen andS.-C. Lee. Effect of Wood’s Anomalies on the Profile of ExtraordinaryTransmission Spectra through Metal Periodic Arrays of RectangularSubwavelength Holes with Different Aspect Ratio[J]. Optics Express.2009,17(4):2631-2637.
    [63] J. Lee, M. Seo, D. Kim, S. Jeoung, C. Lienau, J. Kang and Q. Park.Fabry–Perot Effects in Thz Time-Domain Spectroscopy of PlasmonicBand-Gap Structures[J]. Applied physics letters.2006,88(7):071114-071114-3.
    [64] L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendryand T. Ebbesen. Theory of Extraordinary Optical Transmission throughSubwavelength Hole Arrays[J]. Physical Review Letters.2001,86(6):1114-1117.
    [65] W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux and T. Ebbesen. SurfacePlasmon Polaritons and Their Role in the Enhanced Transmission of Lightthrough Periodic Arrays of Subwavelength Holes in a Metal Film[J].Physical Review Letters.2004,92(10):107401.
    [66] L. Wang, A. Haider and Z. Zhang. Effect of Magnetic Polaritons on theRadiative Properties of Inclined Plate Arrays[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.2012, DOI:10.1016/j.jqsrt.2012.09.010.
    [67] S. Maruyama, T. Kashiwa, H. Yugami and M. Esashi. Thermal Radiationfrom Two-Dimensionally Confined Modes in Microcavities[J]. Appliedphysics letters.2001,79(9):1393-1395.
    [68] R. Wood. Xlii. On a Remarkable Case of Uneven Distribution of Light in aDiffraction Grating Spectrum[J]. The London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science.1902,4(21):396-402.
    [69] L. Rayleigh. Iii. Note on the Remarkable Case of Diffraction SpectraDescribed by Prof. Wood[J]. The London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science.1907,14(79):60-65.
    [70] Maystre D. Theory of Wood’s Anomalies[M]//Plasmonics. Berlin: SpringerBerlin,2012:39-83.
    [71] U. Fano. The Theory of Anomalous Diffraction Gratings and ofQuasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)[J].JOSA.1941,31(3):213-222.
    [72] C. Malone, Z. Zhang, M. Flik and E. Cravalho. Optimized Design ofFar-Infrared Fabry-Perot Resonators Fabricated from YBa2Cu3O7[J]. IEEETransactions on Applied Superconductivity.1993,3(1):2852-2855.
    [73] A. Kumar, V. Boychev, Z. Zhang and D. Tanner. Fabry-Perot ResonatorsBuilt with YBa2Cu3O7-δ Films on Si Substrates[J]. Journal of Heat Transfer.2000,122(4):785-791.
    [74] Y.-B. Chen and Z. Zhang. Design of Tungsten Complex Gratings forThermophotovoltaic Radiators[J]. Optics communications.2007,269(2):411-417.
    [75] L. Wang, B. Lee, X. Wang and Z. Zhang. Spatial and Temporal Coherence ofThermal Radiation in Asymmetric Fabry–Perot Resonance Cavities[J].International Journal of Heat and Mass Transfer.2009,52(13):3024-3031.
    [76] B. Lee, Y.-B. Chen and Z. Zhang. Confinement of Infrared Radiation toNanometer Scales through Metallic Slit Arrays[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.2008,109(4):608-619.
    [77] Y.-B. Chen, J.-S. Chen and P.-f. Hsu. Impacts of Geometric Modifications onInfrared Optical Responses of Metallic Slit Arrays[J]. Opt. Express.2009,17(12):9789-9803.
    [78] C. Fu and W. Tan. Semiconductor Thin Films Combined with MetallicGrating for Selective Improvement of Thermal RadiativeAbsorption/Emission[J]. Journal of Heat Transfer.2009,131(3):1-8.
    [79] Y.-B. Chen and Z. Zhang. Heavily Doped Silicon Complex Gratings asWavelength-Selective Absorbing Surfaces[J]. Journal of Physics D: AppliedPhysics.2008,41(9):095406.
    [80] A.-H. Wang, P.-f. Hsu, Y.-B. Chen and L.-H. Liu. Modeling InfraredRadiative Properties of Heavily Doped Silicon Complex Gratings withGeometric Modifications[C]. in Proceedings of the ASME Micro/NanoscaleHeat and Mass Transfer International Conference.2009,2:355-362.
    [81] L. Wang and Z.M. Zhang. Effect of Magnetic Polaritons on the RadiativeProperties of Double-Layer Nanoslit Arrays[J]. JOSA B.2010,27(12):2595-2604.
    [82] L. Wang and Z. Zhang. Phonon-Mediated Magnetic Polaritons in the InfraredRegion[J]. Optics Express.2011,19(102): A126-A135.
    [83] J. Qiu, L. Liu and P.-F. Hsu. Oxide-Film Effect on Infrared RadiativeProperties of Grating Structures of Aluminum[J]. Journal of Thermophysicsand Heat Transfer.2011,25(1):80-86.
    [84] C.-J. Chen, J.-S. Chen and Y.-B. Chen. Optical Responses from LossyMetallic Slit Arrays under the Excitation of a Magnetic Polariton[J]. JOSA B.2011,28(8):1798-1806.
    [85] L. Wang and Z. Zhang. Wavelength-Selective and Diffuse Emitter Enhancedby Magnetic Polaritons for Thermophotovoltaics[J]. Applied Physics Letters.2012,100(6):063902-063902-3.
    [86] S.-Y. Lin, J. Moreno and J. Fleming. Three-Dimensional Photonic-CrystalEmitter for Thermal Photovoltaic Power Generation[J]. Applied PhysicsLetters.2003,83(2):380-382.
    [87] Y.-B. Chen and K.-H. Tan. The Profile Optimization of PeriodicNano-Structures for Wavelength-Selective Thermophotovoltaic Emitters[J].International Journal of Heat and Mass Transfer.2010,53(23):5542-5551.
    [88] R. Osiander, J. Champion, M. Darrin, D. Douglas, T. Swanson, J. Allen andE. Wyckoff. Mems Shutters for Spacecraft Thermal Control[J]. AmeicanInstitute of Aeronautics and Astronautics.2002,5766:1-6.
    [89] M.A. Beasley, S.L. Firebaugh, R.L. Edwards, A.C. Keeney and R. Osiander.Mems Thermal Switch for Spacecraft Thermal Control[C]. in Proceeding ofSPIE, MEMS/MOEMS Components and Their Applications.2004,5344:98-105.
    [90] R. Osiander, J. Champion, A. Darrin, J. Sniegowski, S. Rodgers, D. Douglasand T. Swanson. Micromachined Louver Arrays for Spacecraft ThermalControl Radiators[C].39th AIAA Aerospace Sciences Meeting&Exhibit,Reno, NV.2001:2001-0215.
    [91] R. Osiander, S.L. Firebaugh, J.L. Champion, D. Farrar and M.G. Darrin.Microelectromechanical Devices for Satellite Thermal Control[J]. IEEESensors Journal.2004,4(4):525-531.
    [92] D. Marcuse. Theory of Dielectric Optical Waveguides[J]. New York:Academic Press, Inc.,1974.267.
    [93] R.F. Harrington and J.L. Harrington. Field Computation by MomentMethods[M]. Oxford: Oxford University Press,1996.
    [94] R.F. Harrington. The Method of Moments in Electromagnetics[J]. Journal ofElectromagnetic Waves and Applications.1987,1(3):181-200.
    [95] Z.J. Csendes and P. Silvester. Numerical Solution of Dielectric LoadedWaveguides: I-Finite-Element Analysis[J]. IEEE Transactions on MicrowaveTheory and Techniques.1970,18(12):1124-1131.
    [96]金建铭,王建国.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [97] C.A. Brebbia. Boundary Element Techniques in Computer-AidedEngineering[M]. Springer,1984.
    [98] J.-H. Kim and M. Swaminathan. Modeling of Irregular Shaped PowerDistribution Planes Using Transmission Matrix Method[J]. IEEETransactions on Advanced Packaging.2001,24(3):334-346.
    [99] C.C. Katsidis and D.I. Siapkas. General Transfer-Matrix Method for OpticalMultilayer Systems with Coherent, Partially Coherent, and IncoherentInterference[J]. Applied Optics.2002,41(19):3978-3987.
    [100]崔万照.电磁超介质及其应用[M].北京:国防工业出版社,2008.
    [101]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2005.
    [102] D.M. Sullivan. Electromagnetic Simulation Using the Fdtd Method[M]. NewYork: IEEE press,2000.
    [103] M. Moharam, E.B. Grann, D.A. Pommet and T. Gaylord. Formulation forStable and Efficient Implementation of the Rigorous Coupled-Wave Analysisof Binary Gratings[J]. JOSA A.1995,12(5):1068-1076.
    [104] M. Moharam, D.A. Pommet, E.B. Grann and T. Gaylord. StableImplementation of the Rigorous Coupled-Wave Analysis for Surface-ReliefGratings: Enhanced Transmittance Matrix Approach[J]. JOSA A.1995,12(5):1077-1086.
    [105] R. Harrington. Origin and Development of the Method of Moments for FieldComputation[J]. IEEE Antennas and Propagation Magazine.1990,32(3):31-35.
    [106] P. Silvester and M.-S. Hsieh. Finite-Element Solution of2-DimensionalExterior-Field Problems[J]. in Proceedings of the Institution of ElectricalEngineers.1971,118(12):1743-1747.
    [107] B.H. McDonald and A. Wexler. Finite-Element Solution of Unbounded FieldProblems[J]. IEEE Transactions on Microwave Theory and Techniques.1972,20(12):841-847.
    [108] J.-M. Jin and V.V. Liepa. Application of Hybrid Finite Element Method toElectromagnetic Scattering from Coated Cylinders[J]. IEEE Transactions onAntennas and Propagation.1988,36(1):50-54.
    [109] G. Mur and A. de Hoop. A Finite-Element Method for ComputingThree-Dimensional Electromagnetic Fields in Inhomogeneous Media[J].IEEE Transactions on Magnetics.1985,21(6):2188-2191.
    [110] S. Kurz, O. Rain and S. Rjasanow. The Adaptive Cross-ApproximationTechnique for the3d Boundary-Element Method[J]. IEEE Transactions onMagnetics.2002,38(2):421-424.
    [111] J.M. Bendickson, E.N. Glytsis and T.K. Gaylord. Scalar Integral DiffractionMethods: Unification, Accuracy, and Comparison with a Rigorous BoundaryElement Method with Application to Diffractive Cylindrical Lenses[J]. JOSAA.1998,15(7):1822-1837.
    [112] K. Yee. Numerical Solution of Initial Boundary Value Problems InvolvingMaxwell's Equations in Isotropic Media[J]. IEEE Transactions on Antennasand Propagation.1966,14(3):302-307.
    [113] M. Moharam and T. Gaylord. Rigorous Coupled-Wave Analysis ofPlanar-Grating Diffraction[J]. JOSA.1981,71(7):811-818.
    [114] M. Moharam and T. Gaylord. Rigorous Coupled-Wave Analysis of GratingDiffraction—E-Mode Polarization and Losses[J]. JOSA.1983,73(4):451-455.
    [115] T. Gaylord and M. Moharam. Planar Dielectric Grating DiffractionTheories[J]. Applied Physics B.1982,28(1):1-14.
    [116] A. Boueke, R. Kühn, P. Fath, G. Willeke and E. Bucher. Latest Results onSemitransparent Power Silicon Solar Cells[J]. Solar Energy Materials andSolar Cells.2001,65(1):549-553.
    [117] Q.-C. Zhang. Recent Progress in High-Temperature Solar SelectiveCoatings[J]. Solar Energy Materials and Solar Cells.2000,62(1):63-74.
    [118] M. Shimizu and H. Yugami. Thermal Radiation Control by Surface Gratingsas an Advanced Cooling System for Electronic Devices[J]. Journal ofThermal Science and Technology.2011,6(2):297-306.
    [119] L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Panand L. Liang. Microstructure Design of Nanoporous TiO2Photoelectrodesfor Dye-Sensitized Solar Cell Modules[J]. The Journal of PhysicalChemistry B.2007,111(2):358-362.
    [120] T. Ohnstein, J. Zook, J. Cox, B. Speldrich, T. Wagener, H. Guckel, T.Christenson, E. Klein and I. Glasgow. Tunable IR Filters Using FlexibleMetallic Microstructures[C]. in Proceedings of the IEEE Micro ElectroMechanical Systems.1995:170-174.
    [121] A. Fedotov, P. Zhou, A. Tarasevitch, K. Dukel'Skii, Y.N. Kondrat'ev, V.Shevandin, V. Smirnov, D. Von der Linde and A. Zheltikov.Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emissionfor Wave-Mixing Spectroscopy[J]. Journal of Raman Spectroscopy.2002,33(11-12):888-895.
    [122]赵凯华,罗蔚茵.新概念物理教程:电磁学[M].北京:高等教育出版社,2006.
    [123]玻恩马科斯,沃耳夫埃米尔,杨葭荪.光学原理[M].北京:电子工业出版社,2006.
    [124] M. Moharam and T.K. Gaylord. Rigorous Coupled-Wave Analysis ofMetallic Surface-Relief Gratings[J]. JOSA A.1986,3(11):1780-1787.
    [125]赵华君,杨守良,张东,梁康有,程正富,石东平.亚波长金属偏振分束光栅设计分析[J].物理学报.2009,58(9):6236-6242.
    [126] M. Moharam and T. Gaylord. Coupled-Wave Analysis of ReflectionGratings[J]. Applied Optics.1981,20(2):240-244.
    [127] T.K. Gaylord and M. Moharam. Analysis and Applications of OpticalDiffraction by Gratings[J]. Proceedings of the IEEE.1985,73(5):894-937.
    [128] J. Zhou, L. Zhang, G. Tuttle, T. Koschny and C.M. Soukoulis. NegativeIndex Materials Using Simple Short Wire Pairs[J]. Physical Review B.2006,73(4):041101.
    [129] J. Zhou, E.N. Economon, T. Koschny and C.M. Soukoulis. UnifyingApproach to Left-Handed Material Design[J]. Optics Letters.2006,31(24):3620-3622.
    [130] J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry and C. Soukoulis.Saturation of the Magnetic Response of Split-Ring Resonators at OpticalFrequencies[J]. Physical Review Letters.2005,95(22):223902.
    [131] N. Engheta. Circuits with Light at Nanoscales: Optical Nanocircuits Inspiredby Metamaterials[J]. Science.2007,317(5845):1698-1702.
    [132] T. Li, J.-Q. Li, F.-M. Wang, Q.-J. Wang, H. Liu, S.-N. Zhu and Y.-Y. Zhu.Exploring Magnetic Plasmon Polaritons in Optical Transmission throughHole Arrays Perforated in Trilayer Structures[J]. Applied Physics Letters.2007,90(25):251112-251112-3.
    [133] E. Palik. Handbook of Optical Constants of Solids[M]. New York:Academic Press,1985.
    [134] E. Palik. Handbook of Optical Constants of Solids II.[M]. New York:Academic Press,1991.
    [135] P J Hesketh, J N Zemel, B Gebhart. Polarized spectral emittance fromperiodic micromachined surfaces. II. Doped silicon: Angular variation[J].Physical Review B,1988,37(18):10803.
    [136] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy and Y. Chen.Coherent Emission of Light by Thermal Sources[J]. Nature.2002,416(6876):61-64.
    [137] A. Niv, G. Biener, Y. Gorodetski, V. Kleiner and E. Hasman. Extraordinarycoherent thermal emission from SiC due to coupled resonant cavities[J].Journal of Heat Transfer.2008,130:112401-1.
    [138] Z.-F. Huang, P.-f. Hsu, A.-H. Wang, Y.-B. Chen, L.-H. Liu and H.-C. Zhou.Wavelength-Selective Infrared Absorptance of Heavily Doped SiliconComplex Gratings with Geometric Modifications[J]. JOSA B.2011,28(4):929-936.
    [139] L. Wang and Z. Zhang. Resonance Transmission or Absorption in DeepGratings Explained by Magnetic Polaritons[J]. Applied physics letters.2009,95(11):111904-111904-3.
    [140] D. Kamiya, T. Hayama and M. Horie. Electrostatic Comb-Drive ActuatorsMade of Polyimide for Actuating Micromotion Convert Mechanisms[J].Microsystem technologies.1999,5(4):161-165.
    [141] J.W. Judy, T. Tamagawa and D.L. Polla. Surface-machined micromechanicalmembrane pump[C]. In Proceedings of IEEE Micro Electro MechanicalSystems.1991:182-186.
    [142] J.W. Judy. Microelectromechanical Systems (MEMS): Fabrication, Designand Applications[J]. Smart Materials and Structures.2001,10(6):1115.
    [143] Y. Takeuchi, T. Nanataki and I. Ohwada. Microfluidic Pump Device[P]. USPatent6,666,658,2003.
    [144] Y. Takeuchi, T. Nanataki and I. Ohwada. Pump[P]. US Patent6,565,331,2003.
    [145] J.-H. Tsai and L. Lin. A Thermal-Bubble-Actuated Micronozzle-DiffuserPump[J]. Journal of Microelectromechanical Systems.2002,11(6):665-671.
    [146] R. Zengerle, A. Richter and H. Sandmaier. A Micro Membrane Pump withElectrostatic Actuation[C]. in Proceedings of the Micro Electro MechanicalSystems Workshop, Travemunde, Germany.1992:19-24.
    [147] W. Benard, H. Kahn, A. Heuer and M. Huff. A Titanium-NickelShape-Memory Alloy Actuated Micropump.[C] in Proceedings ofInternational Conference on Solid State Sensors and Actuators.1997,1:361-364.
    [148] Y. Au, Q.M. Wang, H. Li, J.-S.M. Lehn, D.V. Shenai and R.G. Gordon. VaporDeposition of Highly Conformal Copper Seed Layers for Platingthrough-Silicon Vias (Tsvs)[J]. Journal of The Electrochemical Society.2012,159(6): D382-D385.
    [149] F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Fran ais, Y. Mita and T.Bourouina. Advanced Etching of Silicon Based on Deep Reactive IonEtching for Silicon High Aspect Ratio Microstructures andThree-Dimensional Micro-and Nanostructures[J]. Microelectronics journal.2005,36(7):673-677.
    [150] C.K. Malek and V. Saile. Applications of Liga Technology to PrecisionManufacturing of High-Aspect-Ratio Micro-Components and-Systems: AReview[J]. Microelectronics journal.2004,35(2):131-143.
    [151] M. Lim, J. Chang, D. Schultz, R. Howe and R. White. PolysiliconMicrostructures to Characterize Static Friction[C]. in Proceedings of IEEEMicro Electro Mechanical Systems Workshop-An Investigation of MicroStructures, Sensors, Actuators, Machines and Robots, Napa Valley, CA.1990:82-88.
    [152] C.-J. Kim, A.P. Pisano, R.S. Muller and M.G. Lim. PolysiliconMicrogripper[J]. Sensors and Actuators A: Physical.1992,33(3):221-227.
    [153] W. Yun, R.T. Howe and P.R. Gray. Surface Micromachined, DigitallyForce-Balanced Accelerometer with Integrated Cmos Detection Circuitry[C].Technical Digest-IEEE Solid-State Sensor and Actuator Workshop, HiltonHead, SC, USA.1992:126-131.
    [154] B.E. Keeler, D.W. Carr, J.P. Sullivan, T.A. Friedmann and J.R. Wendt.Experimental Demonstration of a Laterally Deformable OpticalNanoelectromechanical System Grating Transducer[J]. Optics Letters.2004,29(11):1182-1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700